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Abstract–Operations research and optimization 

in healthcare and disease modeling have 
received significant attention in the last three 
decades. This paper surveys several 
perspectives of operations research techniques 
in kidney disease, such as graph theory, 
queueing theory, Markov chain, and Phase-Type 
distribution (PTD). The kidney related problems 
include kidney exchange problem, the modeling 
of kidney disease progression, kidney 
transplantation, and the complex relationship 
between Chronic Kidney Disease (gradual loss of 
kidney function over time) and Acute Kidney 
Injury (sudden episode of kidney failure in a few 
hours or a few days). Each section is 
summarized by some discussion regarding the 
limitation of proposed methods in the literature. 
Finally, the paper is concluded by offering some 
research direction to fill in the gaps in the 
literature. 

Keywords: Kidney Disease, Kidney Transformation, Operations Research, 

Chronic Kidney Disease, Acute Kidney Injury, Phase-type Distribution, 

Queueing Theory, Markov Decision process, Graph Theory. 

1 Introduction 

From underdeveloped to developed societies, the perfection of healthcare and 

medical services are one of the far-reaching goals for governments. How to 
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decide the best location of medical centers? How to manage the service time 

in the emergency division? How to select the best route for ambulances? How 

can the medical service cover the target population? These are a few 

questions that Operations Research (OR) could provide a solution to tackle. 

The applications of OR are far broader than to answer the aforementioned 

questions. A useful review of the past researches can quickly be acquainted 

with the underlying implementation and numerous methodologies of OR in 

healthcare management and medical services. There are some review papers 

in this area such as OR techniques (Rais and Viana 2011; Brandeau 

et al. 2004), queueing theory application (Lakshmi and Iyer 2013), operations 

management (Denton 2013), healthcare policy (Zaric 2013) and data mining 

techniques (Obenshain 2004; Koh et al. 2011; Yoo et al. 2012; Tomar 

and Agarwal 2013; Raghupathi 2016; Rojas et al. 2016). However, there is a 

gap in the literature that focuses on a specific disease and discusses the 

details of the models for different challenges connected to that disease. 

This paper surveys some selected OR topics that appeared in kidney-related 

studies. The main objective of the paper is to introduce the models rather than 

only a collection of the related literature. The topics on kidney problems in this 

paper include the kidney exchange problem, the modeling of kidney disease 

progression, kidney transplantation and the complex relationship between 

chronic kidney disease (CKD) and acute kidney injury (AKI). 

According to the annual report of the American kidney fund in 2015 (American 

Kidney Fund n.d.), kidney disease is the 9th leading reason for death in the 

United States. A predicted 31 million Americans (10% of the adult population) 

have CKD, and 9 out of 10 Americans who have stage 3 CKD (moderately 

decreased kidney function) do not identify it. CKD is more prevalent among 

females than males. Males with CKD are expected 50% more to have their 

CKD turn into kidney failure. Moreover, some nationalities are at higher 

danger for kidney failure, for example, the risks for African Americans, Native 

Americans, and Asians are almost 4, 1.5, and 1.4 times higher than whites 

Americans. Hispanics are approximately 1.5 times as expected to be 

diagnosed with kidney failure in comparison to non-Hispanics. The first and 
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second leading causes of kidney failure are diabetes and high blood pressure 

(HBP), which make 44% and 28.4% of all current evidence of kidney disease, 

respectively. In 2012 diabetes and HBP were the first cause of 239,837 and 

159,049 kidney failure patients. An estimated 29.1 million people have 

diabetes; 8.1 million of them do not know they have it, and around 70 million 

(29%) people have HBP — that is every 1 in 3 American adults. 

Approximately 40% of people with diabetes can get CKD. 

Kidney diseases are prevalent in the world and often are lethal. Dialysis is a 

temporary solution for those waiting for a kidney transplant; however, it is 

expensive, and the quality of life would be low. In addition, only 12% of 

patients with dialysis will survive for more than ten years, on average. The 

more lasting cure is transplantation. Considering that selling and buying 

organs in most of society are prohibited, it makes supply and demand 

mismatch. In the United States, 79000 patients are waiting for a kidney 

transplant, while only in 2008, 4268 patients died during the waiting time. 

Besides the higher risk compared to the bid in the kidney transplant market, 

there are obstacles regarding incompatibility even from patients’ family as a 

voluntary live-donor kidney transplant. Medically, compatibility is 

circumscribed both by blood type (O, A, B, or AB) and by existing tissue 

antibodies. Type O can accept only type O, type A only type O or A, type B 

only type O or B, and type AB any donor. However, the percentages of blood 

types are not equivalent, and therefore, for some groups with a higher risk for 

kidney disease, there is less offer than others. 

One of the most severe kidney diseases is AKI. AKI is a sudden failure of 

kidney and happens in people who are already sick and in the hospital. Unlike 

CKD, AKI is often reversible if treats quickly. However, AKI patients who 

overcome kidney problem in the hospital have a danger of growing CKD and 

death (Kerr et al. 2014). 

Figure 1 shows the standardized definitions and diagnostic criteria of AKI and 

CKD, including functional and structural criteria, staging, burden including 

prevalence and annual incidence, and lifetime cumulative incidence. The 
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measurement indexes are adjusted based on “Glomerular Filtration Rate” 

(GFR) 3, “Albumin Excretion Rate” (AER) 4, and “Albumin-to-Creatinine Ratio” 

(ACR) criteria 5. 

Figure 2 shows the determinants related to the kidney disease progression 

process, including death (purple), grades of disease (green), and kidney 

disease (blue). Horizontal arrows show the transitions between stages (kidney 

outcomes). Solid and dashed arrows are showing kidney disease progression 

and remission, respectively. Gray triangles present constant variations in GFR 

and kidney loss. The transitions status reveals that if the status of disease is 

monitored weekly, then any change with duration less than or equal to three 

months is suspected of being AKI and more than three months to be the CKD. 

There is a big challenge in kidney problems for discovering the kidney disease 

propagation, the relationship between AKI and CKD, and renal healthcare 

management, which OR would be a useful tool to employ. OR techniques can 

answer several vital questions in this area, such as: 

 How can factors such as diabetes, HBP, family history, race-ethnicity, 

obesity, age, smoking, history of AKI, and heart disease increase the 

risk of kidney disease? How can other health condition (such as rare 

disease) cause a problem for kidney and lead to kidney disease? 

(Levey et al. 2007; Mallappallil et al. 2014) 

 How kidney disease is preventable from the medical test and 

symptoms? (Snyder and Pendergraph 2005) 

 What are the causes of kidney failure? How can kidney disease cause 

a problem for the rest of the body, such as bone disease and Anemia? 

