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A B S T R A C T   

Many studies of animal distributions use habitat and climactic variables to explain patterns of observed space 
use. However, without behavioral information, we can only speculate as to why and how these characteristics are 
important to species persistence. 

Animal-borne accelerometer and magnetometer data loggers can be used to detect behaviors and when 
coupled with telemetry improve our understanding of animal space use and habitat requirements. However, 
these loggers collect tremendous quantities of data requiring automated machine learning techniques to identify 
patterns in the data. Supervised machine learning requires a set of training signals with known behaviors to train 
the model to identify the unique signal characteristics associated with each behavior. In contrast, unsupervised 
approaches aggregate unlabeled signals into groups based purely on signal similarity but, without additional 
information, do not identify specific behaviors. 

In this paper, we propose a probabilistic framework for interpreting uncertainty in machine learning tech
niques—the probability profile—and demonstrate how to post hoc identify behaviors within signal groups. We 
assess model performance using a matrix-based measure of dissimilarity. We used a Random Forest (RF) and a 
clustered self-organizing map (CSOM) for comparison and demonstrate the use of a behavioral profile for each 
using a data set of high-frequency accelerometer and magnetometer data collected from 7 captive wild pigs (Sus 
scrofa) moving in a 1 ha outdoor enclosure. 

We found that the RF had more discrimination than the CSOM which had fewer clusters associated with high 
probabilities of a single behavior (>50%). The leave-p-out cross validation statistic of the probability matrix ( L1) 
indicated that there was an average maximum dissimilarity of 20% and 65% between the training and test data 
sets for the RF and CSOM methods, respectively. 

Using a probability profile to describe groups predicted from machine learning allows the variation and error 
inherent in behavioral prediction to be incorporated directly into the model to better reflect the nuances of 
behavior derived from accelerometer and/or magnetometer signals. We discuss the data requirements of this 
framework, demonstrate its application to field data, highlight critical assumptions and caveats, and examine 
how it may be used to generate new ecological inference.   

1. Introduction 

A central aim of ecology is to understand the environmental drivers 

of fitness and the spatial distribution of individuals. Resources (e.g., 
energy, water, nutrients) are required for animal survival, growth, and 
reproduction, thus resource availability is an important predictor of 
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animal fitness (Brown et al., 2004; Matthiopoulos et al., 2015). How 
organisms seek and acquire resources can also be influenced by preda
tion risk (DeCesare et al., 2014), thermoregulation (Street et al., 2016), 
social interactions (Cozzi et al., 2018), and landscape structure (Beyer 
et al., 2016). Therefore, animal spatial distributions are the result of 
interacting and competing immediate and long-term needs (Nathan 
et al., 2008). Species-distribution models use knowledge of habitat and 
behavioral requirements to explain observed patterns of use (Boyce and 
McDonald, 1999; Elith and Leathwick, 2009; Guisan and Thuiller, 
2005); however, individuals may exhibit variation in space use across 
habitat types or utilize a single landscape for multiple purposes 
(Mitchell et al., 2020; Street et al., 2016). Quantifying this variation is an 
important step in understanding animal distributions (Johnson, 1980; 
Matthiopoulos et al., 2015; Nathan et al., 2008; Van Horne, 1982). 

Early studies used direct observation to study animal space use, yet 
many animals are difficult to observe in situ resulting in low sample 
sizes, human-observer bias and/or detection bias (Aebischer et al., 1993; 
Altmann, 1974; Burghardt et al., 2012; Johnson, 1980). Telemetry and 
GPS reduce these issues by allowing animals to be relocated from a 
distance (Cochran and Rexford, 1963; Rodgers et al., 1996). Many ap
proaches exist to associate animal spatial locations with habitat char
acteristics including compositional analysis (Aebischer et al., 1993), 
Resource- and Step-Selection Functions (Boyce and McDonald, 1999; 
Fortin et al., 2005), and Poisson point-process models (Warton and 
Shepherd, 2010). However, these approaches are often coarse in scale 
and thus divorced from the decision-making processes made by animals 
on a per-step basis. Further, these models are correlative, and the 
behavioral drivers of animal presence must be inferred or hypothesized 
from model outputs. Characteristics of movement tracks such as step 
length and turning angle may be used to identify coarse behavioral 
states such as “encamped” and “exploratory” behavioral states, thereby 
improving the accuracy of distribution models (Abrahms et al., 2017; 
Auger-Méthé et al., 2016; Morales et al., 2004), but these states are also 
correlative. For example, a small step length and broad turning angle are 
often associated with an encamped state (Morales et al., 2004), but 
numerous animal behaviors may occur within that state so long as they 
are characterized by similar steps and angles (e.g., fighting, resting, 
area-restricted foraging, etc.). These states may be better thought of as 
“movement modes”, and without additional information such modes 
cannot explicitly identify the behaviors performed in a particular state. 

