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Abstract–The performance of reliability inference strongly depends on the 

modeling of the product’s lifetime distribution. Many products have complex lifetime 
distributions whose optimal settings are not easily found. Practitioners prefer to 
utilize simpler lifetime distribution to facilitate the data modeling process while 
knowing the true distribution. Therefore, the effects of model mis-specification on 
the product’s lifetime prediction is an interesting research area. This paper presents 
some results on the behavior of the relative bias (RB) and relative variability (RV) of 
p-th quantile of the accelerated lifetime (ALT) experiment when the generalized 
Gamma (GG3) distribution is incorrectly specified as Lognormal or Weibull 
distribution. Both complete and censored ALT models are analyzed. At first, the 
analytical expressions for the expected log-likelihood function of the mis-specified 
model with respect to the true model is derived. Consequently, the best parameter 
for the incorrect model is obtained directly via a numerical optimization to achieve a 
higher accuracy model than the wrong one for the end-goal task. 
 
The results demonstrate that the tail quantiles are significantly overestimated 
(underestimated) when data is wrongly fitted by Lognormal (Weibull) distribution. 
Moreover, the variability of the tail quantiles is significantly enlarged when the model 
is incorrectly specified as Lognormal or Weibull distribution. Precisely, the effect on 
the tail quantiles is more significant when the sample size and censoring ratio are 
not large enough. Supplementary materials for this article are available online. 

Acc
ep

te
d 

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2019.1647880&domain=pdf


Keywords: Arrhenius Model, Asymptotic Bias, Asymptotic Variation, Generalized 

Gamma Distribution, Lognormal Distribution, Model Mis-Specification, Weibull 

Distribution 

Technometrics tex template (do not remove) 

1 Introduction 

Manufacturers continuously strive to design and produce products with high 

quality and reliability in order to remain competitive in a global market. To meet 

this goal, nowadays the products are designed to function for a long time before 

they fail. However, for testing the product quality to reduce the testing time and 

meet the budget constraints, an accelerated life test (ALT) is utilized to evaluate 

the quality of data under different stress level and within a shorter time 

(Lawless 2011, Meeker 1984, Nelson 2009, Meeker et al. 1998). 

The performance of an ALT strongly depends on choosing the model of the 

product’s lifetime distribution. Generally, Weibull and Lognormal are two popular 

approaches and are among those widely used distributions in reliability 

engineering to fit the product’s lifetime data in the literature (Somboonsavatdee 

et al. 2007, Pascual 2005, Lawless 2011). 

Numerous studies have used Weibull and Lognormal distribution to fit the lifetime 

data; for instance, Basavalingappa et al. (2017) fitted the electromigration lifetime 

data for lower tail quantiles with Weibull and Lognormal. Pasari (2018) used the 

Weibull and Lognormal distributions for modeling earthquake inter-occurrence 

times. Li et al. (2018) implies Weibull and Lognormal distributions to reduce the 

stress induced by the fracturing process of brittle rocks. In the study conducted 

by Singh et al. (2018), the tensile strength and limit stress of the ceramic 

composite material are fitted by the Weibull and Lognormal distributions, 

respectively. Yu et al. (2018) analyzed the quality of cold in-place asphalt by 

fitting the air gradation and thickness with Weibull and Lognormal. 
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Although Weibull and Lognormal are two commonly used location-scale 

distributions in fitting lifetime data, they are not always the best choice for 

modeling lifetime data. In addition, models with two or more shape parameters 

are more accurate (Lin et al. 2013). The generalized Gamma (GG3) distribution 

(Stacy 1962, Prentice 1974, Lawless 1980, Pham and Almhana 1995) is one of 

these models. GG3 distribution with more than one shape parameter provides a 

flexible model to fit the reliability data. However, due to some limitation GG3 may 

not be the desirable choice for the decision maker in fitting the lifetime data. The 

failure may appear due to 1) inadequate prior knowledge regarding the system 

and its dynamics, 2) relying on the availability of a large set of training examples 

to derive complex models, 3) preferring low accuracy model in order to forsake 

the computation complexity, 4) lack of closed-form expression for the maximum 

likelihood estimator (MLE), and 5) existence of local MLEs. In addition, Weibull 

and Lognormal are the special cases of GG3 distribution and more common and 

easy to fit for lifetime data. Therefore, the objective of this study focuses on the 

effect of model mis-specification of an ALT experiment when GG3 distribution is 

either mis-specified as Lognormal or Weibull distribution. 

For mis-specified models, White (1982) developed a methodology for deriving 

the asymptotic distribution of MLEs under certain regularity conditions (e.g., 

consistency, asymptotic normality, and Fisher information). Later, Chow (1984) 

emphasized that the properties of mis-specified models are corrected if and only 

if data are independent and identically distributed. Bai et al. (1992) performed 

Monte Carlo simulations to characterize the estimation of quantiles with complete 

(uncensored) data under mis-specified Gamma, Weibull, and Lognormal 

distributions. Pascual (2005) derived expressions for the asymptotic distribution 

of MLEs of model parameters for the p-th quantile of mis-specified Lognormal 

and Weibull for censored data. Their result was extended by Pascual 

and Montepiedra (2005), and Pascual (2006) for the ALT experiment for type I 

censored data. Later, Yu (2012) extended these results for the interval of 

quantile. Subsequently, similar works have been done by 
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Yokoyama (2016, 2015) for the covariate parameter of Weibull and Lognormal 

under model mis-specification. 