(Asar et al. 2016) 

 How can we speed up the evaluation process and find a match for 

transplant? (Anderson et al. 2015a) 

 How can we manage the waiting list and multiple listing for the kidney 

transplant? (Alvelos et al. 2019 a) 

 What is the waiting time for the kidney transplant for each group of 

kidneys? (Bandi et al. 2019) 
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and many other questions. Therefore, considering the tremendous needs for 

optimal decision making in kidney problems despite the complexity, 

dynamicity, and time management challenges, this study aims to review the 

literature which addresses the kidney problems from OR perspective. Among 

the reviewed literature, those with novel solutions for modeling kidney 

problems are selected for further discussion in this paper. 

Kidney’s related problems are classified into two major groups, kidney 

disease, and kidney transplant. Kidney transplant topics investigated in the 

literature include 1) kidney transplant allocation, 2) survival model for life 

years from transplant (LYFT), 3) waiting list and time management, and 4) 

exchange model for paired donations, spousal, and living unrelated donors. In 

this paper, we review the kidney exchange model in Section 2, and transplant 

allocation and queuing models in Section 3. Challenges regarding survival 

analysis of LYFT mainly studied from statistical inferences, and therefore, we 

eliminate this topic in current research. 

Unlike the kidney transplant topics, the kidney disease encompasses broader 

research topics including kidney disease causes and risk factors, disease 

types, symptoms, tests, prevention and treatment, kidney failure and several 

other topics such as kidney cancer, stone, and infection. The majority of 

research look at these phenomena from data science (DS) perspective, and 

the application of OR has barely been applied. 

The remainder of this paper is organized as follows. Section 2 describes the 

kidney exchange problem and its modeling trough graph theory. The kidney 

transplantation problem is addressed in Section 3. Section 4 surveys 

stochastic modeling of kidney disease and transformation CKD to AKI. The 

MDP for kidney disease screening and treatment is presented in Section 5. 

Finally, we conclude the paper and future research directions in Section 6. 

2 Graph Theory and Kidney Exchange Problem 

Kidney exchange is a global innovation program that allows patients to swap 

willing but incompatible donors. Maximizing the mutual benefit for a given pool 
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of mismatched sets, measured by the number of possible kidneys, is the goal 

of this program (Constantino et al. 2013). There are several motives for 

applying the OR techniques in kidney exchange problem. For instance, when 

the donor and recipient are incompatible, or when donors do not come with 

paired patients and are willing to donate a kidney without asking for one in 

return. Such donors are called altruistic donors. Roth et al. (2004) first 

described the classic kidney exchange problem from OR perspective. 

As shown in Figure 3 for three incompatible pairs  and 

, organizing exchanges between some pairs of patients P and donors 

D is a critical responsibility, especially when an altruistic donor aD is available. 

In the simplest case, two patient/donor pairs are matched together, each 

donor giving to the other pair’s patient and they make a cycle of length 4. 

Larger exchange cycles, such as the three patient/donor pairs shown in Fig 4. 

To maximize the pair-exchange rate, assume G(V, E) be a directed graph with 

weighted edges, where vertex V represents a donor/recipient pair, and 

weighted edges E means donors and recipients’ compatibility measurement. 

Consider C and wc denote the set of cycles in the graph with most  

length, and the weight of cycle c which is equal to the sum of all edge weights 

in the cycle, respectively. The decision variable in each cycle is xc, 

 

and the problem is to find a cycle cover of the graph with maximum weight. 

The mathematical formulation is as follow: 

 

The constraint guarantees that a recipient and donor need one kidney to 

exchange, and each V of the graph can be in at most one cycle. 

To solve the aforementioned optimization problem, extensive efforts have 

been done on kidney exchange problem for descends, mainly focused on 

( 1, 1), ( 2, 2)P D P D

( 3, 3)P D
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integer programming and stochastic programming. Table 1 summarizes some 

highlighted recent works in this domain. 

The graph theory model in kidney exchange problem maximizes the number 

of possible kidney transplant by finding maximum weight packing of vertex-

disjoint cycles and chains for a given weighted digraph with limited length of 

cycles L (typically ) (Lin et al. 2019). The kidney exchange problem is 

NP-hard which means that there is not a polynomial time exact algorithm for it 

(for the complexity investigation of kidney exchange problem refer to Abraham 

et al. (2007); Biro et al. (2009); Huang (2010)). Moreover, the traditional 

economic theory and integer programming view for kidney exchange problem 

face systematic inequity in exchange for certain unmatched patients. Recently 

Mike and Maroulas (2019) studied inequity within the distribution of kidney 

allocation among patients and proposed a Hodge cycle algorithm6 for 

minimizing allocation disparities. 

2.1 Discussion on Graph Theory and Kidney Exchange 
Problem 

Advantages: Graph theory contains many well-established properties that can 

be used to improve the computational performance of programs dealing with 

graphs. Utilizing graph theory benefits of testing compatibility in order to build 

the entire kidney pair donation, before making allocation decisions. In 

particular, the lack of bias (e.g., due to location, ethnicity, or blood type) 

achieved by cycle allocation could shorten wait times for sensitized patients. 

Disadvantages: Although, recent advances in graph theory have afforded 

some advantages over traditional methods such that considering correlations 

across the network among the nodes. However, it is costly in computation 

when it comes to large-scale data. Moreover, the kidney exchange problem 

has a dynamical nature, and the abstraction to graphs can show temporal 

aspects of information flow among nodes and links. However, these flow 

change with time. Therefore, a static graph only could be a system 

represented and the prerequisite for building detailed dynamical models. Also, 

graph-theoretic methods are data-driven rather than model-driven. Which 

2 5L 
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means each updated or new data set requires a new graph model. In addition, 

graph theory is not problem-free approach, is based on sophisticated 

mathematical techniques that require rational choices at various steps of the 

analysis. For instance, when there is a need to choose among several 

possible strategies to reconstruct the networks, consider the dynamic weight 

for nodes, or use a threshold for links or statistical controls, graphs do not 

always lead to a convergent or consistent outcome. 

3 Queueing Models for Kidney Transplantation 

The kidney transplantation relays upon national kidney allocation policy as a 

national plan which manages the list of all the people across the country, 

waiting (approximately 3-5 years) for the kidney transplant. This program 

ensures that deceased donors’ kidneys are distributed fairly using a 

transparent system depending on how well you match with the available 

kidney and how many donors are available in your local area. The decision for 

distributing donors’ kidneys is a combination of blood-type and antibody 

matching, time with kidney failure, and a few other factors (such as heart 

disease, not being strong enough to endure an operation, infection, obesity, 

smoking or substance abuse) that give people priority on the list (including 

being a child or being a past live kidney donor) with giving the propriety to 

longer waiting time. The main purpose of this program is to reduce regional 

variability in access to transplantation and improve the outcomes for individual 

kidneys that are transplanted. 

