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Sequence-Based Antigenic Change Prediction by a
Sparse Learning Method Incorporating Co-Evolutionary
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Abstract

Rapid identification of influenza antigenic variants will be critical in selecting optimal vaccine candidates and thus a key to
developing an effective vaccination program. Recent studies suggest that multiple simultaneous mutations at antigenic
sites accumulatively enhance antigenic drift of influenza A viruses. However, pre-existing methods on antigenic variant
identification are based on analyses from individual sites. Because the impacts of these co-evolved sites on influenza
antigenicity may not be additive, it will be critical to quantify the impact of not only those single mutations but also
multiple simultaneous mutations or co-evolved sites. Here, we developed and applied a computational method, AntigenCO,
to identify and quantify both single and co-evolutionary sites driving the historical antigenic drifts. AntigenCO achieved an
accuracy of up to 90.05% for antigenic variant prediction, significantly outperforming methods based on single sites.
AntigenCO can be useful in antigenic variant identification in influenza surveillance.
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Introduction

Influenza A virus causes both seasonal and pandemic outbreaks,

presenting a continuous challenge to public health. Influenza A

virus is an RNA virus in the family Orthomyxoviridae, and its

genome is composed of eight negative stranded RNA segments.

Two processes, namely antigenic drift and antigenic shift, drive the

antigenic changes of influenza A virus. Antigenic drift is mainly

caused by mutations in influenza surface glycoproteins hemagglu-

tinin (HA) and neuraminidase (NA), which are primary targets for

host immune systems. Antigenic shift occurs when an influenza

strain with antigenically distinct HA and/or NA genes appears,

usually resulting from genetic reassortment. Genetic reassortment

is the exchange of one or more discrete RNA segments into

multipartite viruses when two or more viruses infect the same cell.

Antigenic drift events occur more frequently than antigenic shift

events.

Vaccine is the primary option in counteracting influenza

outbreaks. Antigenic matches between circulating strains and

vaccine seed strain is the key to an effective vaccination program.

Recently, we developed AntigenBridges, a sequence-dependent

influenza antigenicity quantification method [1]. This method

identified antigenicity-associated sites using sparse learning and

developed a quantification score using single mutations. This same

method was shown to be effective in inferring influenza

antigenicity up to an accuracy of 83.78%. Compared to other

laboratory-based methods such as hemaglutination inhibition (HI)

and microneutralization (MN), this sequence-dependent method

allowed us to perform large-scale antigenic characterization in

influenza surveillance. More importantly, it can facilitate antigenic

characterization for those viruses requiring a high biosafety

facility, such as H5 and H7 influenza A virus, which generally

require BioSafety Level 3 (BSL-3) facility.

During influenza evolution, multiple sites can co-evolve. A

recent study on HA1 proteins of H3N2 influenza A viruses from

1968 to 2005 showed that 88 of the 95 substitutions occurred in

groups, and two or more of these residues can mutate

simultaneously [2]. These multiple simultaneous mutations at

antigenic sites cumulatively enhance antigenic drift [2]. Other

studies also identified 308 putative pairs of co-evolved amino acid

positions [3]. These studies have suggested that the residues under

correlated evolution (co-evolution) are more likely to be physically

close in the three-dimensional structure of the protein [4]. Because

the impacts of these co-evolved sites are not necessarily additive,

the single site-based method described in the previous study would

need to be optimized. In this study, we developed AntigenCO, a

sparse learning method by incorporating evolutionary informa-

tion. Our results showed that AntigenCO outperformed Anti-

genBridges, and can reach up to 90.05% predictive accuracy.
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Results

AntigenCO is a new sparse learning algorithm to quantify

antigenic distances among influenza A viruses using influenza

HA1 protein sequence information. AntigenCO identifies top

features determining antigenic profiles embedded in serological

data. This feature can be either a single residue, co-evolved

residues, or a residue coupled within a certain physical distances in

three-dimensional structures of HA protein. We summarized in

Table S1 various features and feature parameters. Two validation

schemes, namely sequential validation and 5-fold cross-validation

process were used in tuning the model parameters, and the top

selected features were used for constructing a model for sequence-

based antigenic prediction. This framework was applied into

H3N2 influenza dataset containing 512 viruses and 133 serums

collected between 1968 and 2007 together with the corresponding

HA1 protein, and the obtained prediction model was tested on

H3N2 influenza viruses from 2002 to 2013. As influenza A viruses

have been evolved into antigenic clusters [5], we applied

AntigenCO to infer mutations leading to the antigenic drift events

among these clusters.