Other relevant studies hinted the approach of White (1982) are included the 

study of Yu (2007) and Yu (2009) for modeling the mis-specification analysis 

between normal and extreme value distributions for linear regression models. In 

the study of Peng and Tseng (2009), they investigated the mis-specification 

analysis of linear degradation models. Following their study, Tsai et al. (2011) 

applied their approach for the mis-specification analysis of Gamma and Wiener 

degradation processes. Rigollet et al. (2012) defined the Kullback-Leibler 

aggregation for measuring the distance between the true model and the wrong 

model for mis-specified generalized linear models for the exponential family 

distribution. Ling and Balakrishnan (2017) analyzed the reliability assessment of 

lifetime data under mis-specified Weibull and Gamma distributions. Yu 

and Huang (2017) investigated random-intercept mis-specification in generalized 

linear mixed models for binary responses. 

In this study, to address the effects of model mis-specification, following the 

result of White (1982), first the analytical expression for expected log-likelihood 

function when GG3 distribution is either mis-specified as Lognormal or Weibull 

distribution is derived. Then, the best parameter for the wrong model is obtained 

directly by using the wrong model under the expectation of GG3. Furthermore, 

the relative bias (RB) and relative variability (RV) are defined to measure the 

accuracy and precision of the estimated p-th quantile of the product’s lifetime 

distribution for both complete and censored ALT models. 

The rest of this study is organized as follows. Section 2 utilizes some datasets 

appeared in literature to state the motivation of the study. Section 3 addresses 

the effect of model mis-specification and the result of analytical approaches. 

Section 4 presents a simulation study when the sample size is finite. Section 5 

investigates the effects of model mis-specification on the real case study. Finally, 
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some concluding remarks are made in Section 6. All the technical details are 

given in the Appendices. 

2 Motivating Examples and Problem Formulation 

Nowadays, the product’s lifetime is highly reliable. In this case, an ALT 

experiment shall be conducted and apply an extrapolation for estimating the 

lifetime information under normal stress condition. 

Reviewing the application of Weibull and Lognormal for the aforementioned 

cases in Section 1 clarifies how the effect of model mis-specification could be 

serious in practice. For instance, in the study of Basavalingappa et al. (2017), 

since the probability of failure for integrated circuit (IC) devices is 1 in a billion or 

lower, the tail quantiles are of extreme importance in lifetime analysis of IC 

manufacturing. Therefore, Lognormal and Weibull are performed significantly 

different, even with the small percentage of failure. Hereupon, conducting the 

accelerated test, the effect of model mis-specification under the normal stress 

level will cause a significant effect on the prediction of the product’s lifetime. 

Another notable example is addressed in the study of Pasari (2018). Due to the 

rare events and time-dependent behavior of high magnitude earthquakes, the 

effect of model mis-specification on predicting the inter-occurrence times of high 

magnitude earthquakes is very significant. As reported in Pasari (2018), the 

wrong selection of suitable distribution effects on predicting the event time with ±

50 years variation which is not negligible. 

As reported by Singh et al. (2018), Weibull or Lognormal can be used to fit the 

strength and damage tolerance of Silicon carbide (SiC) fiber-reinforced SiC 

matrix composites as one of the high consistent components in a high-

temperature environment. High consistency of SiC-SiC makes it difficult to 

observe the damage and fatigue data and predict the probability of failure of this 

composite in high temperature. Therefore, consider the application of SiC-SiC in 
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a hypersensitive industry such as nuclear power plant, the effect of model mis-

specification is very significant and vital for damage or fatigue prediction of SiC-

SiC composite. 

In this study, to investigate the effect of model mis-specification, a 3-parameter 

generalized gamma lifetime distribution, 3( , , )GG   
, is adopted as follows: 

   

1

0
, , ,

0 0

t t
exp t

f t

t

 


      

     
             




 (1) 

where 0  , is a scale parameter, 0   and 0   are shape parameters, and 

( )  is the gamma function of κ,: 

1

0
( ) .ss e ds


     (2) 

Note that when κ = 1, GG3 turns to the Weibull distribution and for   , GG3 

tends to be the Lognormal distribution. The GG3 covers many commonly used 

distributions and is particularly unable of estimating the MLE due to lack of 

closed-form expression and the existence of local MLEs (see 

Prentice (1974), Farewell and Prentice (1977)). 

Therefore, the objective of this study is if the data originally comes from a GG3 

distribution, but wrongly fitted by Weibull or Lognormal, then “what is the effect of 

model mis-specification on the estimating the properties of product’s lifetime 

distribution?” To clarify this situation, consider the ball-bearing data of Lieblein 

and Zelen (1956) has true distribution as 3( 10.22, 1.55, 0.61)GG     
. This 

data set can be wrongly fitted by Weibull or Lognormal distribution, due to the 

close performance of both distributions to GG3, as shown in Figure 1 and 2. 

Therefore, a simulation study is used to address the effect of model mis-

specification. For each simulation trial, a random sample of sizes 10,15,25,50n   
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is generated from GG3 distribution and then fitted by Weibull and Lognormal 

distribution. 

Let 
ˆ ( )pnlt wrong

 denotes the result of l-th simulation trial for the estimated p-th 

quantile, based on the wrong lifetime model under sample size n where the 

incorrect lifetime model is either Weibull or Lognormal distribution. Then, the 

empirical RB and RV for estimated p-th quantile are defined as follows, 

respectively: 

 
   

 
3

3

,
pn pn

pn

pn

t wrong t GG
K wrong

t GG


  (3) 

and 

 
   

   

2

3

1

2

3 3

1

ˆ

,

ˆ

L

pnl pn

l

pn L

pnl pn

l

t wrong t GG

wrong

t GG t GG

 



  


  




 (4) 

where 1

1
ˆ

L

pn pnl

l

t t
L 

 
. 

