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Abstract: 

This paper describes methods to study the initiation and formation of localized corrosion pits on 

stainless–steel and aluminum samples. These methods are based on the use of a scanned probe microscope, 

the scanning electrochemical microscope (SECM). The SECM is specifically designed for operation in 

electrolyte solution and so is uniquely suited for examination of corrosion processes. SECM imaging of a 

corrosion pit on stainless steel is presented. In addition, the initiation of single pits on aluminum and 

stainless steel by using the SECM tip to electrogenerate a local source of Cl– is described. 
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Because of the enormous economic loss and the safety problems corrosion causes, it has been 

extensively studied in order to minimize its effects and prevent its occurrence [1]. Despite this, much 

remains to be understood about the initiation, formation, and propagation of corrosion on metal and 

metallic alloy surfaces. Passive metals, such as stainless steel and aluminum, are normally protected from 

generalized corrosion by the presence of a thin passivating film composed of variously hydrated metal 

oxides. In the presence of chloride, bromide, or other "aggressive" ions, the passive film can undergo 

localized breakdown, resulting in accelerated pitting–type corrosion at these locations.  

The dynamics of passive film breakdown and pit formation and initiation have been extensively 

studied [2–4]. Conventional electrochemical techniques, such as galvanostatic and potentiodynamic 

methods [5–6] have been used. Stochastic models have been used to statistically analyze the current or 

potential fluctuations due to pit nucleation [7–8]. The models are then used to predict rates of pit initiation 

and repassivation as well as induction times for pit formation. Several in–situ types of measurements have 

also been made. The most common of these is a scanning micro–reference electrode [9]. An improved 

version of this technique is the scanning vibrating electrode technique, SVET [10].  This method rasters a 

vibrating metal tip across a substrate in order to map the electric field generated near a corrosion site. 

Unfortunately, the resolution of these methods are rather low, with a resolved feature size of about 50 m. 

Ultramicroelectrodes that are made from the metal under study have also been useful for the examination of 

corrosion [11]. Because of their small size, high time resolution can be achieved, allowing observation of 

corrosion processes occurring at the microsecond level. In addition, nucleation of single pits is the 

predominant occurrence, simplifying analysis.  

In this paper, I demonstrate that the scanning electrochemical microscope (SECM) can be useful as a 

new method for the examination of corrosion processes. The SECM is a scanned–probe microscopes 

related to the scanning tunneling [12] and atomic force microscope [13] but is specifically designed as an 

in–situ probe of the surface of materials that are immersed in electrolyte solution (cf. Figure 1).  

There are two general modes of operation of the SECM. In one form of operation, called the 

feedback mode, the SECM uses a mediator molecule and the faradaic current that flows from the 

electrolysis of the mediator at a small electrode tip (1 to 10 m dia.) as a probe of a substrate surface [14–
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16]. As the tip is brought close to the surface, the current flow due to the mediator electrolysis is perturbed 

in a manner that is characteristic for electronically insulating or conducting surfaces. At conducting 

surfaces the mediator can be restored to its original oxidation state by electron–transfer from the conducting 

substrate (Figure 2A). This leads to an increase in current due to a recycling of the mediator in the tip–

surface gap and, thus, the current increases as the gap width decreases. At insulating surfaces, the tip 

current decreases with a decrease in gap width because the surface physically blocks the diffusion of 

mediator molecules to the tip electrode (Figure 2B). Thus, the SECM can image electronically insulating 

and conducting surfaces simultaneously. To image a surface with the SECM, the tip is brought to within a 

distance of about a tip diameter to the substrate surface and then the tip is scanned across the surface in a 

raster pattern. The variations in current flow with changes in tip–substrate height or substrate conductivity 

are plotted versus the tip position to generate a map of the surface height or conductivity.  

 

 
Figure 1. Schematic diagram of the scanning electrochemical microscope showing the pitting 

corrosion initiation process via Cl– generation. 

 



4 

The other general mode of operation of the SECM is known as the generation/collection, g/c, mode. 

In this mode, the tip is polarized to electrolyze species in solution. If these species are generated by the 

substrate, a map can be made of their concentration distribution in solution by monitoring the current 

generated by their electrolysis as a function of tip position (Figure 2C). Although the g/c mode is less 

sensitive to surface topography and surface conductivity than the feedback mode, the g/c mode does not 

require the addition of an external mediator. More importantly, in the g/c mode the SECM tip can be used 

as a chemical micro sensor to detect and speciate electroactive ions in solution [17]. 