Waiting time includes time spent after starting dialysis prior to being registered 

on the waiting list. Candidates are registered on the waiting list once they 

have a GFR value less than or equal to 20 ml/min or have begun dialysis. 

The waiting times for solid-organ transplantation is a vital issue which is 

studied by Rexius et al. (2002); Danovitch and Cecka (2003); Hussey 

et al. (2007); Barone et al. (2008); Stanford et al. (2008); Glander 

et al. (2010); Phelan et al. (2010); Liefeldt et al. (2011); Elalouf 

et al. (2018); Perlman et al. (2018). Although their observation is inconsistent, 
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the recipients with blood type O in compared to type A, and A in comparison 

to AB wait longer. Also, patients with blood type B are sometimes waiting 

slightly longer than O. This problem is known as the blood type O problem 

occurring in various organ types with different waiting times as reported in 

several studies in the United States (Barone et al. 2008), and Ireland (Phelan 

et al. 2010). 

Therefore, despite the regulation for kidney transplantation, optimal decision 

making can be categorized based on two main problems: 

 Optimal threshold level to accept a transplant (Ahn 

and Hornberger (1996): single patient) (Su and Zenios (2004): multiple 

patients). 

 Optimally allocating different types of stochastically arriving kidney 

(Stanford et al. 2014; Perlman et al. 2018). 

3.1 Ahn and Hornberger (1996)’s Model 

Ahn and Hornberger (1996)’s model offers organ quality-based kidney 

transplantation, which patients have a choice to accept or reject the kidney. 

As shown in Figure 5, they considered five states (with transition probabilities 

based on issued graft survival rates 7 of patients in the U.S.): alive on dialysis 

waiting for a transplant (s1), alive on dialysis with no option for transplantation 

(s2), successful transplant (s3), transplant failed (s4), death (s5), where only at 

state s1 patient can decide to accept or reject the kidney. 

Their problem focused on finding the minimum threshold level for patient for 

deciding to accept or reject the kidney. They introduced the Quality-Adjusted 

Life Year (QALY) index based on patient-specific ratings for being in various 

health states. Such that, if the expected 12 months of graft survival rate for 

the kidney-patient pair exceeded the threshold, the patient accepted the 

transplant; otherwise, the patient rejected it. 

To estimate graft survival rate, Gjertson’s logistic-regression model (Gjertson 

et al. 1991) is considered with several independent futures including age, 
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gender, ethnic group, original disease-causing end-stage renal disease 

(ESRD), number of transfusions, graft number, highest panel reactive 

antibody level, year of transplant, use of cyclosporine to prevent rejection, 

center of transplantation, donor relationship (i.e., cadaver versus living-

related), Human Leukocyte Antigen (HLA) mismatches, and cold ischemia 

time. 

Let x be the graft survival rate and d the minimum accepted threshold level. 

The decision parameter d can be estimated using one-year graft survival rate. 

By starting from s1, a patient may accept a donor who provides the minimum 

1-year graft survival rate (x > d) and then either (1) have successful 

transplantation (QALY3), or (2) have failed transplantation (QALY4). The 

patient may not find a donor with a satisfying 1-year graft survival rate (x < d), 

and may undergo the QALY of dialysis as either (1) qualified for 

transplantation (QALY1) or (2) unqualified for transplantation (QALY2), or 

death ( ) which mathematically can be represented as: 

 

and respectively QALY2, QALY3 and QALY4 are equal to: 

 

where 

f(x): probability function of 1-year graft survival for a pool of donors’ kidneys. 

QOLi: monthly quality-of-life score assigned to each state, . 

Imm: quality-of-life adjustment for side effects of immunosuppressive drugs. 
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: monthly fixed discount rate (> 0). 

pij: monthly transition probability from si to sj, . 

δ: probability of being eligible for re-transplantation 6 months after a failed 

transplant 

Therefore, the minimum acceptable of 1-year graft survival rate, d, is obtained 

by maximization of QALY1. 

3.2 Su and Zenios (2005)’s Model 

Su and Zenios Su and Zenios (2005) considered the patient choice on kidney 

allocation based on sequential stochastic assignment model. When a kidney 

offers to a patient, it could be accepted or rejected, and patient can join the 

candidate queue for future transplantation. Patients accept a kidney offer by 

maximizing their expected reward. 

The following assumptions are considered in their model: 

(a) The candidates and the donor are equally well informed about kidney 

types and the reward functions. 

(b) Candidates may discount future rewards using a discount factor , 

while the donor is interested in long-run average rewards. 

(c) The reward for a type i patient receiving a kidney x is , which is 

the same as the reward obtained by the donor. 

(d) At the end of the planning horizon, the reward of a patient who has not 

received an offer is zero. 

To estimate the optimal reward function for each patient, assume m different 

type of transplant candidates to be assigned to n different type of kidneys. If a 

transplant patient of type  has been assigned to type  

kidney, we get a reward of Rij. For , pi is the proportion of type i 

patient, and for , qj is the relative frequency of type j kidney. 

1 

, 1,...,5i j 

1 

( )iR x

1,...,i m 1,...,j n

{1,..., }i m

{1,..., }j n
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Therefore, partition policy can be shown by aij and the fraction of type j 

kidneys assigned to type i candidates is calculated by . An optimal 

partition policy  as the first-best policy is a solution of the 

following mathematical problem: 

 

Now, consider the situation that patient wants to reject a kidney offer. In order 

to penalize a patient from rejecting too many organs, if patient type i rejects 

kidney type j, he is moved down to the end of the queue, and that kidney is 

wasted. Assume that patients use a discount factor δ to discount future 

values. If patient i reject the kidney j, and accepts the next offer, the second-

best policy under discrete kidney types would be as follow: 

 

The model with patient choice considers the incentive compatibility constraint 

and replace the “supply balance demand” constraint by the inequality 

constraint. 

3.3 Stanford et al. (2014)’s Model 
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Stanford et al. (2014) proposed a queueing model for stochastically-arriving 

kidney allocation to arbitrary transplantation applicants. Their model considers 

blood type compatibility. As shown in Figure 6, allowable pairs and rejected 

compatible pairs represented by solid and dashed arrows, respectively. Based 

on Figure 6, O to AB are not favored medically, B to AB would conduct to 

further transfers from O to B, and O to A has disadvantages for candidates O. 

The resulting policy allows type O organs to be transplanted into type B 

recipients for a small fraction PO, and type A organs to be transplanted into 

type AB recipients for another small fraction PA. 