According to the L = 1000 simulation trails, the results of RB(RV) under various 

combinations of p-th quantile and sample size n, are shown in Table 1. 

The corresponding results reveal that the effects of model mis-specification are 

not negligible, especially for the tail quantiles. 

2.1 Assumptions 

Consider in an ALT experiment, S0 denotes the used-stress level, Sj defines the 

applied-stress level, Sm is the predetermined upper bound on S, and 

0 1 ... ...j mS S S S    
 implicate the environments of m higher level of testing 

stress. Therefore, for 
 

1

m

j j
S

  test levels, assume that 
 

1

m

j j
n

  sample lifetime data 
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are selected to perform ALT experiment with 
 

1

m

j j
c

  as the corresponding 

censoring ratio. 

To define 
 

1

m

j j
n

 , let n be the total sample size and 1,..., m 
 be the sample size 

allocation properties, where 

1

1, 0 1
m

j j

j

 


    (5) 

then 

* .j jn n   

In this study, the case of m = 3 is selected and ratio 4:2:1 is adopted for sample 

size allocating under low:middle:high stress levels, respectively. 

To define the product’s lifetime distribution under ALT experiment, let Tij be the i-

th observation (lifetime data) under applied stress level, Sj, for 
1 ,1ji n j m   

. 

Assume that 
( )ijlog T

 follows a Log-location-scale distribution as follows: 

   0 ,ij j ijlog T S    (6) 

where μ is location parameter, σ is scale parameter, and 

   0 00 01 ,j jS X S     (7) 

and γ00, γ01 are unknown intercept and slope parameters of location parameter μ

0, respectively. In addition, 

1
( )

273.15
j

j

X S
S




 (8) 
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is considered as the applied Arrhenius reaction model in Balakrishnan 

et al. (2017) for designing the ALT experiment in this study. 

The standardized stress level of Sj for 1 j m  , named xj can be defined as: 

0

0

( ) ( )
.

( ) ( )

j

j

m

X S X S
x

X S X S





 (9) 

Note that the standardized used-level and standardized upper bound on S are 

0 0x 
 and xm = 1, respectively. Regardless the design of ALT test, equation (9) 

remains the same for all ALT designs that meet the 0( ) ( ) ( )m jX S X S X S 
 

condition, and can be changed to 

0

0

( ) ( )
.

( ) ( )

j

j

m

X S X S
x

X S X S





 (10) 

where 0( ) ( ) ( )j mX S X S X S 
. 

For other designs of ALT experiments, one can refer to Kececioglu 

and Jacks (1984). 

Now, let ϵij be the white noise for i-th observation under j-th stress level with the 

standard cumulative distribution function (CDF), 
 ~ ·ij 

, then: 

log ( )
( ) ,

ij

ij j

T ij

t x
F t





 
   

 (11) 

where 

0 1( ) ,j jx x     (12) 

and γ0 and γ1 are the re-parameterizations of γ00 and γ01. 
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Consider the 
( )ijlog T

 is the log of lifetime data with censored time 
( )jlog 

, the 

equivalent log-location-scale lifetime models of GG3, Weibull, and Lognormal are 

called Log Gamma, Smallest Extreme Value (SEV), and Normal distribution, 

respectively. The corresponding models are denoted by MLG, MSEV, and MNor, 

respectively as follows: 

  0 1: log( ) ~ LG , , ,LG ij g j g g j gM T x x       (13) 

  0 1: log( ) ~ SEV , ,SEV ij e j e e j eM T x x      (14) 

and 

  0 1: log( ) ~ Nor , .Nor ij N j N N j NM T x x      (15) 

where g, e, and N are subscripts for parameters of Log Gamma, SEV, and 

Normal distribution, respectively. 

For log-location-scale distribution, the p-th quantile of lifetime data is denoted by 

0( )pt x
 under the standardized stress x0 as follow: 

 1

0 0( ) exp ( ) ( )pt x x p      (16) 

Therefore, the probability of observing failure at standardized stress xj by 

censoring time 
( )jlog 

 can be described by: 

log ( )
.

j j

j

x
p

 



 
   

 (17) 

3 The Effects of Model Mis-specification 

As it is mentioned earlier, this study aims to define the RB and RV of the 

estimated p-th quantile of the product’s lifetime distribution for both complete and 

censored ALT models to measure the accuracy and precision when the true 
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model is GG3 but wrongly fitted by Weibull or Lognormal. Following steps identify 

the procedure of study the effects of model mis-specification on RB and RV for 

ALT complete and censored data: 

Step 1: Find the asymptotic distribution and best parameter setting of the wrong 

distribution with respect to the true model (Section 3.1). 

Step 2: Derive the RB and RV of a function of a random variable (e.g., p-th 

quantile in this study) under ALT complete and censored data (Section 3.2, and 

3.3). 

3.1 Asymptotic Distribution of Estimators 

In this section, the results of White (1982) are used to derive the asymptotic 

distribution of the MLEs for referring to the properties of the underlying mis-

specified model. These incorrect MLEs are called quasi-MLEs (QMLEs). In the 

following, the vector of MLEs and QMLEs under the model Mk are shown as kθ  

and 
ˆ

kθ , respectively. 