Single and co-evolved sites driving antigenic changes in
H3N2 influenza A viruses

AntigenCO identified 65 antigenicity associated features using

H3N2 data from 1968 to 2007 (Table 1) [1]. These features

include 13 single sites and 52 pairs of co-evolutionary sites. These

features cover 38 residues, including 25, 50(antibody binding site

C), 54(C), 57(E), 62(E), 82(E), 83(E), 94(E), 121(D), 126(A), 131(A),

133(A), 137(A), 142(A), 144(A), 145(A), 155(B), 156(B), 157(B),

158(B), 159(B), 160(B), 172(D), 173(D), 189(B), 192(B), 193(B),

196(B), 219(D), 222, 225, 226(D), 244(D), 262(E), 276(C), 278(C),

278(C) and 299(C). Based on these features, the sequence-based

antigenic cartography were highly correlated with that from the

HI data [1] (Figure 1), with a Pearson correlation coefficient (CC)

of 0.94. All the reported antigenic clusters, HK68, EN72, VI75,

TX77, BK79, SI87, BE89, BE92, WU95, SY97, FU02, CA04,

and BR07 [1,5], were correctly inferred from sequence-based

antigenic cartography.

A set of 12 single or co-mutations were predicted to be

responsible for antigenic drifts among these antigenic clusters

(Table 2, Figure 2, S1, and S2). Single mutations K156E and

S193F were responsible for antigenic drifts TX77-.BK79 and

CA04-.BR07, respectively. The other 10 antigenic drift events

were instead driven by co-evolutionary mutations, which can be

located at the same antibody binding site or across different

antibody binding sites. Antigenic cartography demonstrated those

mutations drove antigenic drift among these clusters (Figure 3 and

Figure S3).

Co-evolutionary and structural information increases the
accuracy in antigenic distance measurement

We compared the prediction accuracies of the separate methods

using single sites, co-evolutionary, and co-neighboring sites. Our

results showed that both the co-evolutionary information and the

co-neighboring information can improve antigenic distance

measurement accuracies of sparse learning method, and the co-

evolutionary information seemed to be more effective (Figure 4,

Table S2). The method combining both co-evolutionary and

structural information was also tested, but the prediction accuracy

remained similar to those using co-evolutionary information alone.

The method ‘‘sinco+EvolT4’’ outperformed all other methods in

most years. Comparing to ‘‘single’’ sites, the prediction RMSE of

‘‘sinco+EvolT4’’ decreased by 21.54% on average and decreased

up to 60% in some years: 1987, 1995, and 2003. A comparison of

different methods and Lasso parameters based on average

prediction RMSE from 1985 to 2003 was plotted in Figure 4,

Figure 5, and Table S2. The method ‘‘sinco+EvolT4’’ with Lasso

parameter 16 is used in future prediction studies.

The features with co-evolutionary information were more
effective than those with single sites in antigenic variant
identification

We compared prediction accuracy of the sparse learning

framework in this study with three reported feature sets, including

44-single sites [5], 25-single sites [6], and 39-single sites [1]. Our

results clearly showed that the feature set integrating co-

evolutionary information outperformed the other three feature

sets (Table 3 and Figure 6). The improvements were up to 41.1%,

32.4%, 28.7% compared with the method using 44-single sites [5],

25-single sites [6], and 39-single sites [1], respectively.

Sequence based antigenicity predication using co-
evolutionary sites

A total of 1,415 non-redundant HA1 sequences of H3N2 viruses

from 2002 to 2013 were collected. To show the effectiveness of

AntigenCO, the antigenic distances among these viruses were

quantified based on features derived from the H3N2 data

from1968 to 2007 [1]. Figure 7 shows that there are four clear

antigenic drift events in years 2003, 2005, 2007, and 2009, which

are reported previously as ‘‘FU02-.CA04,’’ ‘‘CA04-.WI05,’’

‘‘WI05-.BR07,’’ and ‘‘BR07-.PE09’’ [7]. In addition, the

cartography shows that there is a small antigenic distance between

viruses before and after 2011, and the viruses after 2011 had a

large extent of antigenic variations.