The model of Stanford et al. (2014) presented an idealized transplant queue 

model by the most critical criteria in waiting time. Patients are assigned to the 

waiting queue for candidates with kidney type i,  based on a 

renewal process (see Kleinrock (1975)). 

Consider Ti as the time between successive placements for First-Come-First-

Served (FCFS) patients in single server queue i expressing the type i kidney 

availability. Then, the stationary waiting time distribution function for placing 

patient in the ith queue is as follow: 

 

They also assumed the cadaveric supply for all kidney types to meet the 

demand with  queue stability condition as 

 

The consecutive time for availability of the same type of kidney (called sojourn 

time) is exponentially distributed with rate μi as: 

 

where w in  is the arrival time until service completion for the 

arbitrarily chosen patient, called waiting times on the “Array of Idealized 
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Transplant Queues” (AITQ) wait lists.  

is the average of sojourn time, and  is the moment generating 

function. 

Considering only type O and B queues, applying the Poisson processes’ 

properties (Conway et al. 2003), the kidney type O is engaged for receivers 

with kidney O follows a Poisson process with rate , and the kidney 

type O’s is available for receivers with kidney B follows a Poisson process 

with rate . 

Moreover, the aggregated process of deceased donor organs available for 

type B recipients is a Poisson process at rate  (see Figure 7). To 

ensure achieving fair access for all recipients, equalize the mean sojourn 

times WO and WB, for type O and B kidney 

 

which lead to the same probabilities of waiting time for a transplant if: 

 

where . 

3.4 Perlman et al. (2018)’s Model 

The queueing model of Stanford et al. (2014) assumes allocation of a 

constant portion of kidney O to B with equal expected transplantation 

queueing time for B and O. However, this situation is not applicable when only 

kidney of type O exists, and there is no type B kidney. 

Perlman et al. (2018) modeled this situation with the assumption of allocating 

of arriving kidney O to applicant O. They modeled the problem as a dynamic 

flexible-resource allocation problem and a queueing performance measure 

called “Expected Value of Transplantation” (EVT) for assessing the 
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completion of kidney transplantation. They modeled the problem by assuming 

two Poisson processes for kidney candidate, the properties of their model are 

as follows: 

 Kidney candidate in a queueing system has independent Poisson 

processes SO and SB with λO and λB rates. 

 For each SO and SB process, there is a waitlist QO and QB respectively. 

 Kidneys resources RO and RB are arriving independently with Poisson 

rates μO and μB, respectively. 

 LO = m, for , and LB = n, for  are the queue 

length of SO and SB, respectively. 

 RB is allocated to SB in QB. If QB = 0 the unit will be lost. 

 RO is allocated to either SB or SO. 

 SB is correlated to LO and LB. If , the RO is missed. 

The system’s steady-state probability is 

 

where  is the probability of allocating RO to SB in state ( ), 

then 

 

For n = 0: 
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For n = N: 

 

Figure 8 represents the state transition diagram for kidney transplantation. 

By solving the balanced equations, the mean number of SO is . Then, 

the mean sojourn time for SO by applying Little’s law is 

 

Proof: Refer to equations 11-14 in Perlman et al. (2018). 

In addition, Perlman et al. (2018) developed a queueing performance 

measurement based on “best-fit rule” for HLA issue. Human tissue cells 

include antigens that are immunologically related to a specific candidate. This 

antigen is called HLA system. In their model, a kidney in a particular queue 

will be delivered to the candidate with the highest HLA match in the waiting 

line. The HLA match is operationalized when a kidney appears and is 

assigned to QB or QO queue; then, the kidney is transferred to the best fit one, 

based on the histocompatibility degree to each candidate with I levels of 

tissues, independently of his location in the queue. The incompatible HLA 

features between a random applicant and stochastically-arriving kidney can 

be considered as a random variable H. 

The probability of having i mismatches between a random candidate and 

arriving kidney denoted by , and , 

where FI = 1. Assume the value of transplantation between a stochastic 

candidate and arriving kidney is X, therefore, the life of a transplanted 

applicant lives longer than x fixed years, and for H = i mismatches denoted by 

xi; if i < j, then xi > xj. We have , and . 

Therefore, the obtained EVT from allocating a kidney based on the best-fit 

rule can be calculated through the following theorem. 
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Theorem: 

 

where 

 

Proof: Refer Perlman et al. (2018) (Equations 7 and 15 can be used for 

calculation of  and ). 

3.5 Discussion on Queueing Models for Kidney 
Transplantation 

There are many medical and non-medical issues such as ethical (how to get 

approval from a donation, equity amongst the various patient), economic (how 

to buy8 and stop black-market), and logistical (how to store the organ9, how to 

balance supply and demand effectively10) involved in kidney transplantation. 

In this section, models which considered medical phenomena (acceptance 

rules such as blood matching and tissue matching) and non-medical 

phenomena (logistic issues and kidney allocation) for kidney transplantation 

are discussed. However, there are more non-medical issues which social 

ethics bring them into account; for instance, considering equity among 

different groups of patients in terms of race, age, and gender. 

Another non-medical issue is acceptance or rejection of kidney by the patient 

based on his/her situation (running a fever, or on vacation). Consider this 

issue, the patient is not always available to receive the kidney and his/her 

state is dynamic. Although Ahn and Hornberger (1996)’s model provides a 

semi-Markov decision process for this situation, however, in their model they 
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only considered a single patient who facing an infinite stream of kidney offers. 

Therefore, studies such as the work of Su and Zenios (2004) on a situation 

where there are n patients who face a stream of m ( ) kidneys 

sequentially could be more practical in a real setting. With the case of n 

patients and m ( ) kidneys, the factor of waiting time comes to 

consideration for patients, for instance, sometimes patients do not wait for the 

best to match, and they select the semi-best to match regards to the high ask 

and bid in the market. Therefore, patients’ decisions are not independent of 

each other or better to say the assumption such as time-homogeneous 

(independent increments) which Su and Zenios (2004) are considered in their 

study does not work in the real application. The case would be more 

complicated when there are k types of organs (for instance, kidney, liver, 

Pancreas, etc.) 

For optimally allocating arriving kidney for transplantation, almost all models 

are considered the national pool of donors for the local patients. Therefore, it 

is hard to say which method is working better when different benchmark data 

and national/regional regulations in each country/region come into 

consideration. However, the rule of allocation priority was not considered in 

most of the studies. A brief description of the allocation rule is that, first the 

kidney is offered to an identical blood-type zero-antigen mismatched local 

patient, then regionally and then nationally. Then it is offered to a blood-type 

compatible zero-antigen mismatched patient using the same geographic 

hierarchy. Finally, the kidney is offered to all other blood-type compatible 

candidates ranked according to their total number of points of priority around 

the world. Regards this limitation, there is no international waiting list for organ 

transplantation, and patients are allowed to register in multiple lists to 

increase their chance (Ata et al. 2016). Therefore, giving a rank or score to 

local, regional, national, and then worldwide compatible could help for 

implementation the optimally allocating kidney transplantation algorithm in 

worldwide level. 