Let ( )k k  be the subscript when the correct (fitted) model is used, where k k  . 

Let Mk and kM   be the correct and fitted models, respectively. Assume 
( )k k θ

 

and 
( )k k  θ

 be log-likelihood functions under the model Mk and kM  , 

respectively. The Kullback-Leibler distance (Joyce 2011) utilizes the expected 

value with respect to the true model 
( )

kME
 to measure the distance between the 

correct and fitted models as follow: 

 ( , ) ( ) ( )
kk M k k k kI E    

k
θ θ θ θ  (18) 

For fixed kθ , let 
*

k θ  be the value of k θ  that minimize the expected negative 

likelihood 
 ( )

kM kE  θ
 with respect to Mk: 

 * argmin ( ) .
k kk M k kE
  
   θ

θ θ  (19) 
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where 
*

k θ  is called asymptotic value of k θ , and the best parameter setting under 

kM   with respect to the true model. Therefore, when the true model comes from 

Mk, by theorem 3.2 in White (1982), and  method (Oehlert 1992), the 

asymptotic distribution of k θ  as the QMLE of k θ  is: 

    * *0, , ,
d

k k k k kn Normal C     θ θ θ θ θ  (20) 

where 

   
1 1

( , ) ( , ) ( , ) ( , ) ,k k k k k k k kC A B A
 

   θ θ θ θ θ θ θ θ  (21) 

is the variance-covariance matrix of QMLE, and 

2 ( )
( , )

k

k k

k k M

k r k s

A E
 

 



 

   
      

θ
θ θ  (22) 

and 

( ) ( )
( , ) ,

k

k k k k

k k M

k r k s

B E
 
   



 

   
      

θ θ
θ θ  (23) 

are expected values of partial derivatives of the log-likelihood function of the 

correct model with respect to the fitted model, where k r   is the r-th element of 

k θ . 

The elements of matrices A and B when the true distribution is GG3 and 

mistreated by Weibull or Lognormal is derived in Appendix A (see supplementary 

materials) 

3.2 RB and RV of Function of QMLE 

For a given function g, let ( )kg θ  be the QMLE of 
( )kg θ

, then the asymptotic bias 

term for ( )kg θ  is defined as: 
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*ABias[ ( ) | ] ( ( )) ( ) ( ) ( ).
k

k kk M k k kg M E g g g g     θ θ θ θ θ  (24) 

Therefore, the RB of g under the model mis-specification is: 

ABias[ ( ) | ]
.

( )

k k

k

g M
RB

g




θ

θ
 (25) 

Similarly, let 
[ ( ) | ]k kAvar g Mθ

 be the asymptotic variance and 
( ( ) | )k kAMSE g Mθ

 

be the asymptotic mean square error of ( )kg θ  where Mk is the true model. Then, 

2( ( ) | ) [ ( ) | ] (ABias[ ( ) | ]) .k k kk k kAMSE g M Avar g M g M   θ θ θ  (26) 

Therefore, the RV of g under the model mis-specification is: 

( ( ) | )
,

( ( ) | )

k k

k k

AMSE g M
RV

AMSE g M




θ

θ
 (27) 

where 
( ( ) | ) [ ( )]k kkAMSE g M var gθ θ

. 

3.3 RB and RV of p-th Quantile under ALT Experiment 

Consider the function g as the p-th quantile of a lifetime distribution which 

satisfying the notations and assumptions in Section 3.2. 

Let Zijk be the standardized log lifetime, and ζijk be the standardized log censoring 

time under the model Mk for the i-th sample of j-th stress level where 
1 ji n 

, 

and 1 j m  , calculated as: 

log ( )ij k j

ijk

k

T x
Z






  (28) 

and 

log ( )
.

j k j

ijk

k

x 





  (29) 
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Let (·)  and (·)  be the standard probability density function (PDF) and CDF 

under Mk, respectively. Then, the corresponding log-likelihood function for model 

Mk is: 

 
1 1

1
log ( ) (1 ) log 1 ( ) ,

jnm

k i k ijk i jk

j i k

z   
 

     
            

   (30) 

where 

1 log( ) log( ), if log( ) is observed

0 log( ) log( ), if log( ) is censored

ij j ij

i

ij j ij

T T

T T







 


 (31) 

Applying the models in (13), (14) and (15), the corresponding log-likelihood 

function, the expected negative log-likelihood, the expected value where j 
 

and the p-th quantile of the incorrect model with respect to the true model under 

the ALT test are summarized in Table 2. 

For the 
( ) ( )pg t

k k
θ θ

, Equation (25) turns to: 

*( ) ( )
.

( )

p k p k

k

p k

t t
RB

t








θ θ

θ
 (32) 

The derivation of tp with respect to  0 1, ,k   θ
 is: 

1
( )

1, , ( ),
p k

j k p k

k

t
x t


    

θ
θ

θ
 (33) 

and the asymptotic variance is: 

 1 * 11
( ( ) | ) ( ) 1, , ( ) ; 1, , ( ) ( ).kp k p k j k k k k j k p kAvar t M t x p C x p t

n

 
      

          θ θ θ θ θ θ  (34) 

Therefore, Equation (27) reduces to: 
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2
*( ( ) | ) ( ) ( )

( ( ))

kp k p k p k

k

kp

Avar t M t t
RV

var t

 



   


θ θ θ

θ
 (35) 

To illustrate how the theoretical approach can be computed from sample data, 

consider a 3-level ALT experiment with the standardized stress levels at low, 

medium and high rates as 
( , , ) (0.25,0.5,1)L M Hx x x 

. 