Discussion

Antigenic changes in seasonable influenza viruses were recently

shown to occur more gradually by our recent study [1] and others

[2]. These results suggested that multiple mutations in antibody

binding sites can occur but not necessarily simultaneously. Some

antigenic drift events were driven by multiple mutations, and the

impacts of these mutations on antigenic changes are not

necessarily additive. For example, our previous experiment

showed that mutation N145K and G172D from virus JO/33

changed antigenic distance by 1.29 and 0.44 unit respectively. The

N145K-G172D double mutation resulted in an antigenic distance

change of 1.83 units, which are different from the simple sum of

the antigenic distances from two corresponding individual

mutations [1]. This motivated us to improve our earlier prediction

functions of influenza A viruses in this study by incorporating

features with the co-evolved residues in addition to those single

residues. Our results confirmed that incorporation of coupled

residues into the prediction function does improve the predictive

function of antigenic distances.

This study identified 65 features derived from 38 individual

residues contributing to antigenic changes of H3N2 influenza A

viruses. These residues included 13 single sites and 52 pairs of co-

evolutionary sites (Table 1). Except for site 244, 12 out of these 13

single sites were identical to those identified from our previous

study [1]. The learning results demonstrated that the impacts of

these residues on antigenic drift are not additive, confirming our

hypothesis. Nevertheless, the performance of the new predictive

function incorporated evolutionary information has been signifi-

cantly improved.

Our previous study suggested multiple mutations leading to a

single antigenic drift event can occur at not only the same antibody

Sequence-Based Antigenic Prediction Using Co-Evolution
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binding site but also more than one antibody binding site [1]. In

this study, we evaluated the co-evolved residues within the same

binding site and those across multiple antibody binding sites. Our

results further confirmed our previous study and are also consistent

with those reported recently [8]. From 1968 to 2007, only two of

those 12 historical antigenic drift events, TX77-BK79 and CA04-

BR07, were caused by a single mutation whereas the other 12 by

two or three residues within or across at least two antibody binding

sites (Table 2).

In summary, this study developed a predictive function,

AntigenCO, in quantifying antigenic changes using antigenicity-

associated sites derived from HI results by sparse learning. The

impacts of individual residues on antigenic changes were shown to

be non-additive. AntigenCO incorporates such information and

Figure 1. HI-based and sequence-based cartographies on H3N2 68-07 data. Each ball denotes a single influenza virus and each individual
color denotes a specific antigenic cluster.
doi:10.1371/journal.pone.0106660.g001

Table 2. Single and co-evolutionary sites driving the 12 antigenic drift events between successive clusters from HK68, EN72, VI75,
TX77, BK79, SI87, BE89, BE92, WU95, SY97, FU02, CA04 and BR07.

Drift Sites Domain

HK68-EN72 (G144D, N188D) (A, B)

EN72-VI75 (S145N, S193D, R201K) (A, B, D)

VI75-TX77 (D53K, E82K) (C, E)

TX77-BK79 K156E B

BK79-SI87 (Y155H, V163A, K189R) (B, B, B)

SI87-BE89 (G135E, N145K, N193S) (A, A, B)

BE89-BE92 (K145N, E156K, R189S) (A, B, B)

BE92-WU95 (K135T, N145K, G172D) (A, A, D)

WU95-SY97 (V144I, K156Q, N276K) (A, B, C)

SY97-FU02 (I144N, H155T, Q156H) (A, B, B)

FU02-CA04 (K145N, Y159F, S189N) (A, B, B)

CA04-BR07 S193F B

As suggested by parameter tuning process (Table S3 and S4), the sites are generated by feature type ‘‘sinco+EvolT8’’ and Lasso parameter 1; the top numbers are
selected by prediction RMSE curve. For simplicity, all top numbers are set to be 10, except for drift EN72-VI75 and BK79-SI87, which is set to be 15, CA04-BR07, which is 3
and SY97-FU02, which is 20.
doi:10.1371/journal.pone.0106660.t002

Sequence-Based Antigenic Prediction Using Co-Evolution
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achieved an accuracy of up to 90.05% for antigenic variant

prediction.