In addition to the main models for kidney transplantation discussed earlier, 

extensive efforts have been done on this area, mainly focused on queueing 
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models for modeling, patient choice, priority consideration, geographical 

aspects, and compatibility issues. Table 2 summarizes some highlighted 

works in this domain. 

4 Stochastic Modeling of Kidney Disease 
Progression 

The most critical risk factor for AKI is pre-existing CKD, which increases the 

risk of kidney failure 10 times in comparison with the absence of CKD 

(Eckardt et al. 2013; Chawla et al. 2014). Besides, there is a high risk after 

AKI for the propagation of CKD. Therefore, CKD and AKI are strongly 

associated. Despite this fact that other risk factors such as age, race or ethnic 

group, genetic factors, hypertension, diabetes, and metabolic syndrome are 

effecting on the severity of kidney disease, understanding the full implications 

of risk factors on kidney disease modifiers such as severity of AKI, stage of 

CKD, number of episodes, and duration of AKI is essential. Therefore, the 

acute changes in kidney function that characterize an AKI event can be 

modeled by a stationary stochastic process (Asar et al. 2016). However, the 

long-term effects of AKI remain an open research area. 

There are several papers about stochastic modeling of kidney diseases with 

hidden Markov model (Luo et al. 2013), Markov process model (Nuijten 

et al. 2009; Orlando et al. 2011; Anwar and Mahmoud 2014), Monte Carlo 

simulation (Rodina-Theocharaki et al. 2012), Coxian PTD (Donnelly 

et al. 2017), and multistate Markov model (Faissol et al. 2009; Green 

and Richardson 2002; Jackson et al. 2003; Sweeting et al. 2010; Best 

et al. 2005). Additionally, many modeling methods have been studied for 

multiple different states disease progression such as HIV disease (Aalen 

et al. 1997), breast cancer (Duffy et al. 1995; CHEN 

and PROROK 1983; Chen et al. 1996), Hepatocellular carcinoma (Kay 1986), 

Liver cirrhosis (Andersen et al. 1991), and diabetic retinopathy (Marshall 

and Jones 1995), periodontal disease progression (Mdala et al. 2014). For 

more details on stochastic modeling, one can refer to 

He (2014); Fackrell (2009). 
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Following this section, we introduce the stochastic modeling of CKD 

progression and Markovian paradigm of AKI to CKD. 

4.1 CKD Modeling 

An example of life expectancy and progression process of a CKD patient is 

shown in Figure 9 and summarized in Table 3 with five states for the CKD 

model which are equivalent to stages  in Figure 1. This example 

proposes a stochastic model that describes the progression process of CKD 

based on GFR to estimate the kidney functionality level and discover the 

stage of kidney disease, to predict the expected spent time in each stage of 

the disease progression and to estimate the life expectancy of a CKD patient. 

Figure 9 indicates that at any stage of CKD there is a probability and a 

transition that CKD eventuates to the death, although each stage of CKD can 

gradually transform to the worse stage with absorbing state λ. 

According to Figure 9, the transition rate matrix of CKD progression 

represents the rates of transition from one state to another as V. 

 

It can be noticed that λij is independent of time because CKD process is 

homogeneous with respect to time. Consider the probability of being in one of 

the states of the process at the beginning of the treatment as 

, where the first four are transient states and the last 

is absorbing. We can model the CKD process as a discrete-time Markov chain 

with the following properties: 

1. Stochastic process  takes values in . 

2. Memoryless property: 
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3. Transition probabilities: Pij (each transition probability is a function of 

the state of health and the treatment): 

 

4. Transition probability matrix:  

5. Stationary distribution of CKD process 

● A finite number of states: Solve explicitly the system of 

equations as: 

 

● An infinite number of states: Guess a solution to recurrence: 

 

In general, we can model this type of process with PTDs. The definition of 

PTD is as follow: 

Definition: Consider n + 1 states of a continuous time Markov chain (CTMC), 

where , such that the states  are transient states and state 0 is an 

absorbing state. The definition of transient and observing states are as 

follows: 
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Moreover, assume we have an initial starting probability of n + 1 stages with 

the vector of probability  where α0 is a scalar, and  is a  vector. 

Therefore, the continuous PTD is the distribution of time from the starting 

state to the absorbing state. The PTD process can be represented as a 

transition rate matrix Q as, 

 

where S is an n × n matrix and , and 1 represents an  vector with 

every element being 1. Hence, X as the time distributed variable until the 

process enters to the absorption state is a PTD denoted by , with the 

following properties: 

1. The distribution function of X: . 

2. The density function of X: . 

It is usually assumed the probability of process starting in the 

absorbing state is zero (i.e. ). 

3. The moments of the distribution function: . 

Previously, PTD application has been used in healthcare 

(Aalen 1995; Fackrell 2009). In addition, PTD can model the CKD by 

considering creatinine level, body mass index, blood pressure, and other 

factors in each stage of disease and developing novel Bayesian regression 

models for progression prediction (Donaghy and Marshall 2006). 

4.2 Paradigm of AKI to CKD: A Markov Modeling 
Perspective 

Many kidney disease investigations presented a confirmation about a 

connection between AKI, CKD, and ESRD (see Amdur 

et al. (2009); Ozrazgat-Baslanti et al. (2016); Grams et al. (2016)). Moreover, 
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Kellum and Prowle (2018) discussed the paradigm of AKI and its potential 

outcomes for the patient, as shown in Figure 10. 

As Figure 11 is illustrated, AKI patients can be healed, be released without 

restoration of renal function, or can be died. Additionally, patients who are 

seeming relieved, may in the future realize CKD or Cardio-Vascular Disease 

(CVD) (dashed lines in Figure 11). Although reports on in-hospital events and 

consequences confirm the transformation of AKI to CKD, the pathways 

influencing these results are virtually undiscovered. Because of the 

extraordinary complexity, not all connections can be displayed for AKI and 

CKD. 

Kerr et al. (2014) proposed a structure of Markov model for AKI to CKD 

transition by the seven states. The states are including normal kidney 

function, AKI, CKD, ESRD -including dialysis, transplant, and no RRT-, and 

Death as illustrated in Figure 11. For more specifications on data and 

investigation, one can refer to Kerr et al. (2014) and Mehta et al. (2007). 