Assume that the underlying lifetime distribution follows a GG3 with 

( ) 1.55 0.8 , 0.61j jx x   
 and 10.22  . Now, if the Weibull and Lognormal are 

wrongly used to fit this ALT model with 1 2 3( , , ) (4 / 7,2 / 7,1/ 7)   
, then their 

corresponding best parameter-setting can be obtained directly via minimizing the 

expected negative log-likelihood where j 
 (P3 in Table 2). The results are 

shown in Table 3. 

Figure 3 and 4 show the theoretical results of RB and RV for p-th quantile under 

various settings of p for Weibull and Lognormal distributions, respectively. 

Comparing the quantiles, if the true distribution is GG3 and the fitted distribution 

is incorrect, there could be a significant amount of bias and variation in 

estimating tail quantiles. The results from Figure 3 show that the RB of tail 

quantiles are negative (underestimate) for Weibull distribution and are positive 

(overestimate) for Lognormal distribution. In addition, the effect of model mis-

specification is more significant for Weibull distribution than the Lognormal 

distribution in this example. 

The shape parameter, κ, of GG3 plays an important role in model mis-

specification. Derived by this fact the behavior of Lognormal distribution was 

more close to GG3 than Weibull in Figures 3 and 4 due to the setting of 10.22  . 

Therefore, to investigate the effect of shape parameter on estimating the 

accuracy and precision of the product’s p-th quantile, the result of the best 

parameter setting under various combinations of the parameter κ is verified. The 

result of ABias and AMSE are depicted in Figures 5 and 6, respectively. As it was 
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expected when κ = 1, both ABias, and AMSE of Weibull distribution are equal to 

zero. The results show that by increasing the value of κ, both ABias and AMSE of 

Weibull are increasing while Lognormal distribution has the decreasing pattern, 

and apparently for 10  , Lognormal has a better performance than the Weibull 

distribution. 

4 Simulation Study 

4.1 The Case of Complete Data 

The results in Section 3 are based on the infinite sample property of model mis-

specification. In practical application, the sample size cannot be infinite. 

Therefore, the Monte Carlo simulation experiment is utilized to investigate the 

effect of the sample size on estimating the penalty of choosing incorrect models. 

It is expected that by increasing the sample size, QMLE’s results convergence to 

the theoretical result in Section 3.2. Similar to (3), for the simulated data the 

empirical RB for p-th quantile is: 

( ) ( )

( )

k gp p

p

gp

t t
K

t

 


θ θ

θ
 (36) 

where regardless the distribution 1

1 L

p lp

l

t t
L 

 
, and tlp denotes the p-th quantile for 

the l-th observation of L simulation trails. Subsequently equivalent to (4), the 

empirical RV is: 

2

1

2

1

( ) ( )

.

( ) ( )

L

k glp p

l

p L

g glp p

l

t t

t t









 
 



 
 





θ θ

θ θ

 (37) 

The Monte Carlo simulation is investigated to see how effectively the asymptotic 

behavior matches the sample size behavior of the observed bias and variance. 

For this purpose, “flexsur”, an R package for fully-parametric modeling of survival 
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data is employed to fit the lifetime distribution which offers two different versions 

of GG3 distribution, “gengamma.orig” for an original parameterization in (1) and “

gengamma” for the stable parameterization form in Prentice (1974). 

The data simulation steps are as follow: 

1. Generate (35,70,140,280)n   data set based on the 

3( 10.22, ( ) 1.55 0.8 , 0.61)j jGG x x     
 and for each stress level under 

test plan 4:2:1, 
( , , ) (0.25,0.5,1)L M Hx x x 

 

2. Fit models MLG, MSEV, and MNor to the new data exclusively. 

3. Compute the p-th quantile (P4 in Table 2) where parameters are estimated 

from P3 in Table 2, for each model under the applied-stress level, xj, for 

1,...,100p  . 

4. Replicate steps 1-3 for L = 1000 times. 

5. Estimate RB in (36) and RV in (37). 

6. Iterate steps 1-5 for different sample size according to Table 4. 

The simulation results of observed RB and RV for complete data are given in 

Table 5. The result is compared with the theoretical outcome. It was expected 

that simulation results converge to theoretical ones for large sample size, which 

is observable in Table 5. The pairwise plots of RB and RV for Weibull and 

Lognormal over all quantiles for the case of complete data are shown in 

Appendix C (see the supplementary materials). From the results it can be seen 

that the maximum RV of Lognormal is extremely smaller than the Weibull due to 

the value of 10   which validates the convergence of Lognormal to GG3. 

The results show that if the distribution is mis-specified, there could be a 

significant amount of bias in estimating the tail quantiles. The outcome of the 

simulation experiment is consistent with analytical results from Figure 3 and 4. In 

addition, RB and RV have a similar pattern in which only the lower tail quantiles 

are significantly enlarged for Weibull distribution. Although in comparison with 
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Weibull distribution the effect of RB and RV for Lognormal distribution is 

negligible, bias and variation are increased for both tails of Lognormal 

distribution. This behavior was predictable from comparing density plots in Figure 

1. The results answer how large sample size is sufficient to have an in-control 

bias and variance from the mis-specified model. Typically, the effect of sample 

size is entirely negligible for RB, and Lognormal is a more appropriate model 

than the Weibull in this experiment due to the value of κ. However, the RV 

significantly departs from 1 when the sample size becomes larger. 

