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Compensating Misalignment Using Dynamic
Random-Effect Control System: A Case of

High-Mixed Wafer Fabrication
Marzieh Khakifirooz , Student Member, IEEE, Chen-Fu Chien , Member, IEEE,

and Mahdi Fathi , Member, IEEE

Abstract— It is vital to have an exclusive modification in
semiconductor production process because of meeting differen-
tiated customer demands in dynamic and competitive global
minuscule semiconductor technology market and the highly
complex fabrication process. In this paper, we propose a control
system based on the dynamic mixed-effect least-square support
vector regression (LS-SVR) control system for overlay error
compensation with stochastic metrology delay to minimize the
misalignment of the patterning process. Moreover, for the stabil-
ity of the control system in the presence of metrology delay and
to deal with nonlinearity among the overlay factors, the novel
Lyapunov-based kernel function is merged with the LS-SVR
controller. The proposed controller’s operation has been validated
and implemented by a major semiconductor manufacturer in
Taiwan. The experiments are verified that mixed-effect LS-SVR
controller has the higher validity and higher efficiency in compar-
ison with the exponentially weighted moving average (EWMA)
and threaded EWMA controllers which had been previously
implemented at the company or applied in similar studies.

Note to Practitioners—Due to high production complexity in
semiconductor manufacturing process, a meticulous and intel-
ligent process control is needed to achieve higher throughput
and customer satisfaction. Monitoring a complex system is chal-
lenging because the process components and variables operate
autonomously and interoperate with other manufacturing seg-
ments. This paper proposes a novel run-to-run (R2R) control sys-
tem to compensate the overlay error during the photolithography
process that efficiently deals with the high-mixed manufacturing
environment and metrology delay.

Index Terms— High-mixed process, intelligent manufacturing,
Lyapunov stability, metrology delay, overlay error, photolitho-
graphy process, recipe-based system, support vector regression
(SVR).

Manuscript received revised May 6, 2018; accepted January 13, 2019. This
paper was recommended for publication by Associate Editor Z. Yin and
Editor F.-T. Cheng upon evaluation of the reviewers’ comments. This work
was supported by the Ministry of Science and Technology, Taiwan, under
Grant MOST 107-2634-F-007-002 and Grant MOST 107-2634-F-007-009.
(Corresponding author: Chen-Fu Chien.)

M. Khakifirooz and C.-F. Chien are with the Department of Industrial
Engineering and Engineering Management, National Tsing Hua University,
Hsinchu 30013, Taiwan, and also with the Artificial Intelligence for Intelligent
Manufacturing Systems Research Center, Ministry of Science and Technol-
ogy, Taipei 10622, Taiwan (e-mail: khakifirooz.marzieh@gapp.nthu.edu.tw;
cfchien@mx.nthu.edu.tw).

M. Fathi is with the Department of Industrial and Systems Engineering,
Mississippi State University, Starkville, MS 39762 USA (e-mail:
fathi@ise.msstate.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2019.2894668

I. INTRODUCTION

SEMICONDUCTOR devices are continuing to shrink in
size so that process engineers and researchers are fac-

ing these issues daily that how they can adopt a more
authentic monitoring system to get rid of receiving inten-
sive out of control errors and enhance the yield [1], [2].
More critically, the lithography process deals with entire
new difficulties attached to development in post-lithographic
technologies. Consequently, the factory integration team
is required to investigate challenges to ensure infrastruc-
ture readiness for the lithography process and improve
the advanced process control (APC) with the tighten con-
trol limits. Therefore, the overlay error of the lithogra-
phy process is selected for further investigation in this
study.

Run-to-run (R2R) control has been extensively adapted to
analyze a variety of challenges in the process monitoring of
complex semiconductor manufacturing (see [2]–[4]). For more
details, one can refer to comprehensive reviews of studies on
APC methods (the Kalman filtering technique [5], stochastic
sequential optimization [6], artificial neural network [7], and
feedforward-feedback learning-based controller [8]).

Misalignment in photolithography process is studied in
several papers [9]–[11]. Also, several papers considered math-
ematical modeling for overlay alignment [12]–[14]. Additional
prior reviews of overlay error compensation in photolithogra-
phy process appeared in [15]–[18]. A research of literature
revealed several studies that design a proper APC system for
high-mixed semiconductor plant such as threaded exponen-
tially weighted moving average (tEWMA) [19], a combined
product and tool disturbance estimator [20], and a cycle fore-
casting EWMA controller [21].