Animal-borne accelerometer and magnetometer dataloggers mea
sure the change in speed, direction, and orientation of an animal in the 
longitudinal, lateral, and dorso-ventral (X-, Y-, and Z-) axes allowing for 
more detailed behavioral identification (Abrahms et al., 2017; Brown 
et al., 2013; Shepard et al., 2008; Williams et al., 2020; Wilson et al., 
2008). In such a data set, a behavior such as resting may be sensed as a 
lateral orientation with little to no acceleration versus walking as an 
upright orientation with oscillations corresponding to each step (Chak
ravarty et al., 2019; Wilson et al., 2018). However, for many behaviors 
high sampling frequencies are required for detailed resolution of signals. 
While these signals can be distinguished visually, loggers often produce 
tremendous quantities of data requiring automated techniques such as 
decision trees, Random Forests (RFs), and Artificial Neural Networks 
(ANN; Halsey et al., 2009; Nathan et al., 2012; Wang and Xu, 2015; 
Yoda et al., 2001) to identify the behaviors associated with a given 
signal. Much accelerometer research has applied machine learning 
techniques in a supervised manner which requires a priori labeling of 
training signals with known behaviors so that the trained model can 
classify similar signals throughout the full data (Chakravarty et al., 
2020; Leos-Barajas et al., 2017; Nathan et al., 2012). These approaches 
predict the behavior associated with a signal based on its similarity to 
the training signal but are limited to pre-defined behaviors for signal 
identification (Nathan et al., 2012; Wang and Xu, 2015). By contrast, 
unsupervised approaches group the data signals based purely on simi
larity, but biological interpretation of the signal groups identified re
quires additional post hoc attention (Chimienti et al., 2016; Sakamoto 

et al., 2009). This has often been accomplished by using auxiliary in
formation such as depth or altitude to determine the behavior or be
haviors within the groups (Sakamoto et al., 2009). 

This is further complicated by the highly subjective nature of 
behavior and the rarity of standardized ethograms (Stanton et al., 2015). 
Behaviors can be characterized on multiple scales and depending on the 
definition, a single behavior may be characterized by multiple signals 
which may occur in different groups or be so similar in their movement 
characteristics as to be indistinguishable. For example, behaviors such as 
grazing and browsing have different head postures and may produce 
distinct signals, though both may be classified by the analyst as foraging. 
Conversely, a single signal may be shared across many behaviors; 
sniffing and rooting may share a head-down and meandering trajectory 
but have different implications for the animal (one is searching, and the 
other is consuming). Traditionally, a signal group (cluster or class) 
would be defined as its majority behavior and other behaviors that 
produce the same signal determine the error rate (e.g., Nathan et al., 
2012). Although we may see variation in a signal group due to model 
error, this can be assessed through model validation; still, a well vali
dated model that assigns a group its majority behavior ignores much of 
the potential for biomechanical similarity among behavioral signals and 
unrealistically simplifies behavior. The aggregated error may reveal 
interesting behavior-specific trends such as signal commonalities be
tween behaviors or unique signals from a single behavior. Understand
ing the probability of observing one of many possible behaviors (rather 
than a single behavior) given a data signal can lead to new tools and 
insights in theoretical and applied ecology. Here we propose a frame
work to investigate variation in behavioral classification and clustering 
by explicitly characterizing the probability of observing target behaviors 
given a data signal. We demonstrate the construction of stochastic 
matrices for unique data signals (groups) and develop a cross-validation 
procedure with matrix-based validation metrics to evaluate model fit 
and the consistency of predicted behavioral profiles. Our framework can 
be applied using either supervised and unsupervised approaches to 
identify behaviors from biologger data, and we demonstrate the appli
cation and interpretation of outputs using both approaches applied to 
empirical data. 

2. Methods 

2.1. Workflow overview 

Our proposed approach uses two data sources: (1) a time-series of 
accelerometer and magnetometer signals and (2) temporally explicit 
behavioral observations collected simultaneously. Using these two data 
streams our workflow is:  

(1) Combine accelerometer and magnetometer data with behavioral 
observations.  

(2) Process the data to reduce noise and compress the data over a 
time interval.  

(3) Perform a machine learning method to group the signals. 
(4) Construct a matrix of stochastic vectors for the behavioral prob

abilities given data signals.  
(5) Evaluate the predictive accuracy of the matrix given new data. 