4.2 The Case of Censoring Data 

Consider Type I censored data (Chandra and Khan 2013) in order to address the 

effect of the censoring ratio on the model mis-specification under ALT 

experiment. Assume that ηj is the censoring time under the j-th stress level for j = 

1, 2, 3 indicating low, medium, and high stress levels. The censoring ratio is 

defined as follow: 

MTTF

j

j

j

c


  (38) 

where 
MTTFj  is the product’s mean lifetime to failure under stress level j. 

The data simulation steps for censored data are as follow: 

1. Use the simulated uncensored data in Section 4.1. 

2. Choose the censoring ratio 
2,1.6,1.2jc 

 for j = 1, 2, 3 to create the 

censored data, and repeat the following steps for each stress level 

exclusively. 

3. Fit model MLG, MSEV, and MNor to the new censored data exclusively. 

4. Compute the p-th quantile (P4 in Table 2) where parameters are estimated 

from P2 in Table 2, for 1,...,100.p   

5. Replicate steps 1-4 for L = 1000 times. 

6. Estimate RB in (36) and RV in (37). 
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7. Iterate steps 1-6 for different sample size according to Table 4. 

The pairwise plots of RB and RV for Weibull and Lognormal over all quantiles 

and different sample sizes for the case of censored data are shown in Figures 7 

and 8, respectively. 

Figure 7 demonstrates that RB is reduced by increasing the censored points for 

Weibull distribution. In general, for a model with lower censoring ratio by 

decreasing sample size n, Weibull can fit the data better than the Lognormal. 

This is due to the nature of Weibull and Lognormal distributions. Weibull can 

present the skewness of log-data, while Lognormal is symmetrical for log-data. 

Therefore, with more censoring points data is skewness to the left and Weibull is 

performed better than Lognormal especially in the upper tail quantiles. The 

increasing pattern of RB and RV by the growth in censoring ratio for Lognormal 

can verify this phenomenon. In addition, as it is demonstrated in Figure 2 

Lognormal is unsteady in estimating the upper tail quantiles. This behavior is due 

to the advantages of Weibull distribution for having lighter tails and therefore 

smaller kurtosis in comparison with the log-normal distribution (Rousu 1973). 

Other notable findings from Figure 7 are as follows: 

Data sets with low kurtosis tend to have light tails 

1. Except for a few cases, the RB for Lognormal (Weibull) case is positive 

(negative). It means that the p-th quantile of Lognormal (Weibull) is over-

estimated (under-estimated). 

2. In general, the absolute RB for the Weibull distribution is slightly smaller 

than Lognormal distribution. 

3. Regardless of the sample size, for all cases, the RB of Weibull for tail 

quantiles decreases as censoring ratio decreases. For the case of 

Lognormal, only the RB of upper tail quantiles decreases as the censoring 

ratio increases. 
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4. Regardless of the value of cj, for all cases, the RB of lower tail quantiles of 

Lognormal distribution stays unchanged. Furthermore, under the same 

sample size, the RB of upper tail quantiles for Lognormal distribution is 

more significant than Weibull, more obviously for the smaller value of cj. 

Subsequently, Figure 8 represents the result of RV and supports the outcomes of 

RB in Figure 7. Figure 8 shows how the variation for tail quantiles is changing by 

reducing cj, such that the higher quantiles have more significant variation than 

the lower ones, more specifically for Lognormal distribution. This is in contrast 

with the result of complete data in Section 4.1, such that for complete data the 

variation at lower tails is more significant than the higher ones. General findings 

from Figure 8 are as follows: 

1. For the case of Lognormal (Weibull) distribution, the RV of lower and 

upper tail quantiles increases (decreases) when the censoring ratio 

decreases. 

2. For the case of Lognormal, the RV of the upper tail quantiles is increased 

significantly by decreasing the censoring ratio. 

3. For both Weibull and Lognormal distributions, the RV of lower and upper 

tail quantiles decreases when the sample size increases. While for the 

case of complete data, RV of lower tail quantiles increases when the 

sample size increases. This is due to the increase in “between distribution 

variation” and the decrease in “within distribution variation” by the growth 

of sample size for complete data. However, increases in sample size for 

censored data is induced higher similarity among data and therefore lower 

variation for both within and between distribution situations. 

General speaking, the simulation study shows that the effects of model mis-

specification for the ALT experiment of censored data on the tail quantiles are 

significant when the sample size and censoring ratio are not large enough. 

5 Beyond the Effects of Model Mis-specification on Product Lifetime 
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In Section 4, through the simulation study, it is shown how critical is the effects of 

model mis-specification on product lifetime, especially for the tail quantiles. 

However, in the larger stage of the product life cycle, the effect of model mis-

specification would be more critical if the lifetime analysis in operation stage did 

not estimate correctly. Some of these stages are 1) product service and warranty 

period estimation, 2) environmental testing under the customers’ use condition, 

3) inventory management, shelf-life extension, and batch trading, 4) maintenance 

planning/condition-based maintenance, and 5) damage analysis and fatigue 

testing. 

For demonstrating the broader effects of model mis-specification in real 

applications, warranty planning is selected in this section for further investigation. 