Materials and Methods

Benchmark data set
The H3N2 HI table, containing 512 viruses and 133 serums

collected between 1968 and 2007 together with the corresponding

HA1 protein sequences [1], was used as the benchmark data. The

512 H3N2 viruses were grouped into 13 clusters: ‘‘HK68,’’

‘‘EN72,’’ ‘‘VI75,’’ ‘‘TX77,’’ ‘‘BK79,’’ ‘‘SI87,’’ ‘‘BE89,’’ ‘‘BE92,’’

‘‘WU95,’’ ‘‘SY97,’’ ‘‘FU02,’’ ‘‘CA04’’, and ‘‘BR07,’’ and their HA

protein sequences were downloaded from NCBI. To study the

antigenic drift between two clusters, for example ‘‘BE92-WU95,’’

we retrieved the HI and sequence data from the viruses in the two

clusters ‘‘BE92’’ and ‘‘WU95’’. The viruses in other clusters did

not have a direct contribution to the antigenic drift event. For

convenience, the 13 antigenic drift sub-data sets were named the

same as the antigenic drift. We also downloaded 1,415 HA protein

sequences from 2002 to 2013 to test the prediction ability of the

sparse learning framework with co-evolutionary information.

AntigenCO
AntigenCO is a sparse learning algorithm to quantify antigenic

distance among influenza A viruses using influenza HA1 protein

sequence. We implemented AntigenCO in Matlab and all source

codes and data used for this study are available at http://sysbio.

cvm.msstate.edu/AntigenCO.

Sparse learning algorithms. Specifically, the pairwise

antigenic distances among viruses are measured by antigenic

cartography [9] based on a serological dataset, e.g. HI data. Let

the number of viruses be N, then the distances could be formulated

as a vector Y of length
N

2

� �
, in which each entry calculates the

antigenic distance between a pair of viruses. And similarly, we

used a matrix X~½x1,x2, � � � ,xm� to model the genetic profile,

where m is the number of single and correlated co-sites, and xi is a

vector of length
N

2

� �
representing the pairwise genetic change at

single or correlated co-site i. To identify antigenicity-associated

sites, we mapped the antigenic distances to genetic profile and

selected sites whose mutations shape antigenic vector Y. This is a

typical feature selection problem in machine learning. Methods

like Lasso [10,11] and Ridge regression [11] are effective for

selecting a small to moderate number of antigenicity-associated

single and correlated co-sites.

The Lasso [10] formulates the problem as

w
_

~ arg min
w[Rm

X
(Y{wX)2

n o
subject to

Xm

j~1

Dwj Dƒs ð1Þ

where s is a threshold parameter that can be tuned to optimize

accuracy and w~½w1,w2, � � � ,wm� denotes the weights of each

single and co-evolved sites. Similarly, the Ridge regression

formulation of the problem is

w
_

~ arg min
w[Rm

X
(Y{wX)2

n o
subject to

Xm

j~1

w2
j ƒs ð2Þ

Lasso is solved by the Matlab code from Sköglund [12] and Ridge

regression by the Matlab built-in function ‘‘ridge.m.’’

For our H3N2 data, Lasso performs slightly better in prediction

root-mean-square error (RMSE) than Ridge regression in two

randomly selected antigenic drift data and three sequential data

Figure 2. The locations of co-evolutionary sites driving the antigenic drift of four events: ‘‘BE89-BE92,’’ ‘‘BE92-WU95,’’ ‘‘WU95-
SY97,’’ and ‘‘SY97-FU02.’’ The H3N2 structure pdb (2VIU) are used as the backbone and the antigenic domains A, B, C, D and E are also marked
after the position numbers.
doi:10.1371/journal.pone.0106660.g002
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(Table S5). Thus, we adopted Lasso to perform the analysis

throughout this study.