There is a large body of literature on the deployment and use of 
accelerometers and magnetometers (Brown et al., 2013; Williams et al., 
2020; Wilson et al., 2008) and on classifying animal behaviors from 
direct observation (Chakravarty et al., 2020; Nathan et al., 2012; She
pard et al., 2008; Wilson et al., 2020; Yoda et al., 2001). As such we do 
not discuss these here and presume that readers have already collected 
the relevant data (Fig. 1). 
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2.2. Data preprocessing 

There are many ways to preprocess accelerometer/magnetometer 
(hereafter, AM) data for analysis, but these often involve calculating 
additional metrics, smoothing and dimensionality reduction. Animal- 
borne accelerometers measure both the dynamic acceleration due to 
animal movement and the static pull of Earth’s gravitational field. Thus, 
many separate the raw acceleration into the static and dynamic com
ponents of acceleration (Shepard et al., 2008). The dynamic acceleration 
can then be used to derive proxies for energy expenditure, such as 

VeDBA, the vectorial sum of dynamic body acceleration, or ODBA, 
Overall Dynamic Body Acceleration (Gleiss et al., 2011; Qasem et al., 
2012; Wilson et al., 2020). But regardless of the input channels chosen 
by the analyst, accelerometer and magnetometer measurements are 
often noisy and require smoothing of data channels to isolate the signals 
from the noise (Viviani et al., 2005). Given an appropriate smoothing 
procedure, smoothed signals may be evenly resampled and subsequently 
subjected to dimensionality reduction (Fig. 2; Appendix VI: 5). Many 
analysts choose a fixed time-period segmentation (e.g., 1 s) and sum
marize the data over this period using running averages and standard 

Figure 1. A time series of accelerometer and magnetometer signals annotated with observed behaviors.  

Figure 2. Preprocessing may include segmenting the data into equal time intervals and smoothing across the intervals to reduce noisy data.  

J.E. Dentinger et al.                                                                                                                                                                                                                            
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deviations (Shepard et al., 2008). Alternatively, principal components 
analysis (PCA) can be used to compress the data but retain the critical 
characteristics of the data (Górecki and Krzyśko, 2012; Appendix VI: 7). 
The processed data are then paired to their respective direct behavioral 
observations by their shared dates and times to construct a time-series of 
dimensionally reduced accelerometer and/or magnetometer signals and 
their associated behaviors. 

2.3. Machine learning for classification or clustering 

We next must group the signals based on common signal structures 
and characterize them in terms of the behaviors observed for each signal 
type. This may be performed using either supervised or unsupervised 
machine learning algorithms, and the analyst may use whatever pro
cedure is most appropriate for their data and hypotheses. Here we 
demonstrate behavioral classification using a common supervised al
gorithm (Random Forests; RFs), and signal clustering using a novel 
application of an uncommon unsupervised algorithm (Clustered Self- 
Organizing Maps; CSOMs). We chose these to demonstrate the robust
ness of the framework to the nuances and complexity of the selected 
procedure. Because RFs are increasingly common in ecology, we do not 
discuss details of RF-based analysis and instead direct interested readers 
to previous literature on these subjects (see Cutler et al., 2007; Ladds 
et al., 2017; Nathan et al., 2012). 

SOMs are a type of unsupervised artificial neural network (ANN) and 
are comprised of two neural layers and their weighted connections 
(Chon, 2011; Kohonen, 2013; Appendix VI:8). Each input neuron, 
associated with an explanatory feature in the data, is exhaustively 
connected to all output neurons (cells on the map; Appendix I: 
Figure S1). Each cell represents data that share similar characteristics, 
and neighboring cells are generally more closely related than to more 
distant cells (Kohonen, 2013; Appendix I: Figure S2). SOMs learn by the 
exposure of data points to a randomly weighted (initialized) network. 
Each exposure for a total of Nepoch rounds results in a winning neuron 
(the weighted neuron that best matches the datapoint). During the 
initial covering phase, both the winning neurons and their neighbors are 
updated each round according to the initial covering (C, the number of 
times neighbors will be updated) and the initial neighborhood radius 
(rinit, which controls how many neighboring neurons are updated with 
the winning neuron). During this phase, the neighborhood radius will 
decrease incrementally from rinit to 1 to minimize overfitting (where r =
1 is only the winning neuron and r = 2 is the winning neuron and its 
immediate neighbors; Jafari-Marandi and Keramati, 2014). After the 
initial covering phase, only the winning neuron will be updated for the 
remaining rounds. Given an index for an updated neuron (i), a winning 
neuron (c), an exposure number (t), an epoch number (T), a model 
associated with neuron i at t (mi(t)), and a data point being exposed to 
the network (x(t)), the model at time t + 1 is: 

mi(t+ 1) = mi(t) + hi(T, c, r) × [x(t) − mi(t)]. (1) 

The sub-function hi(T,c,r) controls the degree of change in the iter
ated model based on the proximity of neuron i to neuron c (the winning 
neuron), the epoch T, and the current neighborhood radius r. 