4.3 Discussion on Stochastic Modeling of Kidney Disease 

Advantage: Patients with renal diseases show diversity in disease 

progression. Although the factors that affect disease progression are not 

apparent, stochastic factors such as modifying genes, environmental factors, 

gene expression, and somatic mutations are probably involved. Therefore 

stochastic modeling of kidney disease is the best way to show the 

propagation and transformation of illness. 

Disadvantage: There is no doubt that stochastic modeling of kidney disease 

can explain the probability of AKI propagation to CKD, and CKD 

transformation to a higher state or death. However, there is some opinion in 

the literature (Rifkin et al. 2012) that observed AKI–CKD associations should 

be considered noncausal as long as they are based on epidemiologic or 

observational studies. Therefore, to find whether stochastic models are 

appropriate for showing a causal relationship between AKI and CKD, some 

assumptions are essential. 
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Firstly, there is an unknown gap when AKI happens before CKD. Investigation 

on the distribution of this hidden gap is vital as domain knowledge to estimate 

the probability of AKI propagation to CKD. 

Secondly, AKI severity or frequency is an essential index in the transformation 

of AKI to CKD. Therefore, like CKD modeling, AKI stochastic modeling is 

required to explain the change in AKI from stage 1 to 3 (see Figure 1) based 

on the degree of severity or frequency. 

Thirdly, patients with more severe AKI are sicker. Therefore, the 

transformation to CKD may cause by other diseases not directly AKI. Hence, 

other severe diseases causing CKD should be considered in the model. 

Accurate prediction of graft survival rate after kidney transplant is limited by 

the complexity and heterogeneity of risk factors influencing on kidney disease 

such as progression of CKD to AKI. Therefore, stochastic modeling for kidney 

disease progression can indirectly effects on resource allocation for a kidney 

transplant. 

5 MDP for Kidney disease screening and 
treatment 

Clinicians are willing to figure out which treatment is beneficial for a patient 

who has chronic diseases and cannot be fully recovered but can be treated by 

medical screening, surgical treatment, and medication. However, medical 

decisions are complicated because of the critical situation in different groups 

of patients. For instance, aged people usually have various chronic 

conditions, and medication for one disease may affect their other illnesses. 

OR techniques such as MDP are strong mechanisms to examine patient data 

and information to manage screening and surgery and medical treatment 

choices. 

MDP is a mechanism for subsequent stochastic decision making which starts 

with a Markov model for disease (including states, transition probabilities, 

rewards) and overlays a decision process on the model that defines allowable 
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“actions” at each period and each state. The MDP’s goal is to find the optimal 

action in each state at each period to maximize “rewards” (Alagoz 

et al. 2010; Hauskrecht and Fraser 2000; Steimle and Denton 2017; Schaefer 

et al. 2005). An optimal solution for MDP involves a decision based on optimal 

action as a policy and concerning some reward function at each potential 

state and each period of the problem. 

For designing MDP for kidney disease modeling, consider the following 

assumptions: 

 health status in the state transition diagram before an event has 

occurred: Low, Medium, High, Very High, 

Dead , as shown in Figure 12. 

 treatment state (on or off medication): , If m = 0, the patient is 

not currently on medication, and if m = 1, the patient is currently on the 

medication. 

 action space: . For each medication, at each 

epoch, medication can be initiated (I) or can be delayed (W) for at least 

one period. Action  denotes the action taken if a patient is in 

living state . 

Therefore, the optimality equation is 

 

where , and  are expected 

future reward with  as discount factor, one period reward, discounted 

future rewards on treatment starting at age t, and transition probabilities, 

respectively (Steimle and Denton 2017). 

According to Steimle and Denton (2017) there are three types of decision 

making perspectives to obtain the optimal reward. Firstly, patients want to 

maximize expected QALYs. From another perspective, the third-party payer 
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(i.e., insurance company) is willing to minimize the expected costs of 

treatment and health services. However, society perspective seeks to 

maximize the weighted combination of expected patient rewards for QALYs 

minus medical treatment and health services’ expenses. Society’s objective 

function includes rewards for QALYs and costs. 

Moreover, Van Arendonk et al. (2015) developed a MDP model including five 

patient states the waitlist (W), post-transplant with a deceased donor kidney 

(TD), post-transplant with a living donor kidney (TL), alive after two graft 

failures (GF), or deceased (D) (refer to Figure 1. in Van Arendonk et al. (2015) 

for more detail in model). 

For more details on MDP for kidney disease screening and treatment, one 

can refer to Bellman (1966); Puterman (2014); Bertsekas et al. (1995) and its 

applications in liver transplantation Alagoz et al. (2007); Batun et al. (2018). 

5.1 Discussion on MDP for Kidney disease screening and 
treatment 

Advantage: MDP can find optimal solutions to sequential and stochastic 

decision problems. The significant advantage of MDP is its flexibility. MDP is 

flexible with all classes of problems involving complex, stochastic, and 

dynamic decisions. MDP not only provides the consequences of a policy, but 

it also guarantees that no better policy exists. 

Disadvantage: The main drawback of the MDP model for kidney disease 

screening and treatment is that the patient (agent) receives reward  

every time that is visited at state st in a clinical center. Thus, in order to 

estimate an accurate transition matrix for each state, patients need to visit 

medical centers regularly, and their health status should be recorded. 

However, in a real scenario, especially when patients are in the early stage of 

disease they are not used to visit a doctor regularly. Even, it is possible that a 

patient for the first time goes under treatment when is in the high state of 

disease progression. 
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The other limitation of the MDP model is that all the state variables relevant 

for decision making are assumed to be observed without noise, while real-

world data are always prone to noise. Furthermore, there might be situations 

that cannot be detected directly using the medical test, especially when the 

disease is at a very early stage. In this case, the state observed by the MDP 

is no longer Markovian, and hence, the value of the computed policies will no 

longer be accurate. 

The last, but the least important issue in kidney disease screening and 

treatment using MDP approach is the “curse of dimensionality,” which means 

that the number of states that must be included in the calculation of the 

solution increases exponentially quickly as the size of the problem increases. 

6 Conclusion 

OR techniques have been playing an important role in solving kidney 

problems for descents. Hereupon, a systematic review of recent advances of 

OR techniques for solving kidney problems holds promise for comparing the 

advantage and limitation of existing models, as has been developed in this 

paper. As a conclusion and future research direction, we attempted to have a 

broader vision for solving kidney problem from OR perspective. These 

problems are barely indicated in literature with analytic context and are known 

as critical obligations for kidney specialist. Following we discuss some of the 

highlighted topics in this chain. 