Due to the need for the provision of rapid feedback to the
process control, the lack of real-time metrology data causes
extensive limitations in the R2R control. Most semiconduc-
tor manufacturing processes suffer from issues caused by
metrology delays due to the time needed for measurements,
metrology capacity, and the waiting time in the wafer queue
between the processing tool and the metrology station [22].
The stability and performance of the process will be affected
by the metrology delay. Moreover, since quality measurements
perform online, the delay would not be fixed but flows
stochastically.

1545-5955 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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On the other hand, tuning of control parameters quickly
and optimally is extensively required to achieve an acceptable
control performance for intelligent manufacturing of modern
fabs. However, most of the control models cannot update
autonomously, as the dynamics of the system vary during
online control, and thus it may endure from modeling inac-
curacies. A function approximator should minimize the total
risk, yet most approximators such as neural networks and
polynomial estimators minimize empirical risks. The limited
training set compared to the number of free parameters, can
cause a high generalized risk of overfitting. By minimizing
the empirical risk, in combination with generalized risk,
a more efficient approximation technique for reducing the total
risk called structural risk minimization (SRM) [23] can be
obtained. The SRM technique implements the support vector
regression (SVR). Both the optimal control problems and SVR
methods are a type of optimization models. Hence, one could
try to merge these two formulations.

In this study, we aim to develop the multiple-input single-
output (MISO) controller based on least-square SVR (LS-
SVR) to minimizing the unmeasurable disturbance affected by
the stochastic delay from metrology tools to fabrication tools
and process noise. The LS-SVR controller [24] has gained
popularity due to its promising performance in minimizing the
regret function. Several studies have adopted the SVR method
for monitoring dynamic multiple nodes process [25].

The contributions of proposed LS-SVR method in this
study are: 1) to set up the tuned parameters of the LS-SVR
controller for the high-mixed recipe system; 2) to deal with
the unmeasurable delay and disturbance during the lithography
process; 3) to compensate the misalignment of overlay factors
in the high-mixed environment; and 4) to investigate the
stability of the system in the presence of stochastic delay and
deal with nonlinearity among the overlay factors.

The remainder of this paper is organized as follows:
Section II introduces the MISO system framework for over-
lay factors. Section III presents the recipe-based control
system in semiconductor manufacturing with a discussion
of properties of random effect LS-SVR controller including
the Lyapunov-based polynomial-kernel function. Section IV
demonstrates the simulation experiments for a high-mixed
plant and analyzes the sensitivity of the proposed LS-SVR
controller. Section V includes analysis of manufacturing data.
Finally, we conclude this paper in Section VI.

II. FUNDAMENTALS

A. Notation and Terminologies

The notation and terminologies used in this paper are listed
as follows.

i Recipe index.
j Overlay factor index.
t Process run index.
k Fold index for cross validation.
N Number of overlay factors in the system.
K Number of fold for cross validation.
c j Indicator for controller of overlay factor j .
p j Indicator for plant of overlay factor j .

Ri Indicator for recipe i .
ut j Input variable for overlay factor j at run t .
Qt j Process output for overlay factor j at run t .
dt j Process disturbance for overlay factor j at run t .
Et j Deviation from the target for overlay factor j at

run t .
zt j Random effect for overlay factor j at run t .
T Target of overlay factors.
εt White noise in a process at run t .
τ Process gain (parameter of EWMA/tEWMA

controller).
a Parameter of EWMA/tEWMA controller.
θ Fixed discount factor in EWMA/tEWMA

controller.
xt j State vector of overlay factor in state-space

model for overlay factor j at run t .
C(.) LS-SVR cost function from optimization.
C LS-SVR regularization parameter.
b LS-SVR bias term.
κ(., .) LS-SVR kernel function.
(α − α∗) LS-SVR support vector.
ut ( j ) Input variable for overlay factor j with

highest Et at run t .
Qt ( j ) Process output for overlay factor j with highest

Et at run t .
Ct ( j )(.) Cost function for for overlay factor j with

highest Et at run t .
Remp Empirical risk function of control system.
f, g,h Mapping functions in stat-space model.
δti Stochastic drift for recipe i at run t .
M Upper bound for total overlay error.
σ Admissibility parameter.
η LS-SVR online learning parameter.
VLyap Lyapunov stability function.
P, P∗ Lyapunov positive definite symmetric matrices.
λ, γ Parameters of Zero-Inflated Poison (ZIP)

distribution.
I Identity matrix/vector.
m, n Intercept and power parameters for polynomial

kernel function.
μ Mean vector.
� Variance covariance matrix.