Construction of feature vector and scoring schemes. To

generalize the single feature in Sun et. al [1], we introduced co-

features modeling co-mutations at two sites and then combined

single and co-features to model the contribution of both types of

sites. There are three types of feature selection methods ‘‘single,’’

‘‘co’’, and ‘‘sinco’’. The feature type ‘‘single’’ takes each single site

as a feature and does not consider their correlations; the feature

‘‘co’’ considers each pair of single sites as a feature and only

considers their co-mutation information; the feature ‘‘sinco’’

combines the ‘‘single’’ and ‘‘co’’ features and models both the

contribution of single amino acid sites and their correlations to

antigenic evolution. The residues on the surface of HA protein

play central roles in shaping antigenic evolution and co-

evolutionary residues [5] and structural co-neighboring residues

work together to define protein functions [4]. Thus, here, the

feature vectors only include the residues located at the HA surface,

which either co-evolve or are physically close in the protein

structure.

Feature encoding functions. We adopted two-feature en-

coding schemes in this study, binary and PIMA (Figure S4) scoring

schemes, as described in our previous study [1]. A simple

comparison in Table S5 shows that the performance of PIMA

slightly outperforms that of binary scheme, and thus PIMA will be

used in this study.

Single feature. The construction of the single feature is the

same as described by Sun et. al [1]. Specifically, let S be the HA1

Figure 3. Four simulation cartographies of antigenic drifts and mutants of positions driving the drifts. The four antigenic drift events
are: ‘‘BE89-BE92,’’ ‘‘BE92-WU95,’’ ‘‘WU95-SY97’’ and ‘‘SY97-FU02’’. The mutants listed in Table 2 from four wild strains ‘‘BE/352/1989,’’’’JO/33/1994,’’
‘‘NA/933/1995,’’ and ‘‘SY/5/1997’’ are also marked in the cartographies.
doi:10.1371/journal.pone.0106660.g003
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protein sequence alignment of N viruses. Then, the single feature

represents site i is an
N

2

� �
vector

Xi~(x1,2,x1,3, � � � ,x1,N , � � � ,xN{1,N )T , where xa,b is the binary or

PIMA score of a pair of amino acids Sa,i and Sb,i for 1ƒa,bƒN

and Sa,i denotes the amino acid of virus a at position i.
Co- and sinco feature. Let i and j be two sites and Xi and Xj

be their representing single features. We construct the co-feature

of site i and j by the inner product of vector Xi and Xj. For

example, if the vectors of the ‘‘single’’ features are

Xi~(X1
i ,X2

i , � � � ,XK
i )T and Xj~(X1

j ,X2
j , � � � ,XK

j )T , then the cor-

responding ‘‘co-feature’’ is Xij~(X1
i
:X1

j ,X2
i
:X2

j , � � � ,XK
i
:XK

j )T .

This ‘‘co-feature’’ models the co-occurrence of mutations in site

i and j. The ‘‘sinco’’ feature are those integrating both ‘‘single’’

and ‘‘co-’’ features.

Identifying surface sites and structural co-neighboring

sites. Residues predicted to be on the surface of the HA

homotrimer were determined as described previously [1]. Jmol

(www.jmol.org) was used to identify amino acid residues having

distances less than a predetermined distance threshold from 1 to

Figure 5. Comparing eight feature types and 11 Lasso parameters.
doi:10.1371/journal.pone.0106660.g005

Figure 4. The prediction RMSE curves comparing eight feature types. A sequential prediction was applied for viruses spanning from 1985 to
2003. The 8 feature types are ‘‘single’’, ‘‘sinco+Struct6A’’, ‘‘sinco+Struct10A’’, ‘‘sinco+EvolT4’’, ‘‘sinco+EvolT8’’, ‘‘sinco+EvolT10’’, ‘‘Sinco+EvolT16’’, and
‘‘sinco+Struct10A+EvolT2’’.
doi:10.1371/journal.pone.0106660.g004
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10 angstrom with step 1 from H3N2 HA structure (pdb file 2VIU).

By structural co-neighbor restriction, we only allowed the co-

features with amino acid pairs having distances less than the

threshold. In Figure S5, the curve shows the number of

neighboring pairs against the distance threshold from 1 to 10. A

pre-analysis showed that threshold around 6 to 10 (data not

shown) maximized the prediction accuracy, and we selected two

thresholds 6 and 10 for further analysis. The two methods are

denoted as ‘‘sinco+Struct6A’’ and ‘‘sinco+Struct10A.’’