1. Finding an optimal matching policy for fully dynamic kidney exchange 

is an open problem from both the theoretical and computational points 

of view. Because kidney operation frames depend on the ordering, but 

the kidney disease usually happens before ordering. However, 

researches only investigated on waiting time for “hard to match” groups 

(kidney type “B” and “O”). Therefore, the OR techniques can be used to 

model and predict the order time. 

2. Despite this fact that “a donor does not have an incentive to donate 

unless his paired patient receives a kidney”, incentives at the patient or 
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donor level have not been explored thoroughly in the kidney exchange 

literature. In fact, the kidney exchange is included a new variable of 

bargaining power, and game-theoretical approaches can simulate this 

situation. 

3. The case of kidney exchange is also included the logistical issues 

when the operational constraints involve assembling the resources to 

coordinate and conduct complicated surgical procedures across many 

hospitals. This phenomenon is not only for “hard to match” groups but 

involved the “easy to match” groups as well. Therefore, new constraints 

as logistical capabilities are required to be considered for minimizing 

the waiting time for the operation. 

4. Since kidney allocation policies are often made by a committee rather 

than a single expert, it is important to investigate if kidney allocation will 

be acceptable by a group of experts. Operations methods for opinion 

aggregation may be used to facilitate group decision making. 

5. Adaptation of the theoretical results from kidney problems to models of 

lung, liver, and multi-organ exchange would also be of practical use. 

In additions, there are several operations techniques used in different kidney 

researches such as forecasting and data-driven models which are under the 

scope of statistical inferences and we are not investigated on them in this 

paper. Despite this fact that data-driven models are supporting the foundation 

of decision making with OR techniques, in the content of statistical inferences 

and data science approaches, we suggest the following future research 

directions: 

1. Applying PTD in CKD modeling by considering creatinine level, body 

mass index, blood pressure, and other factors in each stage of kidney 

disease and developing novel Bayesian regression models for 

progression prediction. 

2. Developing a framework to consider a more precise analysis of all 

diseases derived from kidney problems into the body. In order to study 

this, a multiplex network (Lee et al. 2015; Ghariblou et al. 2017; Xu 
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et al. 2015) for considering a multi-layer analysis of kidney diseases is 

required. 

3. Developing a model of comorbidity between AKI and CKD with the 

latent variable modeling. For comorbidity study of AKI diseases, we 

can consider Sepsis-associated AKI, surgery-associated AKI, AKI 

associated with renal hypoperfusion, and Nephrotoxic AKI as diseases 

in each layer (see Moni and Liò (2014)). 

4. Analyzing the correlation between kidney diseases and other human 

diseases (as an example, refer to O’Rourke and Safar (2005) for the 

correlation between aortic stiffening and microvascular disease in brain 

and kidney). 

5. Defining and classifying kidney diseases to different domains based on 

structure, function, causes, duration, and outcomes according to Levey 

et al. (2013). kidney diseases are different in comparison to other 

diseases because of the silent nature of the kidney (Levey et al. 2013). 

Therefore, developing such a classification system would help to 

identify kidney diseases in human with comorbidity relation to other 

diseases a list of kidney diseases are available at 

http://www.kidney.nyc/types-of-kidney-disease/. Developing a 

classification system for kidney diseases based on comorbidity with 

other diseases in the human would be vital for treatment and disease 

modeling. 

There are many factors to be considered in healthcare cost-effectiveness 

decision-making (Reddy et al. 2019). OR techniques such as multiple-criteria 

decision analysis (MCDA) are very advantageous in kidney decision-making 

problem which decisions can be available from different sources to be 

integrated in a structured way. Moreover, MCDA techniques should be 

chosen based upon the context, restrictions and risk of the decision problem. 

In this study we review some OR related techniques of kidney disease and 

healthcare management. However, kidney’s operation system can be used as 

bio-inspired optimization algorithm for population-based optimization 

approach to assist OR related problems. The approach is called kidney 
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inspiration algorithm (KIA) and it is reflected some ideas from the structure of 

the nephron. For more information, one can refers to Jaddi et al. (2017); Jaddi 

and Abdullah (2018); Behmanesh (2016); Taqi and Ali (2017). 
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Starkville, MS, USA, 39762 

2mkhakifirooz@tec.mx 

3GFR is a test used to check how well the kidneys are working. Specifically, it 

estimates how much blood passes through the glomeruli each minute. 

4AER is a test to describe how much kidney leaks albumin into the urine per 

24 hours. 

5ACR is an annual test after a diagnosis of diabetes or HBP which comparing 

the amount of albumin in the sample against its concentration of creatinine 

6MATLAB code is available at 

https://sites.google.com/site/joshmikemath/code 
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7Graft survival rate is an estimate of the probability of the transplant kidney 

functioning at a finite time after trans- plantation 

8organ procurement and transplantation network, 

https://optn.transplant.hrsa.gov/ 

9United Network for Organ Sharing, https://unos.org/ 

10Organ procurement organizations, http://www.aopo.org/ 

Fig. 1 Burden, stages, and definitions of CKD & AKI (information extracted 

from Kellum and Prowle (2018)) 
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Fig. 2 Kidney disease progression process (Eckardt et al. 2013). 

 

Fig. 3 From left to right, a 2-way exchange, a 3-way exchange, and a 3-way 

exchange with an altruistic donor; Kidney transfer represented by arrows. 

 

Fig. 4 From left to right, a cycle of 2-way exchange, and a 3-way exchange 

in kidney transfer graph. Acc
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Fig. 5 State transition diagram for Ahn and Hornberger’s model 

 

Fig. 6 Kidney compatible pairs and their percentages; dash lines show 

cross-match–incompatible pairs. (Stanford et al. 2014) 
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Fig. 7 Kidney Transplantation aggregation rate for type O and B kidneys 

(Stanford et al. 2014). 

 

Fig. 8 Kidney Transplantation State Transition Diagram (Perlman 

et al. 2018) 
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Fig. 9 CKD progression process with five stages.  are referencing 

to the staging formation in Figure 1. 