B. Multiple-Input Single-Output Control System

A system in which multiple inputs are used to govern a
single output is called a MISO system. Regards to the com-
munication status among input variables, the MISO system
can carry noncollaborative and collaborative control strategies.
The noncollaborative control plan is equivalent to a single-
input-single-output (SISO) system with a single feedback
loop for the most critical input variable [26]. On the other
hand, the collaborative system, either in serial or parallel
structure [27], benefits from the dynamic status of each plant
to improve the performance of monitoring system consider-
ing the restrictions of process inputs and individual outputs.
This paper designs a customized serial collaborative MISO
controller considering overlay factors’ relations and attitudes.
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Fig. 1. MISO control system for overlay error compensation.

A regular linear ten-factor overlay model used by [17] is
contemplated in this paper. Regarding the model in [17],
although ten factors were investigated to compensate for the
overlay error, the target point for all factors remains the
same. Therefore, the MISO model is well suited for our
study considering the collaboration and dependency among
all overlay variables.

C. MISO Controller for Overlay Factors

Assume an R2R-MISO system where plants are arranged
decreasingly based on the deviation of control outputs and the
target point of the last run. The procedure of a cascade control
system [28] is well used for controlling such dynamic control
system where the system can be dynamic as a mix of linear
or nonlinear plants. However, the linearity or nonlinearity
remains fix at the entire process. Generally, a cascade control
system consists of at least two control loops, at least one inner
loop and one outer loop for closed-loop system operation.
Load disturbance that enforces into the inner loop(s) can
prevent before it extends to the whole system (outer loop).
Therefore, if the inner loop contains a significant disturbance,
the system can react and compensate the disturbance faster
before the outer loop run or the whole system will be affected.

Consider Fig. 1, including N input variables, each serial
plant p j , j = 1, . . . , N at tth run, defines the effect of each
manipulated variable ut j over the corresponding estimated
output (̂Qt j ). The nonmeasurable disturbance dt j deviates
each output variables from their corresponding control plant
p j . A set of serial controllers c j are designed to minimize
such deviation. Each c j is updated based on a lower level
measurement output Qt j+1, which is corrupted by the noise
signal. The level or order of each serial plant and controller is
dynamic at (t + 1)th run according to the error function in (1)
at tth run, in a way that overlay factors with higher deviations
have priority to monitor at the next run

Et = Qt − I(T + εt ) (1)

where I is a identity vector.

D. Research Framework for the Proposed R2R-MISO
Control System

Algorithm 1 presents the general operational structure of
the proposed dynamic monitoring system in this paper. The

Algorithm 1: R2R-MISO

for l : 1 → t do
Receive (ul + dl) for N overlay factors;
for j : 1 → N do

Create (ul( j ) + dl );
Estimate ̂Ql( j );
Receive (T + εl );
Update c( j ) controller by ̂Ql( j+1));
if

∣

∣C( j ) − C( j+1)

∣

∣ ≤ εl then
̂Ql( j+1), . . . , ̂Ql(N) = ̂Ql−1( j+1), . . . , ̂Ql−1(N);
Break loop;

end
end

end
Randomly split the data into K disjoint set;
if ∀k :1→ K : Pr

(

sup
∣

∣C( j )k − C( j+1)k�
∣

∣ ≤ σ
) ≥ 1 − η

then
Return ûl( j ), ̂Ql( j ) and C( j )

end

initial analysis criteria of the presented control system are:
1) optimization analysis; 2) providing the cost and constraints
of the optimization problem; 3) the multiple input nodes
estimation; and 4) stabilization of the estimated results.

Several other phenomena including the delay of information
flowing from the metrology tool to the control plant, and being
a bottleneck make severe disturbances. Furthermore, at the
bottleneck, multiple recipes are associated with the single
machine. This situation can be more complicated when multi-
ple products are manufactured during a specific time, and the
production line schedule is a mixed schedule. To arrange this
complication, a straightforward mixed system as a guideline
for advanced high-mixed fab has investigated.

III. RECIPE-BASED CONTROL SYSTEM FOR

SEMICONDUCTOR MANUFACTURING

This section introduces the mixed-recipe control system
based on the LS-SVR controller. The nonlinearity among the
overlay factors is also considered as another challenging issue.
Assume the recipe-based controller based on a mixed-recipe
system, with different levels of complexity as shown in Figs.
2–4. Fig. 2 shows a particular case of a mixed-recipe schedule
where each recipe is periodically applied to the process after
a certain number of runs, δ (fixed drift). Within a fixed drift
recipe schedule system, the subsequent run’s control action
is based on the previous run when the same recipe was on
that tool. If the recipe schedule is random (stochastic drift,
δt ) (Fig. 3), the subsequent run’s control action is controlled
based on the output of the previous run, when the same recipe
and drift were on that tool. The system becomes even more
complicated with a dynamic schedule and in the presence of
other recipes in the system, as shown in Fig. 4.