Warranty is an important sales feature for many products. Manufacturers usually 

want to predict the warranty cost as early as possible for various purposes. This 

can be controlled by using the ALT data from the early stages of the product life 

cycle (McSorley et al. 2002). When data from the early stages of the product life 

cycle is used to establish warranties and service policies, the interests of the 

producer and consumer should be balanced. From the standpoint of safety, long 

projected service life could harm the consumer. Establishing a short warranty 

period hurts revenue. To estimate an affordable warranty length, manufacturers 

often use ALT test for designing different warranty lengths under the customers’ 

use condition (Yang 2010). 

In addition, increasing use-rate during the warranty period is an effective index 

on ALT data. To illustrate this situation, the scenario for simulating warranty data 

in Blischke et al. (2011) is considered, such that the standardized use-rate for 

( , , )L M Hx x x
 sets as (0,0.5,1) , with corresponding (7, 14, 56) sample size of failure 

data and a total of 100 records at each rate. In addition, it is considered that data 

are originally come from 3( 9.9 , 1, 1)jGG x     
 distribution. Regarding the 

value of κ = 1, Weibull distribution as the most comparable distribution is 
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considered for fitting the data. Figure 9 illustrates the RB and RV for the case 

when Weibull distribution is selected to fit the data while GG3 is the true 

distribution for 365 days of simulated data. The main finding in Figure 9 shows 

that even when κ = 1, and Weibull tends to GG3 distribution, still there is a 

significant effect of model mis-specification on RB and RV. The main issue to fit 

the GG3 data when κ = 1 with Weibull distribution is that there is a slight bias with 

respect to κ which only large sample size can decline it (for more information one 

can refer to Hager et al. (1971)). 

Table 6 summarized the MTTF for each use-rate level under the Weibull and 

GG3 distributions. The result shows that there is almost 10% bias in estimating 

the product lifetime when Weibull distribution wrongly fits the data. This situation 

when it comes under the warranty policy, estimating warranty length and cost 

estimation would be even more tangible and critical for decision makers. 

6 Conclusion 

This paper investigated the impact of model mis-specification of ALT plan under 

the GG3 distribution for both censored and complete data. The asymptotic 

distribution of p-th quantile of the product’s lifetime under mis-specified 

distribution is derived. Furthermore, a simulation study based on empirical data is 

carried out to evaluate the penalty of the model mis-specification. From the 

results, it is observed that: 

1. The RB of tail quantiles are significantly overestimated (underestimated) 

when GG3 is wrongly fitted by Lognormal (Weibull) distribution, and the 

variability of corresponding tail quantiles is significantly enlarged. 

2. The prediction of a product’s p-th quantile for the large enough sample 

size converges to the theoretical result. 

3. The effect of sample size could be negligible on RB for both complete and 

censored data, and both Weibull and Lognormal distributions. 
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4. The effect of sample size could be negligible on RV for the case of 

Lognormal distribution with complete data. 

5. By decreasing the censoring ratio, Weibull is a better model than 

Lognormal for fitting the GG3’s data due to more skewness of data to the 

left. This result is validated by Kim and Yum (2008) for moderate to 

heavily censored cases if the sample size exceeds a certain threshold. In 

general, when data has skewness Weibull distribution is a preferred 

choice. 

6. The RV for complete data increases when the sample size increases, 

while for censored data decreases when the sample size increases. 

7. Consequently, the RV of lower quantiles is significantly enlarged for 

complete data, more specifically for Weibull distribution. However, the RV 

of higher quantiles is significantly enlarged for censored data, more 

specifically for Lognormal distribution. 

At the end of this section, the following issues are worthwhile for future research: 

 In section 3, for different values of κ, due to the complexity involved in 

estimating the 
*
θ  under censored data, only the mis-specification problem 

under the case of complete data is addressed. Obviously, under the type-I 

censoring scheme, study the effect of the parameter κ on model mis-

specification shall be a challenging issue for future research. 

 In practical applications, there are situations that the true distribution 

comes from a mixture distribution. However, it may wrongly fit by a 

unimodal lifetime distribution. Therefore, how significant is the effect of the 

model mis-specification when the true distribution is mixture distribution 

but is wrongly fitted by unimodal distribution, should be an interesting 

research topic. 

 Since Weibull (Lognormal) distribution often underestimates 

(overestimates) the tail quantiles, investigating on a model that combine 

these two distributions to get a more accurate quantile estimation it is 
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worth. Therefore, a mixture of Weibull-Lognormal distribution that can 

explain both multiplicative effect behavior of Brownian motion through 

Lognormal distribution and additive effect behavior of non-homogeneous 

Poisson process through Weibull distribution could be an interesting topic 

to be studied as two-component distribution for modeling lifetime data. 

 When the sample size is large enough the bias is not a concern for 

practitioners since estimators are approximately unbiased. In this 

situation, when the fitted model turns out to be incorrect, finding a robust 

test plan that reduces the bias and inefficiency of model mis-specification 

is necessary. 
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Fig. 1 Histogram and density plot of ball-bearing data when is fitted by GG3, 

Weibull, and Lognormal distributions. 

 

Fig. 2 Quantile plot of ball-bearing data fitted by Weibull (red/dash), and 

Lognormal (black/solid) distributions. 
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Fig. 3 The estimated RB from theoretical result. 

 

Fig. 4 The estimated RV from theoretical result. 

 

Fig. 5 ABias of Lognormal (black/dash) and Weibull (red/solid) under different 

values of κ. 

 

Fig. 6 AMSE of Lognormal (black/dash) and Weibull (red/solid) under different 

values of κ. 

 

Fig. 7 RB of Lognormal (black/dash) and Weibull (red/solid), under different 

settings of censoring ratio and sample size, where X-axis indicates the p and Y-

axis the RB. 