Mutual information to identify co-evolutionary sites. It

has previously been shown that co-evolution at antigenic sites

cumulatively enhances antigenic drift [2]. We adopted simple

mutual information methods to identify co-evolutionary amino

acid sites:

Let A~ A1,A2, � � � ,A20f g be the amino acid set. Then, the

entropy of a single amino acid site x is defined to be

H(x)~{
P20

i~1

p(x~Ai)log20p(x~Ai) ð3Þ

where p(x~Ai) denotes the frequency of amino acid Ai at site x.

The joint entropy of two sites x and y is defined as

H(x,y)~{
X20

i~1

X20

j~1

p(x~Ai,y~Aj)log20p(x~Ai,y~Aj) ð4Þ

where p(x~Ai,y~Aj) denotes the frequency of amino acid Ai at

site x and amino acid Aj at site y simultaneously.

The mutual information of site x and y is then defined as

MI(x,y)~H(x)zH(y){H(x,y) ð5Þ

Martin et. al [13] previously showed that MI(x,y)=H(x,y)
removes the background information and outperforms others, thus

we adopted this normalization scheme. After calculating the

mutual information for all pairs, we calculated its Z{score of the

mutual information of a pair of sits x and y as

Z(x,y)~
MI(x,y){ �MMI

s(MI)
, where �MMI denotes the mean value of

the mutual information of all pairs and s(MI) denotes the

standard deviation of mutual information. A threshold value was

set to Z to determine co-evolutionary pairs. Figure S6 shows the

correlation between the number of co-evolutionary pairs inferred

and the thresholds of Z-value for the benchmark 512 sequence

from 1968 to 2007. A simple cross-validation analysis showed that

the best threshold was from 4 to 16 based on prediction RMSE

(data not shown). Thus, we selected thresholds 4, 8, 10, and 16 for

further analysis and the methods are denoted as ‘‘sinco+EvolT4,’’

‘‘sinco+EvolT8,’’ ‘‘sinco+EvolT10,’’ and ‘‘sinco+EvolT16’’ respec-

tively.

Combining co-evolutionary and structural information. It

is natural to combine co-evolutionary and structural information as

they may function together. In the study, we only tested one method

combining ‘‘sinco+EvolT2’’ and ‘‘sinco+Struct10A,’’ which is denoted

as ‘‘sinco+Struct10A+EvolT2.’’ Figure 5 illustrates how this method is

outperformed by ‘‘sinco+EvolT4.’’ We believe that the combination of

co-evolutionary and structural information may not increase the

prediction accuracy significantly. Thus, we did not perform a deeper

analysis.

Determining the top number of features. The top number

of features of sequential prediction and antigenic drifts are

determined by the prediction RMSE curve against the number

of features (see Figure S7, S8, and S9). The two figures show that

10–15 features would be enough for antigenic drift data and 30–65

features work well for sequential prediction.

Sequence-based antigenic distance predicting

function. Using Lasso, suppose we selected p antigenicity-

associated single and co-sites and their associated weights. For

simplicity, the p single and co-sites are re-labeled from 1 to p. We

quantified the antigenic distance using the function

Table 3. Comparing four methods in predicting antigenic variants.

Method Pred1 Pred2 Pred3 Pred4 Pred5

Smith(weight by AntigenBridges) 0.7975 0.7248 0.6831 0.6560 0.6546

Liao(weight by AntigenBridges) 0.8051 0.7151 0.6501 0.6117 0.6143

AntigenBridges 0.8378 0.7510 0.6942 0.6683 0.6736

AntigenCo 0.9005 0.8787 0.8637 0.8658 0.8666

Five accuracies ‘‘Pred1’’, ‘‘Pred2’’, ‘‘Pred3’’, ‘‘Pred4’’ and ‘‘Pred5’’ were used to show prediction accuracies for 1, 2, 3, 4 and 5 seasons. ‘‘Pred1’’ predicted the pairwise
distances of viruses in each pair of consecutive years k and k21 for k[ 1990,2003½ � using viruses in [1968, k21] as training data. ‘‘Pred2’’ predicted the distances between
viruses in year k and k21, and between viruses in year k22 and those in years k and k21 using viruses in [1968, k22] as training data. Similar definitions hold for
‘‘Pred3’’, ‘‘Pred4’’, and ‘‘Pred5’’.
doi:10.1371/journal.pone.0106660.t003