The number of distinct signal types (cells on the map) is determined 
by the analyst. Determination of the optimal number of cells in the SOM 
for a given data set is the subject of much debate in the literature (Chon, 
2011; Vesanto and Alhoniemi, 2000; Spanakis and Weiss, 2017). While 
there is no hard-and-fast rule, it is recommended to run SOMs with 
multiple grid sizes (Shalaginov and Franke, 2015). Regardless of grid 
size chosen, an objective approach is needed following SOM creation to 
identify the number of unique signal types that occur in the SOM. 
Because adjacent cells of the SOM are more similar than are more distant 
cells (Kohonen, 2013), we use k-means clustering to group similar cells 
into clusters (Jafari-Marandi et al., 2017; Vesanto and Alhoniemi, 2000; 
Appendix VI: 9). This approach produces a new CSOM wherein each cell 
is assigned a cluster based on its similarity to its neighbors and the 

number of clusters (k) to be identified (Fig. 3). Typically, k-means 
clustering requires k to be defined beforehand (Vesanto and Alhoniemi, 
2000), but by using a silhouette analysis (Rousseeuw, 1987) conducted 
on a range of k we can eliminate subjectivity in cluster parameterization. 
Given k total clusters, the silhouette for a given cell i in cluster l is: 

si,l =
[
min
(
bi,j
)
− ai,l

]/
max

[
ai,l,min

(
bi,j
)]
, (2)  

where ai,l is the average distance between cell i and all other cells in l, 
and bi,j is the average distance between cell i and all cells within cluster j 
(j = 1, 2, …, k, excluding l). The average silhouette (sl) indicates within 
cluster similarity with values approaching 1 indicating appropriate and 
− 1 inappropriate clustering (Rousseeuw 1987). Because k-means clus
tering is sensitive to the starting observations at initialization (Vesanto 
& Alhoniemi, 2000), the datapoints must be randomized and the clus
tering repeated Nrep times with sl calculated for each cluster and each 
repetition. The value of k that maximizes the average sl across all Nrep 
trials (kbest) is the optimal number of clusters (Appendix I: Figure S3). 

After fitting the SOM and identifying the optimal number of signal 
types, we produce a clustering scheme whereby data in a SOM cell are 
assigned to the L-th cluster, and observations in l are as similar as 
possible. To determine the behaviors associated with each cluster and 
assess the discriminatory power of the scheme, we pair the observation 
time of the behaviors to the time of each clustered signal to identify the 
behaviors that occur in each cluster. 

2.4. Behavioral probability matrix 

We summarize the results of the classification and clustering pro
cedures by constructing a probability profile describing the probability 
of observing each of the potential behaviors given that the data signal 
was categorized into a signal group (cluster or class). For either the RF or 
CSOM (or both), we may construct a n × k matrix D where each entry is 
the probability of observing the i th behavior in the j-th cluster/class. We 
then use D, the probability profile, as our classifier to maintain the 
signal-specific behavioral variation. This matrix improves upon previous 
attempts at remote identification of animal behavior as it explicitly 
characterizes the probabilities of each behavior given a signal type 
(Nathan et al., 2012). To derive D, we construct a n × k contingency 
table from the behaviorally explicit data (matrix A) describing the 
proportion of each behavior-by-group combination relative to the entire 
data set, i.e. P(behavior and group). The summation of each column in A 
produces a 1 × k vector B→ that describes the probability of observing a 
signal group independent of the behaviors, i.e. P(group), and the sum
mation of each row in A produces a n × 1 vector C→ that describes the 
probability of observing a behavior in the data set independent of the 
groups, i.e. P(behavior). We may calculate D by dividing each entry in 
column j of A by its associated column sum or value in B→ (Fig. 4; Ap
pendix VI:10). The resulting matrix D represents the probability that a 
signal is associated with each behavior given that it was assigned to a 
specific group, i.e. P(behavior|group) (Tables 1 & 2). To extend pre
diction to data for which there are no corresponding direct behavioral 
observations, (i.e. data whose true behaviors are unknown), we expose 
the new data to the model to obtain a class or cluster assignment. 
Assuming the training data is representative of new data, we can use D 
from the original data to approximate the unknown profile Dþ. 

2.5. Model validation 

To test model performance and assess whether D from the original 
data approximates the unknown profile Dþ, we must perform model 
validation. Validation is conducted using a resampling exercise whereby 
data with corresponding direct behavioral observations (hereafter 
termed the known behavioral data set) are randomly subsetted into test 
(holdout) and training (total excluding holdout) data sets (James et al., 
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Figure 3. A clustered self-organizing map (CSOM) of wild pig (Sus scrofa) AM data with k=9 clusters. Clusters are groups of related cells in the self-organizing map.  