In this paper, we consider a system with high-mixed recipe
schedule with a random drift similar to Fig. 4. The random
drift recipe schedule shown in Fig. 4 considers as the random
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Fig. 2. Mixed-recipe schedule system with fixed drift.

Fig. 3. Mixed-recipe schedule system with random drift.

Fig. 4. Mixed-recipe schedule system with random drift and random
sequence.

intercept or random offset into the linear or nonlinear regres-
sion model. Therefore, to optimize the performance of the
controller, a random effect LS-SVR algorithm has been applied
when the polynomial kernel function based on Lyapunov
stability condition is employed as a mapping function to
enhance the performance of the proposed controller.

A. Review of LS-SVR

The dynamic model proposed in this paper compensates
for the majority of process dynamics and noise-based
disturbances, such as gain and offsets of multivari-
ate processes [29], [30], the quadratic effects of process
variables [31], autocorrelation and deterministic drifting
effects [32], stochastic metrology delay [33], and nonstation-
ary disturbances [34]. For these purposes, consider a set of
training points {(u1+d1, T +ε1), . . . , (ut−1+dt−1, T +εt−1)}.
The model carries out the optimization and identification of
the empirical risk of approximation as follows:

min Remp = 1

t

t
∑

l=1

Cl(T + εl , ̂Ql)

s.t. ̂Qt = h(̂Qt−1, . . . , ̂Q1, ut−1, . . . , u1, dt−1) (2)

where both Ct (.) and h(., .) are assumed to be twice con-
tinuously differentiable. This model structure is intended for
modeling a dynamic system with input ut ∈ Rn and output
Qt ∈ Rn .

The control objective is designed to provide the control
signal, based on the system and an adaptation law, for adjust-
ing control parameters. Therefore, the state vector of the
approximator function in the presence of an external distur-
bance follows the desired trajectory state (Target). The tracking

error in (1) converges to zero, where εt ∼ N(0, σ 2
ε ≈ 10−15).

Appropriately, εt joins to the constant value of target T to
model a stochastic target variable.

Now, subject to the equality constraint in (2), consider a
class of a MISO system in the following form:

xt = f (x1, . . . , xt−1) + g(x1, . . . , xt−1)ut−1 + dt−1

̂Qt = xt (3)

where unknown f and g functions are bounded and no prior
knowledge is required for bounding. The state vector of the
system can be estimated through the optimization process of
the control loop. To have a controllable system for the model
mentioned in (3), the following assumptions are considered:

Assumption 1: An external disturbance is required to be
bound by an unknown constant, which is equivalent to
limt→∞ E(̂Qt ) = T + E(εt ) = T .

Assumption 2: It is required g(x1, . . . , xt−1) to be positive,
which is equivalent to limt→∞ V ar (̂Qt ) < ∞.

In this paper, to optimize the regret function in (2) regarding
the state-space model in (3), the LS-SVR is trained to map
from the input space to the feature space in the presence of
the disturbance dt . The given kernel function κ(ut , u) handles
the mapping model in the feature space. The linear equation
in (4) is called the LS solution of (2) (for details, see [35])

[

0 I�

I κ(u, u�) + I
C

]

[

0
(α − α∗)

]

=
[

0
Q

]

. (4)

In the optimal control problem, the aim is to solve the prob-
lem (2). To find the optimal control law, one could construct
the corresponding approximation function of (3) by using the
kernel function as follow

̂Qt =
t

∑

l=1

( − αl + α∗
l

)

κ(ul, u) +̂b (5)

where ̂b = − ∑t
l=1(−αl + α∗

l )κ(ul, u) + T + εl , and

Ct = (̂Qt − (T + εt ))
2 (6)

is the cost function.