Figure 6. Comparing four methods in predicting antigenic
variants. The four methods are Smith et al. [12], Liao et al. [17],
AntigenBridges [4] and the sparse learning framework combing co-
evolutionary information in this study.
doi:10.1371/journal.pone.0106660.g006

Sequence-Based Antigenic Prediction Using Co-Evolution

PLOS ONE | www.plosone.org 8 September 2014 | Volume 9 | Issue 9 | e106660



y~�yyz
Xp

i~1

wi
�XXi ð6Þ

where �XXi is the normalized features on single or co-site i, �yy is the

mean antigenic distance in the training set, and wi is the weight

assigned to each selected feature i. The predicted antigenic

distances of the viruses are then plotted into two-dimensional or

three-dimensional cartography using a multidimensional scaling

method (Figure 1, 3, and 7).

Selecting top single or co-evolutionary sites for antigenic
drifts

In selecting the top single or co-evolutionary sites for antigenic

drift events, we first applied our sparse learning framework with

co-evolutionary information into the drift data, obtaining the

weights for both single and co-sites. Then, we searched complete

graphs in the co-evolutionary file, adding the weights up for all the

single and double sites. For example, the weight of co-evolutionary

site 135-145-193 is defined as

w 135ð Þzw 145ð Þzw 193ð Þzw 135,145ð Þzw 135,193ð Þzw(145,193)

Currently, we have only identified co-evolutionary sites of sizes

up to 3. In the end, we ranked all the cliques and selected the one

with the highest weight as the single or co-evolutionary sites

responsible for the antigenic drift (see Table 2).

Evaluation methods and parameter tuning
Similar to [1], the root mean square error (RMSE) and Pearson

correlation coefficient (CC) were used as measures of prediction

and training accuracy for tuning best model parameters, e.g. Lasso

and Ridge parameter, feature types, and top number of single or

co-sites to choose. Specifically, the Lasso and Ridge parameter was

tuned from 2210 to 210 with a multiple of two. In addition, we

compared single feature alone, ‘‘sinco+StructnA’’ with n from 2 to

10, ‘‘sinco+EvolTm’’ with m being 0, 2, 4, 8, 10, 16 and 32, and

‘‘sinco+Struct10A+EvolT2’’. For brevity, we only showed the

prediction accuracy of representative feature types and parame-

ters, for example, ‘‘sinco+EvolT4’’ and ‘‘221’’.

We applied two types of validation methods, namely 5-fold

cross-validation and sequential validation for antigenic drift data

and the whole H3N2 data (See Figure S10), respectively. For the

5-folder cross-validation, we randomly selected 20% viruses as a

testing set and the remaining 80% viruses as a training set. Then,

we examined the true and predicting distances within viruses in

the testing set as well as between testing viruses and training

viruses. To avoid the influence of randomness, we reran the

Figure 7. Sequence-based cartographies on 1415 H3N2 influenza viruses from 2002 to 2013 downloadable from NCBI. Each colored
ball represents a virus. The different colors mark its collection year. The five vaccine strains ‘‘Fujian/411/2002,’’ ‘‘California/07/2004,’’ ‘‘Wisconsin/67/
2005,’’ ‘‘Brisbane/10/2007,’’ and ‘‘Perth/16/2007’’ are shown in big ball. We also mark the year of a representative virus in other years.
doi:10.1371/journal.pone.0106660.g007
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program 100 times and used the mean RMSE as the criterion. For

sequential parameter tuning, five schemes (Pred1, Pred2, Pred3,

Pred4, and Pred5) were applied. Pred1 predicted the pairwise

distances of viruses in each pair of consecutive years k and k21 for

k[ 1990,2003½ � using viruses in [1968, k21] as training data. Pred2

predicted the distances between viruses in year k and k21, and

between viruses in year k22 and those in years k and k21 using

viruses in [1968, k22] as training data. Similar definitions hold for

Pred3, Pred4, and Pred5.

Antigenic cartography
The two-dimensional antigenic cartography was constructed by

AntigenMap [9] and the three dimensional cartography by

AntigenMap3D [14], where the lower reactor was set to 20. The

distance-based cartography was constructed using Matlab’s built-

in nonmetric multidimensional scaling function, ‘‘mdscale.m’’.

The downloaded sequences were aligned using MUSCLE [15].