Figure 4. An example Matrix D (the probability profile) calculated by dividing matrix A (the proportional confusion matrix or matching matrix) by vector B (its 
corresponding column sum). 
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2013, Ch. 5). For example, the test subset may contain ntest = 100 
random observations from the known behavior data set, and the 
remaining (training) data may be used to create a validation model. For 
the RF, we construct a classification matrix Dtrain using a RF algorithm 
applied to the training data, and the test data are subsequently exposed 
to the same RF to classify the holdout signals and construct the matrix 
Dtest (Appendix VI: 14). For the SOM, we construct a validation SOM 
(vSOM) using the training data and the number of clusters kbest as 
determined by the general SOM (all known behavior) to maintain con
sistency across the iterations. The matrix Dtrain is constructed from 
vSOM, and the test data is then exposed to the vSOM to obtain cluster 
assignments and construct Dtest (Appendix VI: 11 & 12). If the clustering 

or classification system is effective, then on average Dtrain and Dtest 
should be similar. To evaluate this, we calculate the L1-norm (L1), a 
measure of matrix dissimilarity, between Dtrain and Dtest (Paolini et al., 
2018). Given n observed behaviors (i.e. the number of rows in D) and K 
clusters (i.e. the number of columns in D), L1 is the maximum across the 
K clusters: 

L1 = max

(
∑n

i=1

⃒
⃒
⃒Dtest

i,k − Dtrain
i,k

⃒
⃒
⃒

)

, k = {1, 2, …, K}. (3) 

The theoretical interval of L1 as calculated here is [0,2], representing 
the cases where there is complete similarity (L1 = 0) and at least one 

Table 1 
The probability profile (matrix D) for the Random Forest. data set  

RF: Matrix D       
Group 1: “Consumption” Group 2: “Environmental Interaction” Group 3: “Locomotion” Group 4: “Resting” Group 5: “Social Interaction” 

Consumption 0.7555 0.1593 0.1753 0.0072 0.0148 
Environmental Interaction 0.0489 0.7383 0.0739 0.0014 0.0099 
Locomotion 0.1480 0.0788 0.7009 0.0099 0.0081 
Resting 0.0208 0.0073 0.0155 0.9749 0.0115 
Social Interaction 0.0269 0.0163 0.0344 0.0067 0.9558  

Table 2 
The behavioral profile, matrix D, for the clustered self-organizing map.  

CSOM: Matrix D           
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 

Consumption 0.1581 0.0189 0.5989 0.1359 0.1112 0.0334 0.1585 0.0841 0.1623 
Environmental Interaction 0.3159 0.1698 0.2447 0.4892 0.5063 0.5016 0.4051 0.2758 0.2026 
Locomotion 0.1786 0.7359 0.1405 0.2251 0.3019 0.3177 0.2672 0.4575 0.1604 
Resting 0.1006 0.0566 0.0102 0.1123 0.0351 0.1388 0.1260 0.0697 0.3814 
Social Interaction 0.2468 0.0189 0.0057 0.0374 0.04545 0.0085 0.0432 0.1129 0.0934  

Figure 5. Validation is performed by randomly sub
setting training and test data sets such that the training 
set is used to estimate a behavioral classification 
model. The probability profile Dtrain is the expected 
behavioral proportions given that group k is observed. 
The test data is then exposed to the model to create the 
true probability profile of the test set Dtest. We evaluate 
how well Dtrain approximates Dtest by comparison using 
the standardized L1-norm. By performing M iterations, 
we generate a distribution of standardized L1-norms 
from which the average L1-norm may be calculated.   
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column of complete dissimilarity (L1 = 2) between the test and training 
datasets (i.e., the behavior predicted and the true behavior are 
different). Thus, we divide L1 by 2 to produce L1 such that 0 represents 
perfect similarity and 1 perfect dissimilarity between test and training 
data sets. If the test data are representative of the training data and if the 
algorithm accurately predicts new data, then over many iterations of 
this procedure using M randomly selected test/training sets we expect L1 

to approach 0 (Fig. 5). Note that L1 is inherently a conservative metric as 
it characterizes performance of D only by its worst performing column. 
Alternatively, rather than the maximum one could use a standardized 
arithmetic mean for a metric that may better describe overall 
performance: 

Lavg =
∑K

k=1

(
∑n

i=1

⃒
⃒
⃒Dtest

i,k − Dtrain
i,k

⃒
⃒
⃒

)/

2K. (4)  

2.6. Application to field data: wild pigs 

We used an AM data set collected on wild pigs (Sus scrofa) in a semi- 
natural enclosure to demonstrate the application of this framework to 
field data. Biologging data was collected from wild pigs translocated to a 
1 ha enclosure in Starkville, MS. The enclosure was equipped with 6 
motion-activated infrared cameras synced to the internet to maintain 
accurate time. Seven wild pigs (3 males and 4 females) were captured 
and fitted with Daily Diary (DD) accelerometer and magnetometer data 
loggers (WildBytes Inc., Swansea, UK) sampling at 40 and 13 Hz, 
respectively. We include these data for demonstration purposes only and 
emphasize that further processing may be necessary for biological 
inference (e.g. by assessing different tri-axial rotation rules; see Brown 
et al., 2013; Shepard et al., 2008; Wilson et al., 2008). 