B. Random Effect LS-SVR

Now, consider a set of training points {(u1 j + d1 j ,
T + ε1), . . . , (ut−1 j + dt−1 j , T + εt−1)}. Based on the theory
of best linear unbiased prediction [36], the optimization model
in (2) with a random effect for j th factor is formulated as

min Remp = 1

t

t
∑

l=1

Cl(T + εl , ̂Qlj )

s.t. ̂Qt j = h(̂Qt−1 j , . . . , ̂Q1 j , ut−1 j , ut−1 j . . . ,

zt−1 j , . . . , z1 j , dt j ). (7)

When including the random effects into the LS-SVR model,
the single regularization parameter changes into two regular-
ization parameters with one parameter for random error and
one parameter for random effect. The random effect parameter
vector has N(0,�zt j ) and the error vector N(0,�Ct ) distrib-
ution where �zt j and �Ct are the covariance matrices and are
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known or could be estimated. Hence, the corresponding dual
form of (7) represents the model (8) with random effect (see
the Appendix)
⎡

⎣

0 I�

I κ(ut , u) + I
C1

z�
t j
�−1

zt j
zt j + I

C2
�−1

Ct

⎤

⎦

[

0
(α − α∗)

]

=
[

0
Q

]

.

(8)

The solution for linear model in (8) optimizes the bias ̂b and
the support vector (αl j − α∗

l j ). Then, the optimal regression
function for the given u and z is obtained by

̂Qt =
t

∑

l=1

N
∑

j=1

( − αl j + α∗
l j

)

κ(ul j , u)

+ I
C1

t
∑

l=1

N
∑

j=1

( − αl j +α∗
l j

)

�−1
zl j

zl j +̂b. (9)

In the system dynamic model in (3), the input value of the
current run ut will be updated by (for more details, see [37])

ût j = ut−1 j + Et−1 j
∂κ(ut−1 j ,u)

∂ut−1 j

∑t
l=1

( − αl j + α∗
l j

)

κ(ul j , u)
. (10)

C. Stability of Random-Effect LS-SVR

The basic idea of stability is that the result of a
learning-based system with a full sample should not be very
different from the result obtained by removing only one
observation. More precisely, for any two subsets of empirical
data, the Euclidean distance between the corresponding loss
function should be bounded by M ≥ 0.

σ -admissibility [38] condition is considered to impose the
stability of a robust algorithm through the learning-based
cross-validation scenario.

Definition 1: σ -admissibility condition, a cost function Ct

is σ -admissible with respect to the output class Q if it will
be differentiable almost everywhere and there exists σ ∈ R+
such that for any two outputs Q�

t j , Q��
t j ∈ Q j and all label

information (T + εt )

∣

∣Ct
(

Q�
t j , T + εt

) − Ct
(

Q��
t j , T + εt

)∣

∣ ≤ σ
∣

∣Q�
t j − Q��

t j

∣

∣. (11)

This assumption holds for the quadratic cost functions where
the set of output and target values is bounded by M ∈ R+ :
∀Qt j ∈ Q j , |Qij | < M and |T + εt | < M .

The LS-SVR model with quadratic cost function meets
σ -admissible condition with σ = 2 for any two outputs
Q�

t j , Q��
t j ∈ Q j [38, Corollary 11.1, p. 255].

D. Nonlinear Lyapunov-Based Kernel Function

Inserting a time delay in a loop of the control system
causes a reduction in the performance. Moreover, larger values
of time delays change the stability of the system. For a
stability analysis of time-delay systems (TDSs), the Lyapunov
method [39] is known as the most efficient technique. The
following Lyapunov theory is validated for all linear TDSs.

Definition 2: Assume the following Lyapunov function of
the system in (3)

VLyap(t) = xT
t Pxt (12)

the stability of the linear form of dynamic system in (3) can
guarantee if and only if

∀A ∈ xt = Axt−1 + But−1

A11P + PA11 = −P∗ (13)

where P and P∗ are positive symmetric definite matrices
and (∂/∂ t)VLap(t) < 0. For the feedforward control system,
P∗ = I [40].

For the stability condition of a control system, the char-
acterization of kernel functions and matrices is used in the
following way.

Proposition 1 [41]: “Every positive semidefinite and sym-
metric matrix is a kernel matrix. Conversely, every kernel
matrix is symmetric and positive semidefinite.”

Therefore, the linear mapping function of Lyapunov condi-
tion in (12) is invertible, and the stability property for the linear
time-invariant system in (3) is granted under the Lyapunov
function where a positive-definite symmetric matrix P exists,
and

〈

x, x�〉
p = P, (14)

can be considered as the inner product of the system
in (3) [42].