 

 
Figure 2. Diagrams of the modes of operation of the scanning electrochemical microscope.  

A unique advantage of the SECM is that, if desired, the mediator can be designed to interact with the 

substrate surface to provide chemical and electrochemical information at micron and submicron resolution. 

In addition, the SECM can be used to perform local modification of a surface by electrogenerating a 

chemical reagent at the SECM tip (Figure 2D). This capability has been used to etch metals and 

semiconductors and to deposit metals [15] as well as derivatizing surface amine groups [18]. 

This paper describes several experiments in which the SECM is used to study pitting corrosion 

process.  Imaging of an active corrosion pit with the g/c mode of the SECM shows a heterogeneous 

distribution of oxidizable chemical species in the solution near and at the corrosion pit. In addition, I show 
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that the SECM can be used to initiate a single corrosion pit on bulk stainless steel and aluminum surfaces 

by electrogeneration of a local concentration of Cl– ions. 

 

Experimental Section 

Reagents  

Trichloroacetic acid (Aldrich) and all other chemicals were reagent grade and were used as received. 

All solutions were made with 18 M water (Milli–Q, Millipore Corp.) and solution pH was adjusted with 

HCl or KOH as necessary.  

Electrodes 

Ultramicroelectrode tips were prepared by sealing Au wires of 0.1 and 0.0127–mm dia. (Aeser 

Johnson Matthey, Ward Hill PA) as described previously [19]. All tips were polished with successive 

grades of alumina on cloth down to 0.05 m to provide a smooth surface with nanometer scale roughness. 

Amalgamated Au tips were prepared by dipping a gold electrode into triply distilled Hg, removing the tip 

and allowing the amalgamation to proceed for 24 hours. The amalgamated tips were then polished with 

0.05 m dia. alumina on cloth prior to use.  

Metal substrates were prepared by potting the metal samples in EPON 828 epoxy (gift of Shell 

Chemical Corp., Houston TX) with triethylenetetramine hardener (Miller–Stephensen, Danbury CT). After 

curing, the samples were exposed by wet grinding with successive grades of 240, 400, and 1000 grit silicon 

carbide paper. Final polishing was with 6.0 and 1.0 m diamond polish on nylon cloth followed by 0.05 

m alumina on cloth. Between and after each polishing stage, the electrodes were sonicated in methanol for 

a minimum of 5 min. The aluminum electrodes were prepared from 1.0 mm dia. annealed Al wire 

(99.999%,. Aeser). Stainless steel samples were prepared from 0.5 mm thick AISI 304 foil (18% Cr, 10% 

Ni, Goodfellow Corp., Malvern, PA) such that the exposed electrode was in the shape of a band about 2 cm 

long by 0.5 mm wide.  

Potentials were recorded versus a Ag/AgCl reference electrode with a porous Vycor junction. The 

auxiliary electrode was Pt gauze or wire. 
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Experimental Apparatus 

The SECM used is similar to previously published designs (Figure 1) [19]. The tip electrode is 

mounted on a 3–axis translation stage that uses piezoelectric inchworms and a model 6000 controller 

(Burleigh Instruments, Inc., Fishers, NY) to effect submicrometer movements. Position, axis, and velocity 

control of the stage are provided by TTL signals from a CTM–05 counter–timer board (Keithley Metrabyte, 

Taunton, MA). Each TTL pulse edge causes a small movement (about 5 nm). Exact control of the tip 

movement is possible by varying the number and frequency of the pulses. Calibration of the tip movement 

as a function of axis and velocity was accomplished by measuring the total distance moved after a large 

number of pulses.  

A bipotentiostat (EI–400, Ensman Instruments, Bloomington IN) permitted simultaneous potential 

control of the tip and substrate electrode and the computer–controlled data acquisition allowed 

simultaneous acquisition and storage of tip and substrate currents.  

The electrochemical cell for the SECM consists of a Teflon cup with a hole in the bottom into which 

the substrates electrodes could be press fitted. The cell was mounted such that the tip was directly above the 

substrate electrode.  

 

Results and Discussion 

SECM Imaging of Active Pitting Corrosion. 