Individual pigs were identified from videos and the time, behavior 
exhibited, and duration of behavior were recorded. Behaviors were 
classified into 5 broad categories in order of importance: (1) consump
tion, (2) resting, (3) environmental interaction, (4) locomotion, and (5) 
social interaction (Appendix II). We used a ranking system to ensure that 
we detected behaviors even if they commonly occurred with other be
haviors (i.e. head down and consuming food continuously while walking 
would be classified as consumption). Each observation was “trimmed” 
(i.e. the first and last second removed), resulting in a 1 sec minimum for 
all observations. If a single behavior was interrupted by a brief bout of a 
different behavior (<2 s), whereafter the original behavior was 
resumed, the whole bout was classified as the first behavior. For 
example, a time series consisting of walking (5 s), freeze and scan for 
predators (1 s), and resume walking (5 s) would be classified as loco
motion (11 s). Behaviors were paired with DD data by using the video 
timestamp and the DD’s internal clock (synched prior to deployment). 

Each second of DD data (7 channels: Acc X, Acc Y, Acc Z, Mag X, Mag 
Y, Mag Z & VeDBA at ~40 Hz/channel) was smoothed using a cubic 
polynomial spline (λ = 1) and resampled evenly from each curve (7 
channels x 50 samples/s = 350 measurements/s). A PCA was performed 
on the samples for each of the 7 data channels, and the first 3 principal 
component vectors (PCs; 95–99% of the variation) per channel were 
selected for subsequent analysis (7 channels x 3 PCAs: 21 PCAs). A 20 ×
20 SOM was parameterized with rinit = 3, C = 30, and Nepoch = 200, and 
k-means clustering was performed using k = 3, 4, …, 25 (Nrep = 3000; 
see Appendix IV for additional analyses using alternative grid sizes). The 
RF was fit with 500 trees. 

8418 videos of 7 captive wild pigs were recorded and classified 
manually, resulting in 75,601 s (21 h, ~3 hrs/pig) of observed behavior 
from 5 behavioral categories. Only biologging data for which there was a 
corresponding behavioral observation were used in the analysis. The 
number of observed behaviors in each group were tallied and matrices A 
and D and vectors B→ and C→ were constructed. Data cleaning, pairing 
and analyses were conducted in Daily Diary Multi Trace v. 25/Feb/2018 
(WildBytes, Inc.), Program R v. 3.3.1 (R Core Team, 2016; Appendix VI: 

1:3,10,12:14) and MATLAB 2017a (The MathWorks Inc 2017a, Appen
dix VI: 4:9, 11, 15). The Random Forests were fit with the randomForest 
package (Liaw and Wiener, 2002; Appendix VI: 13:14). 

3. Results 

As proportions of the entire data set, environmental interaction 
(37.62%) and locomotion (25.90%) were the most observed behaviors, 
followed by consumption (17.76%), resting (11.52%) and social inter
action (7.21%). The average silhouette for the general SOM was maxi
mized at k = 9 (sl = 0.4895; Appendix I: Figure S3). The Random Forest 
converged after 100 trees. 

For the RF method, there was an overall 22% out-of-bag error rate 
irrespective of class. Each group was best predicted by a single behavior 
ranging from 97% (resting) to 70% (locomotion; Table 1). The “con
sumption” group (group 1) was most likely to be the consumption 
behavior (76%) followed by locomotion behavior (15%). The “loco
motion” group (group 2) was most likely to be a locomotion behavior 
(70%) followed by a consumption behavior (17.5%). The “environ
mental interaction” group (group 3) was most likely to be an environ
mental interaction behavior (74%) followed by a consumption behavior 
(16%). This might suggest that behaviors associated with consumption 
in wild pigs produce several variable signals with some that appear more 
similar to a locomotion or environmental interaction signal than most 
consumption signals. This might be explained by blended signals where 
an animal is consuming food and thus its behavior is classified under 
consumption but is simultaneously walking or scanning (locomotion or 
environmental interaction respectively). 