 

Fig. 10 Potential patient outcomes following AKI (Kellum and Prowle 2018) 

 

Fig. 11 AKI to CKD Markov Model (Kerr et al. 2014) 
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Fig. 12 State Transition Diagram (Steimle and Denton 2017) 

 

Table 1 Recent trends in kidney exchange problem from OR perspective 

Reference  Methodology  Key Contribution  

Alvelos et al. (2019 b)  

branch-and-price 

algorithm  

consider probabilities of failure 

of vertices and of arcs and the 

objective of maximizing the 
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Reference  Methodology  Key Contribution  

expected number of 

transplants  

Freedman 

et al. (2018)  integer programming  

give weight to patient 

attributes to determine priority  

Esfandiari 

and Kortsarz (2018)  

graph matching based 

on 2-approximation 

randomized truthful 

mechanism  

low utility variation for pairwise 

kidney exchange problem  

Hamouda et al. (2018)  

a bio-inspired 

stochastic-based Ant 

Lion Optimization  

maximizing the number of 

feasible cycles and chains in 

kidney exchange pool pairs; 

adaptability for online 

exchanges and the integration 

of weights for hard-to-match 

patients;  

Lee et al. (2018)  

two-stage stochastic 

programming method 

using the total utility in 

the first stage and the 

sum of the penalties for 

failure in the second 

stage  

take fairness to be the degree 

to which individual patient-

donor pairs feel satisfied  

Dickerson 

et al. (2017)  integer programming  

encode the kidney exchange 

compatibility graph by a 

constant number of patient 

and donor attributes  

Santos et al. (2017)  integer programming  

match pairs of specific 

patient–donor blood type, 

particularly, O-blood type 

patients. Including different 
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Reference  Methodology  Key Contribution  

types of matches in the 

problem (i.e., incompatible 

pairs, altruistic donors, and 

compatible pairs). find the 

best interval between matches  

Dickerson 

and Sandholm (2017)  

integer programming 

with steady-state 

nationwide scale using 

a specialized tree 

search algorithm based 

on the branch-and-

price framework  

multi-organ exchange: include 

liver lobes, either in 

conjunction with, or 

independently of, presently 

fielded kidney exchange  

Anderson 

et al. (2015b)  

integer programming 

inspired by the 

traveling salesman  

prevent the long cycles 

appearing in solutions  

Table 2 Literature on kidney transplantation from queueing theory 

perspective, summary, advantages, and disadvantages.

Reference  Main Contribution  Advantage  Disadvantage  

Bandi et al. (2019)  

estimating waiting 

times in 

multiclass, 

multiserver kidney 

allocation queuing 

systems  

dealing with 

incompleteness 

information and 

unstable 

decision of 

patients  

considering a 

closed queuing 

system model for 

patient arrival 

and waiting time  

Elalouf et al. (2018)  

proposing an 

allocation model 

based on best 

histocompatibility 

fit and maximizing 

expected reward 

considering 

multiple-type 

double-ended 

queues, where 

candidates 

distinguish by 

not considering 

blood 

compatibility  
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Reference  Main Contribution  Advantage  Disadvantage  

per 

transplantation for 

kidney storage 

policy  

their HLA 

compatibility  

Perlman et al. (2018)  

providing a 

dynamic 

allocation model 

of flexible 

resources for 

calculating the 

optimal 

probabilities 

kidney cross-

transplantation  

considering 

dependency 

between 

allocation 

probabilities and 

system’s states; 

estimating 

expected value 

of 

transplantation 

based on HLA 

fit  

only considering 

type B and O 

kidneys in the 

model  

Ata et al. (2016)  

studying the 

impact of the 

multiple listing of 

ESRD patients 

based on metrics 

such as waiting 

times, multi 

organs 

transplantation, 

and mortality rate  

improving 

geographic 

equity when 

patients can 

register in 

multiple lists  

not considering 

transplants 

across 

compatible blood 

types, allowing 

nonstationarities 

in the arrivals of 

organs and 

patients  

Stanford et al. (2014)  

considering a 

model for 

restricted cross-

transplantation 

and comparable 

considering 

ABO-

incompatible (or 

cross-match–

incompatible)  

ABO-

incompatible 

cannot achieve 

equity; not 

considering the 
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Reference  Main Contribution  Advantage  Disadvantage  

waiting times for 

all blood types  

priority patients  

Bertsimas et al. (2013)  

developing a 

data-driven 

method for 

designing national 

policies for the 

allocation of 

deceased donor 

kidneys  

flexible in 

selecting 

desired priority 

criteria and 

fairness 

constraints with 

maximizing 

medical 

efficiency  

not categorizing 

and ranking 

patients within 

the group  

Abellán et al. (2006)  

modeling a real 

renal transplant 

waiting list with 

  

considering the 

heterogeneity in 

the daily 

number of 

arrivals with 

robust queueing 

model 

  

complexity in 

queueing model 

due to patient 

leave (i.e., 

death), move to 

other waiting list, 

or being special 

patient (i.e., 

children)  

Su and Zenios (2006)  

considering 

adverse selection 

and propose a 

mechanism-

design based on 

patients’ truth-

telling report of 

their kidney types  

candidates who 

wait longer 

receive better 

kidneys; 

developing a 

choice-based 

kidney 

allocation 

system with 

candidates’ 

choice  

implementation 

of a choice-

based system 

requires new 

payment 

mechanisms  
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Reference  Main Contribution  Advantage  Disadvantage  

Su and Zenios (2004)  

modeling 

incorporate 

patients’ 

individual 

problems in organ 

accept/reject 

decisions with the 

last-come-first-

serve (LCFS) 

queueing policy  

considering a 

pool of n 

patients who 

face a stream of 

m ( ); 

modeling patient 

queue as an 

 with 

homogeneous 

patients and 

exponential 

reneging  

considering time-

homogeneous 

character 

(independency) 

between patients’ 

decisions  

Zenios (2002) 

proposing a 

double-ended 

queueing model 

for autonomous 

kidney exchange 

system with two 

types of donor-

candidate, 

accompany with a 

Brownian 

approximation to 

perform an 

indirect exchange  

considering the 

mix of direct and 

indirect 

exchanges for 

maximizing the 

expected total 

discounted 

QALY of the 

candidates  

In autonomous 

exchange 

system, 

participants 

experience 

excessive waits; 

the exchange 

program’s 

success depends 

on maximizing 

the social welfare 

of the 

participants, and 

minimizing the 

risk of participant 

resentment  

Ahn 

and Hornberger (1996)  

providing a semi-

Markov decision 

process for 

introducing the 

QALY index 

based on 

only considering 

a single patient 

who facing an 

m n
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Reference  Main Contribution  Advantage  Disadvantage  

acceptance or 

rejection of kidney 

by the patient 

based on his/her 

situation 

patient-specific 

rating for being 

in different 

health states  

infinite stream of 

kidney offers  

Table 3 Progression process of CKD based on GFR 

State 

No. State Name  

GFR, 

ml/min  

Equivalent stage 

in Figure 1  

1  

Kidney damage with mild reduction in 

GFR  60-90  G2  

2  

Kidney damage with a moderate 

reduction in GFR  30-59   and   

3  

Kidney damage with a severe reduction 

in GFR  15-29  G4  

4  

ESRD implying Renal Replacement 

Therapy (RRT) (regardless of GFR)  <15  G5  

5  Death    
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