Supporting Information

Figure S1 The mutation pattern of sites responsible for
12 antigenic drifts. The pattern is marked by year; the amino

acids in blue indicate the dominate amino acids in the former

antigenic cluster; those in red indicate the dominate amino acids in

the later antigenic clusters; and those in yellow are in the middle.

(TIF)

Figure S2 The position of co-evolutionary amino acid
position driving the antigenic 10 drift events on the
structure (pdb: 2VIU).
(TIF)

Figure S3 Simulation cartographies of single and mul-
tiple mutants driving 10 antigenic drifts. The wild strains

are marked in dark solid circle; the mutants driving the antigenic

drifts are marked in solid triangles; the viruses in the former

antigenic cluster are in red circles; and those in the later cluster are

in blue squares.

(TIF)

Figure S4 PIMA hierarchical scoring function. The

mutation score from an amino acid, e.g. ‘‘I’’ to another amino

acid, e.g. ‘‘M’’ is calculated as 6 minus the cardinality of the most

recent ancestor of the two amino acids, e.g. ‘‘c’’. Thus the

mutation score between ‘‘I’’ and ‘‘M’’ is 4, i.e. 6 minus 2.

(TIFF)

Figure S5 Numbers of neighboring pairs with the
increase of distances. The structure file (pdb: 2VIU) is used

in the measurement and the distances vary from 0.5 Å to 10 Å

with a gap of 0.5 Å.

(TIF)

Figure S6 Number of co-evolutionary pairs with the
increase of Z-score threshold in mutual information
analysis. 512 sequence from 1968 to 2007 are used for the

analysis.

(TIF)

Figure S7 Prediction RMSE curves with the increase of
the number of selected features for 12 antigenic drift
events. 5-folder cross validation is used and the RMSE is

averaged for 100 bootstrap runs for each antigenic drift event.

(TIF)

Figure S8 The average prediction RMSE from 1985 to
2003 against the number of sites. For convenience, the

number of sites are shown from 1 to 100 with a gap of 5.

(TIF)

Figure S9 Training RMSE and CC curve on H3N2
influenza data from 1968 to 2007 against number of
sites. For convenience, the number of sites are shown from 1 to

211 with a gap of 5.

(TIF)

Figure S10 The prediction RMSE curves comparing
different Lasso parameters. The prediction RMSE curve

plots the trend of prediction RMSE from year 1985 to 2003.

(TIF)

Table S1 Summary of the features used in this study.
(DOC)

Table S2 Compare the influence of restriction method
and lasso parameter on average prediction RMSE from
1985 to 2003. Each cell records the average prediction RMSE of

the corresponding Lasso parameter, e.g. ‘‘221’’ and restriction

method, e.g. ‘‘Single’’ on sequential prediction data from 1985 to

2003 (see section ‘‘Parameter tuning’’ in ‘‘Materials and Methods’’

for the definition of sequential prediction).

(DOC)

Table S3 Compare the influence of restriction methods
on antigenic drifts. Each cell records the prediction RMSE of

the corresponding restriction method, e.g. ‘‘Single’’ on antigenic

drift data, e.g. ‘‘HK68-EN72’’. To avoid randomness, the RMSE

are averaged over 100 runs. In each run, we perform a 5 folder

cross validation. For brevity, ‘‘6A’’ indicates co-neighbor restric-

tion with distance 6 angstrom, and ‘‘T4’’ indicates evolutionary

restriction with Z-score threshold 4. Similar definition applies for

other methods.

(DOC)

Table S4 Compare the influence of lasso parameter on
antigenic drifts. Each cell records the prediction RMSE of the

corresponding lasso parameter, e.g. ‘‘221’’ on antigenic drift data,

e.g. ‘‘HK68-EN72’’. To avoid randomness, the RMSE are

averaged over 100 runs. In each run, we perform a 5 folder cross

validation.

(DOC)

Table S5 Comparison of 2 machine learning methods
Lasso and Ridge regression and 2 scoring schemes 0–1
and PIMA. Each cell lists the smallest average prediction RMSE

for all feature types and model parameters on drift data ‘‘HK68-

EN72’’ and ‘‘BE92-WU95’’, and sequential data [1968, 1985],

[1968, 1986] and [1968, 1987].

(DOC)
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