For the CSOM method, the clusters represented diverse behaviors 
with a high proportion of clusters that predicted behavioral combina
tions rather than a single behavior. Only 4/9 total clusters exhibited a >
50% probability for a single behavior (2 environmental interaction, 1 
locomotion, 1 consumption; Table 2). The remaining clusters had a 
dominant behavior that was larger than the other behaviors but <50% 
of the total probability of the cluster (3 environmental interaction, 1 
locomotion, 1 resting). Environmental interaction was the most preva
lent behavior in our data and was either the most or second most 
probable in all clusters. This may indicate that the CSOM struggled to 
distinguish environmental interaction from the other behaviors perhaps 
because the primary behaviors that compose environmental interaction 
(i.e. sniffing, scanning) may not have particularly distinctive signals. 
Further, pigs frequently interrupted one behavior with brief bouts of 
other behaviors that may have introduced variation in our classification 
system or produced blended signals making it difficult to separate the 
behaviors into discrete categories. Locomotion was the second most 
prevalent behavior with the majority probability in clusters 2 and 8 and 
was second most probable in 3 clusters. Many non-locomotive behaviors 
were frequently accompanied by meandering (slow tortuous movement) 
which may share similar signal characteristics to walking (locomotion) 
or were punctuated by bouts of walking which may mask the other 
behavior’s signals completely. Consumption composed 60% of cluster 3 
and resting behavior was the most prevalent in cluster 9 at 38%. 
Although social interaction did not dominate any cluster, it was the 
second most likely behavior at 25% in cluster 1. 

The resampling procedure showed that there was an average 
maximum cluster dissimilarity of L1 

= 0.65 or 65% between the training 
and test data sets and an average mean cluster dissimilarity of Lavg =

0.31 or 31% using the CSOM, and an average maximum cluster 
dissimilarity of L1 

= 0.20 or 20% and an average mean cluster dissim
ilarity of Lavg = 0.11 or 11% for the RF (Fig. 6). This may be interpreted 
as 35% similarity between the test and training probability matrices for 
the CSOM method and 80% similarity for the RF method, indicating that 
the RF approach better predicted new data even though the hold-out 
data was 1/1000th the size of the training data. This is good evidence 
to conclude that the RF, on average, accurately predicted new data, and 
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that the clusters identified as most distinctive by the 20 × 20 CSOM 
method did not match our assigned behavioral labels. Thus, by per
forming this crucial validation step, we can conclude that matrix D 
obtained from the trained RF, but not the CSOM, can be used to 
approximate the probabilistic behavioral profiles Dþ from unobserved 
data (but see Appendix IV for additional CSOM analyses). 

4. Discussion 

Behavior is an important but often overlooked tool in interpreting 
animal distributions (Abrahms et al., 2017; Roever et al., 2014), and a 
variety of approaches have been used to link animal behavior to data 
sets of acceleration (Brown et al., 2013; Wilson et al., 2008). Here, we 
presented a probabilistic framework for interpreting animal behavior 
classified or clustered from AM signals. We applied two machine 
learning techniques: one supervised, where behaviors were paired with 
accelerometer data prior to classification, and one unsupervised, which 
first clustered the signals and then used the observed behaviors (Saka
moto et al.,2009; Chimienti et al., 2016; Nathan et al., 2012). Both ap
proaches ultimately produce a matrix identifying the probability of 
observing a behavior given a known acceleration signal (Fig. 3, Tables 1 
& 2) but validation showed that the CSOM method performed poorly 
and thus the probability profile cannot be trusted. Though most current 
approaches assign a signal type to a target behavior (Nathan et al., 
2012), the RF showed many behaviors exhibited similar data signals, 
and several groups were likely to reflect multiple rather than single 
behaviors. This may be because some behaviors may be difficult to 
discriminate using collar attached accelerometers (e.g., Nathan et al., 
2012; Wang and Xu, 2015) and by using a probability profile, we 
accommodate this explicitly. 

Quantifying the variation in animal behaviors across landscapes is 
crucial for our understanding of animal movement (Johnson, 1980; 

Matthiopoulos et al., 2015; Nathan et al., 2008; Van Horne, 1982). 
Animals may use a single landscape for multiple purposes, complicating 
the ability of researchers to predict a single behavior from landscape 
features (Street et al., 2016). Using a probability profile accounts for this 
but also allows for the empirical calculation of multiple behavioral 
probabilities for any landscape. Thus, this may be used to estimate the 
relative probability that an animal will engage in a behavior provided an 
environmental context. Conceptually similar to a Resource-Selection 
Function (RSF; Boyce and McDonald, 1999), one could estimate the 
probability of observing the behavior given a suite of covariates and thus 
predict the relative probability of observing a given behavior in space 
and time. We foresee 2 general approaches to producing such a model. 
First, a simple logit model as commonly applied to e.g., RSFs could 
produce the desired spatial model of behavior. However, the very high 
refresh rates for accelerometers (e.g., 1+ Hz) will typically produce 
many behavioral observations at a given spatial location, particularly if 
the resolution of the spatial layers is large (as is common for remotely 
sensed landscape data products). Application of logit models will thus 
require researchers to consider how best to accommodate what is a clear 
violation of independence for such a model. This could be accomplished 
by sub-sampling data to a single observation per pixel, or by aggrega
ting/averaging probabilities for behaviors within a given pixel. Neither 
outcome is particularly appealing due to loss of information, but the 
resulting logit models are well described in the literature and have 
ample tools for model validation, calibration, and sensitivity (e.g., 
Chivers et al., 2014; Harrell, 2016). Alternatively, Hidden Markov 
Models (HMMs) have been recently applied to accelerometry data 
(Leos-Barajas, 2017). Though far less common than standard logit 
models, these or similar models that incorporate autocorrelation struc
tures (e.g., temporal autoregressive models; (Hooten et al., 2017) could 
be used to generate the desired spatial models while accommodating 
dependence between consecutive observations. 