Generally, in the lithography process, a linear model is
modified to illustrate the performance of the exposure tool.
Nevertheless, the wafer surface structure abundantly concedes
the real distribution of the overlay error as nonlinear and in the
curve shape (e.g., due to the upstream process of the exposure
step). To deal with this phenomenon, the Lyapunov kernel
mapping function of the LS-SVR can achieve the form of the
polynomial kernel function as follows:

P = κ(ut , u) = (�x, x�p + m
)n (15)

where m = 0, and n are estimated through the tuning
procedure. Regarding the dynamic model in (3), an additional
condition is required for asymptotic stability of a nonlinear
system as follows [39, p. 130]:

| f (x1, . . . , xt−1)|2 ≤ [

x1 · · · xt−1
]

P

⎡

⎢

⎣

x1
...

xt−1

⎤

⎥

⎦
. (16)

IV. SIMULATION STUDY

The following steps illustrate the performance of the pro-
posed random effect LS-SVR control system in the presence of
metrology delay and high-mixed recipe system in a simulation
scenario.

Step 1: Consider R1, . . . , R5 as five different recipes
and u j i , for j = 1, . . . , 10, i = 1, . . . , 5 as an input variable
for j th overlay factor and i th recipe.

Step 2: Generate 1000 samples for each recipe and
overlay factors from multivariate Normal distribution as
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u1, . . . , u5 ∼ MVN(μ,�) where μ1, . . . ,μ5 are a mean
vector of �0, �1, �2, �3, �4 (to represent the effect of impulse shift),
respectively, with length 10 and � is a 10×10 diagonal matrix
with diag {10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}
to represent the effect of disturbance on the system.

Step 3: Set stochastic target value almost surely to zero
generated by T + εt ∼ N(0, 10−15).

Step 4: Mix all recipe data randomly to build up a new data
set with 5000 instances and ten overlay factors.

Step 5: zt j = i is defined for random effect at tth run such
that for j th overlay factor recipe i is used.

Step 6: Simulate stochastic metrology delay from ZIP(λ =
3, γ = 0.9) distribution where a delay happens with the
maximum length of 8 at each lot (25 runs).

Step 7: Generate a sequence of 25 dummy data for T +ε�
t ∼

T + εt for the minimum requirement of the LS-SVR learning
algorithm.

Step 8: Maintain five lots of historical data for compensating
the overlay error through the learning algorithm.

Step 9: Employ the EWMA and tEWMA controllers as the
baseline for the performance comparison. A linear form of
EWMA in (17) is assumed for the process output and input
estimation at run t

̂Qt = a + τut−1 + dt

ut = ut−1 − θ

τ̂
Et−1 (17)

where the unknown parameters a and τ can be estimated
by the tuning algorithm. Based on the engineers’ domain
knowledge, the discount factor sets to θ = 0.3. Similarly,
for tEWMA [19], the process input and output represent as
follows:

̂Qt = at + τut−1 + dt

ut = T − at

τ̂
at = (1 − θ)at−1 + θ(̂Qt − τ̂ut−1 − at−1). (18)

Step 10: Initiate the tuning algorithm to estimate the best
parameter setting of random-effect LS-SVR in (8) with the
Lyapunov-based kernel function in (15). The regularization
parameters C1 and C2 are modified to the interval [0,10], with
a lag of 1. m and n in (15) are confirmed to the intervals [-1,1]
and [1,10] with a lag of 0.1 and 1, respectively.

Step 11: Adopt the higher first pass rule for R2R-MISO
controller in Algorithm 1, in which the input overlay factor
with the highest variation from the targeted setpoint enter into
the c1 controller, second highest to the c2, and so on. The
system reaches the steady-state condition if the root-mean-
square error (RMSE) condition in (19) between two control
systems exists

|c j (RMSE ) − c j−1(RMSE)| ≤ 10−15 (19)

where

RMSE =
√

∑t
l=1[̂Ql − (T + εl)]2

t
.

Step 12: Initialize the setting of the control system at a current
run for each recipe with the setting of the last run when the
same recipe was applied to the system.

Step 13: Merge the ten-fold cross-validation learning algo-
rithm to check the optimal setting stability in the LS-SVR
controller.

Figs. 5–9 illustrate the comparison of the estimated input
and output between the LS-SVR and EWMA and tEWMA
controllers. Consequently, the LS-SVR has smoother varia-
tions and improved compensation performance (e.g., reduced
variance and closer to the target) than both EWMA and
tEWMA.

The results have shown that the proposed LS-SVR controller
tightens up the excellent performance bound, and eventually
achieves a lower cost, together with an extensive disturbance,
in comparison with the EWMA and tEWMA control system.
When the variation increases, the result is more tangible. When
the unmeasurable disturbance makes a tangible shift in overlay
factors, LS-SVR can competently deal with process shift,
while EWMA and tEWMA are inaccurate, although tEWMA
has a better performance than EWMA.