 

Fig. 8 RV of Lognormal (black/dash) and Weibull (red/solid), under different 

settings of censoring ratio and sample size, where X-axis indicates to the p and 

Y-axis to the RB. 

 

Fig. 9 RB and RV of Weibull distribution for simulated warranty data. 

 

Table 1 RB (RV) of L = 1000 simulated data generated from 

3( 10.22, 1.55, 0.61)GG     
.  
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Sample 

size 

Distributio

n Quantile  

  0.05  0.1  0.5  0.9  0.95  

10  Weibull  

-

0.243(3.16)  

-

0.144(1.76) 

0.033(1.3

6) -0.018(1.2)  

-

0.053(1.22) 

 

Lognorma

l  0.056(1.27)  0.023(1.11)  

-

0.017(1.0

1) 0.03(1.14)  0.059(1.3)  

15  Weibull  

-

0.239(3.77)  

-

0.139(1.96) 

0.038(1.4

1) 

-

0.013(1.22) 

-

0.049(1.25) 

 

Lognorma

l  0.051(1.26)  

0.0199(1.0

8) 

-

0.02(0.99

6) 0.027(1.11)  0.055(1.29)  

25  Weibull  

-

0.229(6.15)  

-

0.128(2.66) 

0.052(1.6

9) 

0.0004(1.2

8) 

-

0.036(1.32) 

 

Lognorma

l  0.047(1.38)  0.016(1.11)  

-

0.024(1.0

6) 0.023(1.15)  0.051(1.43)  

50  Weibull  

-

0.228(10.7

9) 

-

0.127(4.05) 0.054(1.9)  

0.0017(1.2

3) 

-

0.038(1.37) 

 

Lognorma

l  

0.0466(1.5

9) 

0.0156(1.1

5) 

-

0.025(1.1

4) 

0.0226(1.2

2) 

0.0508(1.6

8) 

Table 2 Properties of mis-specified distribution, 
1( , )Q p

 is the inverse of a 

regularized incomplete gamma function, ( )   is the digamma function, ( )   is 

the trigamma function, P1 is denoted to the “Log-likelihood Function”, P2 to the “

Expected Negative Log-likelihood”, P3 to the “Expected Negative Log-likelihood (
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j 
)”, and P4 to the p-th quantile (The result of P2 and P3 are derived in 

Appendix B, see supplementary materials). 
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Model 

(wrong 

/true)  

Prope

rties  Mathematical Expression  

MLG/MLG P4 
   11 ( ) log ( , )( ) ( )

( )
g j gg j g LG

x Q px p

p gt e e
   

      θ
 

Table 3 Best parameter setting for mistreated distributions.  

Distribution 
*

0  
*

1  
*  

SEV  4.42  -0.799  0.48  

Normal  4.167  -0.8  0.526  

Table 4 Re-partition the sample size between each stress level with test plan 

4:2:1.  

stress  sample size 

 35  70 140 280 

Low  20  40 80  160 

Medium 10  20 40  80  

High  5  10 20  40  

Table 5 The simulation result of RB (RV) for the Weibull and Lognormal under 

the case of complete data.  

Sample size  

Distributi

on Quantile  

  0.05  0.1  0.5  0.9  0.95  

35  Weibull  

-

0.25(4.53)  -0.15(2.22)  

0.0397(1.3

6)  

-

0.0005(1.

17) 

-

0.034(1.1

6)  

 Lognorm 0.0489(1. 0.0169(1.1 - 0.0258(1. 0.055(1.3
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Sample size  

Distributi

on Quantile  

al  29) )  0.0247(1.0

37) 

14) 5)  

70  Weibull  

-

0.249(8.2

9)  -0.146(3.5)  

0.0466(1.6

1)  

0.006(1.2

5)  

-

0.028(1.2

6)  

 

Lognorm

al  

0.0466(1.

43) 

0.0151(1.1

2)  

-

0.025(1.08

6)  

0.0241(1.

18) 

0.053(1.5

2)  

140  Weibul  

-

2.47(14.2

4)  

-

0.143(5.47

)  0.05(1.94)  

0.0094(1.

27) 

-

0.0249(1.

32) 

 

Lognorm

al  

0.0455(1.

61) 

0.0141(1.1

28) 

-

0.026(1.15

)  

0.0229(1.

22) 

0.052(1.7

7)  

280  Weibull  

-

0.246(28.

34) 

-

0.143(10.1

9) 

0.0501(2.4

6)  

0.0095(1.

29) 

-

0.0248(1.

43) 

 

Lognorm

al  

0.045(2.0

69) 

0.0136(1.1

6)  

-

0.0267(1.3

2)  

0.0224(1.

33) 

0.051(2.3

6)  

Theoretical 

Result Weibull  

-

0.25(49.8

4)  

-

0.14(17.55

)  

0.051(3.38

)  0.01(1.39)  

-

0.024(1.7

7)  

 

Lognorm

al  

0.044(2.7

6)  

0.013(1.21

)  

-

0.027(1.54

)  

0.022(1.4

8)  

0.051(3.2

8)  
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Table 6 MTTF in days (years) of Weibull and GG3 distributions for simulated 

warranty data under different use-rate levels. 

Use-rate Level Distribution 

 Weibull  3
GG

 

Low  12367 (33)  11190 (30)  

Medium  7501 (20)  6787 (18)  

High  4549 (12)  4116 (11)  
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