Figure 6. The distribution of the maximum and average group dissimilarity (standardized L1-norm; L1) for the CSOM and RF methods.  
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Provided that we have a properly parameterized probabilistic spatial 
model of behavior, multiplicative pairing of such models with simple 
models of space use (e.g., RSFs) combines the relative probability of 
occurrence with the relative probability of observing different behaviors 
in that location. Akin to a utilization kernel for animal behavior, this 
“behavior kernel” should reflect the relative probability of a known 
behavior, weighted by the probability of the animal using that space 
(Worton, 1989). These models, enabled by the probabilistic framework 
presented here, may offer tremendous opportunities for new insight. For 
example, the Ideal Free Distribution (IFD) posits the equilibrium dis
tribution of a population will be achieved when all individuals have 
equal fitness relative to local density and environmental quality (Fret
well and Lucas, 1969). If animal fitness may be thought of as an energy 
budget whereby animals must balance energetic costs with inputs 
(Brown et al., 2004), then we should expect that animal fitness will be 
highest in areas where energy intake exceeds expenditure. These areas 
of high relative fitness should be identifiable following the two-stage 
model described above as locations with high probabilities of occur
rence and of behaviors promoting energy intake. We expect that the 
behavior kernel will strongly correlate with the IFD and provide a 
mechanistic link between the behaviors of individuals and the distri
butions of populations, a longstanding goal of predictive ecology 
(Matthiopoulos et al., 2015). 

One concern with our approach is that the model may not accurately 
represent the behavioral probabilities of new data (Yates et al., 2018). 
By performing a resampling exercise and using the L1 matrix-based 
statistic, we observed that data withheld from the RF were accurately 
classified but the CSOM method did not accurately identify new data. 
Thus, the CSOM model overall did not perform well and thus, is not 
suitable for either the direct assignment or probability profile approach. 
Our approach acknowledges that behaviors with similar characteristics 
should be difficult to identify in any machine learning approach. 
Although this problem may be more pronounced in unsupervised 
learning algorithms (Nathan et al., 2012), it is a common challenge of 
working with behavioral data. We emphasize that the type of machine 
learning technique used should be dictated by the questions the analyst 
has for the data set; however, use of a probability profile rather than a 
direct assignment can be adopted regardless of the algorithm used to 
group the data provided that the model validates well. 

It is also worth noting that the apparent poor performance of the 
CSOM may be attributed to the validation metric L1. This metric is 
mathematically well described and is calculated as the maximum 
observed summed difference between entries of the columns of two 
matrices. If two matrices are identical save for a single column, L1 bases 
dissimilarity only on the differing column. L1 is thus a highly conser
vative metric of matrix dissimilarity that may be interpreted as the 
maximum dissimilarity observed across signal types. By contrast, we 
may instead evaluate matrix dissimilarity using the arithmetic mean of 
the summed differences between columns rather than the maximum. 
This metric is no longer conservative but may be a better reflection of 
overall performance when few signal types perform poorly. Indeed, the 
average summed differences showed overall better agreement between 
Dtest and Dtrain than suggested by L1 for the both the CSOM and RF 
approaches (Fig. 6). Selection of the validation metric should be deter
mined by the specific needs of the project and the degree of predictive 
accuracy desired. 

There was likely some error in label assignment as it was difficult to 
identify individual pigs and to temporally synchronize DD observations 
to videos. Additionally, the behavioral proportions observed via video 
may not represent the true frequency of pig behavior in the enclosure 
and may differ from those of wild pigs (Burghardt et al., 2012). Because 
captive pigs were supplied with food, they may spend less time engaging 
in consumption behaviors as their wild counterparts (Grandia et al., 
2001). However, of critical concern is the possibility that certain be
haviors may not be represented in the training data (e.g., swimming). 
For such cases, our system would be incapable of identifying these 

behaviors. We reiterate that data need to be representative of the total 
variation in data signals and behaviors and emphasize that validation is 
critical for any remote sensing exercise (Congalton, 1991; Nathan et al., 
2012). 
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