On average, after the fifth overlay factor enters into
the model, the system reaches the steady-state condition,
which means that the proposed LS-SVR controller can
compensate the effect of disturbance, noise and impulse
shift smaller than 0.1. However, the result shows that the
convergence rate strongly depends on the disturbance or
impulse shift.

According to the sensitivity analysis implemented by the
tuning procedure, the most frequent result for the parameter
setting of the kernel function in (15) achieved at m = 0 and
n = 3. C1 and C2 parameters of LS-SVR in (8) are set as free
parameters.

To test how the Lyapunov stability condition and polynomial
kernel function effectively enhance the performance of the
LS-SVR method, three types of kernel functions merged with
the mixed-effect LS-SVR method (the polynomial kernel func-
tion upgraded with the Lyaponuv stability condition, simple
polynomial kernel function, and simple linear kernel function).
The result is summarized in Table I which shows that both the
polynomial kernel function and Lyapunov stability condition
are constructive in compensating the overlay factors. It is
apparent that when disturbance and impulse shifts are increas-
ing, the performance of the proposed mixed-effect LS-SVR
controller is significantly better than the two other LS-SVR
controllers.

V. EMPIRICAL STUDY

An empirical study is conducted to estimate the validity
of the proposed approach. To speed up the analysis of huge
empirical data, the most frequent result from simulation exper-
iment has been used as the initial setting for the optimization
model. The general kernel function is considered as P =
(
〈

x, x�〉
P)3.

The empirical data include four recipes connected to the
reticle of the scanner. Among ten overlay factors in [17],
asymmetric rotation and asymmetric magnification have not



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KHAKIFIROOZ et al.: COMPENSATING MISALIGNMENT USING DYNAMIC RANDOM-EFFECT CONTROL SYSTEM 7

Fig. 5. Simulation result of estimated input and output of ten process variables for random-effect LS-SVR versus EWMA and tEWMA controller from the
first recipe (R1) (S_I denotes to LS-SVR input, S_O to LS-SVR output, E_I to EWMA input, E_O to EWMA output, dE_I to tEWMA input, and dE_O to
tEWMA output).

Fig. 6. Simulation results for estimated input and output of ten process variables for random-effect LS-SVR versus EWMA and tEWMA controller from
the second recipe (R2).

been controlled in this fab. The range (20) and RMSE of
empirical data are summarized in Table II.

Range = max
t

̂Qt − min
t

̂Qt . (20)

In the measurements, 30% of lots received delay from
the metrology tools. The maximum length of the delay is
calculated as 80 lots, and the average length is estimated as
four lots.

The EWMA controller with θ = 0.3 is used for the
feedback control in this fab. The target value of each overlay
factor and total overlay errors set to zeroe. According to
the result of the simulation study, variables with variations
smaller than 0.1 from the target set point are eliminated from

the MISO system. Table III summarizes the improvement of
range and RMSE for each overlay factor between EWMA
and LS-SVR.

The overlay model proposed in [17] is used to approxi-
mate the compounded overlay error on the x-axis and the
y-axis. At each run, only the maximum value of mea-
surement error for the x-axis and the y-axis is consid-
ered. The result is summarized in Table IV and shows
how the error compensation has improved by using the
proposed mixed-effect LS-SVR controller for each recipe.
Our results show that the proposed LS-SVR controller
has achieved an improvement of a minimum 32% on the
indices.
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Fig. 7. Simulation result of estimated input and output of ten process variables for random-effect LS-SVR versus EWMA and tEWMA controller from the
third recipe (R3).

Fig. 8. Simulation result of estimated input and output of ten process variables for random-effect LS-SVR versus EWMA and tEWMA controller from the
fourth recipe (R4).

TABLE I

SIMULATION RESULT OF RANGE AND RMSE IMPROVEMENT COMPARED WITH MIXED-EFFECT LS-SVR WITH LINEAR KERNEL

FUNCTION (MIXED-EFFECT LS-SVR WITH POLYNOMIAL KERNEL WITHOUT LYAPUNOV STABILITY CONDITION)

VI. CONCLUSION

This paper developed an accurate, high efficient optimiza-
tion technique for overlay error minimization during the

high-mixed photolithography process validated by simulation
analysis and an empirical study. Further study can be done
as the basis for productivity improvements in digital com-
munications and industrial transformation [43]. The proposed
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Fig. 9. Simulation result of estimated input and output of ten process variables for random-effect LS-SVR versus EWMA and tEWMA controller from the
fifth recipe (R5).

TABLE II

SUMMARY OF EMPIRICAL DATA

TABLE III

RANGE AND RMSE IMPROVEMENT

TABLE IV

IMPROVEMENT FOR OVERLAY ERROR ON x -AXIS AND y-AXIS

mixed-effect LS-SVR controller with a self-tuning algorithm
combined with polynomial Lyapunov-based kernel function
has shown its robust capability to compensate the overlay
errors. The assumed Lyapunov condition composes a stable

controller to deal with the lack of process information caused
by the metrology delay.

The LS-SVR algorithm may take a long time for tuning
the input parameters (m, n, C1 and C2) to converge to the
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best parameter setting. In particular, there are two sensitive
parameters (C1, and C2, the regularization parameters) that
should be estimated. For evaluating the robustness of the
proposed model, three mixed-effect LS-SVR controllers with
the polynomial Lyapunov-based kernel, a simple polynomial
kernel, and simple linear kernel functions have been compared.

The result of the simulation study shows that both the
polynomial kernel and the Lyapunov stability function enhance
the performance of the proposed control system.

To validate the proposed approach, the empirically collected
data from a leading semiconductor fab in Taiwan have been
used to validate the proposed LS-SVR controller.

In comparison to the EWMA or tEWMA, the LS-SVR
method is enforced via the historical data for enhancing the
learning process algorithm, such that more training informa-
tion will be affected positively by the performance of the
control system. In this study, the information of at least last
five lots is used as the training data. The mixed-recipe process
may be directly applicable to the mixed-product process, and
with a few adjustments is relevant to the mixed-tool process.

Future research can be done to enhance the proposed
approach to deal with the effects owing to multilayer litho-
graphy process by considering an additional random effect
in each layer. Also, more studies can be done to extend the
proposed approach for similar issues in other semiconduc-
tor manufacturing processes such as dry-etching (DE) and
chemical-mechanical polishing (CMP). Furthermore, the pro-
posed approach can be employed for high-mixed production in
similar industries such as TFT-LCD, and solar cell. In addition,
due to the complexity and emergence in process control of
semiconductor industry, the application of other learning-based
optimization models [44] can be an interesting topic in this
field.

APPENDIX

Regards to the model with random-effects, the optimization
problem for LS-SVR can be equivalently written as

min
w,Cl ,b,βl

1

2
�w�2 + C1

2

t
∑

l=1

β �
l�

−1
zl j

βl

+C2

2

t
∑

l=1

C �
l�

−1
Cl

Cl

s.t. wφ (ul) + βl zl + Cl + b=T +εl j ∀l =1, ..., t . (21)

This is a convex quadratic program with affine constraints.
(22) is introducing the corresponding Lagrangian function

L(w, Ct , b,βt ; α,α∗)

= 1

2
�w�2 + C1

2

t
∑

l=1

β �
l�

−1
zl j

βl + C2

2

t
∑

l=1

C �
l�

−1
Cl

Cl

−
t

∑

l=1

αl (T + εl − wφ(ul) − βl zl − b − Cl)

−
t

∑

l=1

α∗
l (T + εl − wφ(ul ) − βl zl − b − Cl). (22)

The Karush–Kuhn–Tucker (KKT) optimization conditions for
a solution can be achieved by partially differentiating concern-
ing w, Ct , b,βt ,α, and α∗
⎧

⎪

⎪

⎪
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⎪
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∂L

∂w
= 0 → w =

t
∑

l=1

(αl − α∗
l )φ(ul)

∂L

∂b
= 0 →

t
∑

l=1

(αl − α∗
l ) = 0

∂L

∂Ct
= 0 → C2�

−1
Ct

Ct − (αt − α∗
t ) = 0

∂L

∂αt
= 0 →

t
∑

l=1

(T + εl − wφ(ut ) − βl zl − b − Cl ) = 0

∂L

∂α∗
t

= 0 →
t

∑

l=1

(T + εl − wφ(ul ) − βl zl − b − Cl) = 0

∂L

∂βt
= 0 → C1�

−1
zt j

βt − αt zt = 0

(23)

which leads to the following equivalent dual problem regarding
the kernel matrix κ(ut , u) = φ(ut )φ

T (ut )
⎡

⎣

0 I�

I κ(ut , u) + I
C1

z�
t j
�−1

zt j
zt j + I

C2
�−1

Ct

⎤

⎦

[

0
(α − α∗)

]

=
[

0
Q

]

.

(24)
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