An SECM image of an active corrosion pit on 304 SS is shown in Figure 3. This image was acquired 

in the generation/collection (g/c) mode at a 12.5 m dia. Au tip scanning above the substrate surface at a 

separation of about 20 m at a scan rate of 40 m/s. The steel sample was biased at +0.5 V vs. an Ag/AgCl 

reference electrode in a solution containing 10 mM total Cl– ion at pH 3.0. The SECM image was made by 

biasing the tip to +1.0 V and rastering it over the corrosion pit. The image thus acquired is a map of the 

distribution of oxidizable corrosion products emanating from the corrosion pit. The image in Figure 3 is 

shown in a gray scale format where the tip current intensity is mapped as shades of gray onto a two–

dimensional grid with larger anodic currents represented as lighter shades. The pit is about 120 m in 

diameter and is located in the upper right side of the image. An interesting aspect of the image is the 
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extremely heterogeneous current distribution. In addition to one large area of high tip current, several 

smaller areas with high and intermediate current flow are seen.  

This heterogeneous current distribution suggests that corrosion products are not being generated 

uniformly within the pit interior, suggesting in turn that corrosion is not occurring uniformly. Perhaps the 

most interesting features are the small regions of high tip current. The size of these spots are approximately 

that of the tip size (12.5 m). Since the size of the tip governs the image resolution, it is likely that the 

source of these features is smaller than the tip size. An estimate of the concentration of oxidizable species 

responsible for the tip current can be made from the relationship for the steady–state current at an 

ultramicroelectrode disk electrode [20].  

𝑖 = 4𝑟𝑛𝐹𝐷𝐶        (1) 

Where r is the electrode radius, F is the Faraday, D is the diffusion coefficient, and C is the concentration. 

Assuming a single electron transfer and D = 1 × 10–5 cm2 s–1, the maximum concentration observed here is 

approximately 2 mM. Note, however, that the maximum current observed was limited by the current 

transducer so in fact higher concentrations were likely present.  

One of the advantages to the use of the SECM is that the scanning probe can also be used as a 

voltammetric sensor. Figure 4 shows a cyclic voltammogram taken while the tip was positioned close to the 

 
Figure 3. A gray–scale SECM image (230 × 230 m) of an active corrosion pit on 304 SS. The 

image was acquired with a 12.5 m diam. Au tip biased at +1.0 V vs. Ag/AgCl scanning above 

the substrate surface at a separation of about 20 m at a scan rate of 40 m/s. The steel sample 

was biased at +0.5 V in a solution containing 10 mM total Cl– ion at pH 3.0.  

25.0 µm

5
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corrosion pit. The broad voltammetric wave has a half–wave potential of 0.86 V vs. Ag/AgCl. The most 

likely redox couple is, of course, the Fe(II)/Fe(III) system, although the wave is slightly positive of the 

reversible position for this wave. This suggests that most of the anodic current mapped by the SECM image 

is due to Fe(II) oxidation.  

 

 
Figure 4. Tip voltammogram acquired near the active corrosion pit shown in figure 3.  

Pit Initiation on Stainless Steel with the SECM 

By using the SECM tip to electrogenerate Cl– ions it should be possible to initiate pitting corrosion 

near the SECM tip. Use of small tips will limit the amount of Cl– generated and additionally, will confine 

an effective concentration near a small volume near the tip. In order to demonstrate this capability of the 

SECM instrument, an attempt was made to generate single corrosion pits on stainless steel.  

The general scheme used for the chloride generation is to reduce a water–soluble organic halide 

added to the electrolyte solution. Many organic halides are unstable upon reduction and decompose to form 

Cl– and a radical fragment (Figure 1) [21]. For this study, trichloroacetic acid, CCl3COOH (TCA) was 

chosen for its solubility and moderate reduction potential. TCA is reduced via 3 one–electron steps to yield 

acetic acid. In this case, only the first reduction was of interest: 

CCl3COOH +H2O + e– → CHCl2COOH + Cl– + OH– 
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E1/2 for the irreversible wave is reported to be –0.894 V vs. SCE at pH 3.98 [22]. Biasing the SECM tip at 

potentials more negative than this should quantitatively generate Cl– from the TCA precursor.  

Figure 5 shows a current–time trace in which a corrosion pit was initiated with Cl– generation. The 

electrolyte solution in this experiment was 30 mM of TCA. Since TCA is a strong acid (pKa = 0.69), KOH 

was added to adjust the pH of the solution to 2.4. The steel substrate was 304 SS and the tip was a 50 m 

radius Au amalgam electrode positioned about 100 m away from the substrate. Before time zero in Figure 

5, the substrate potential was adjusted to 0.6 V vs. Ag/AgCl. Shortly after time zero, the tip potential was 

adjusted to –1.1 V, and a cathodic current of 720 nA due to reduction of TCA at the tip is recorded. The use 

of amalgamated tips avoids the complication of hydrogen ion reduction at this potential. At a time of 720 s, 

the steel bias potential was increased to + 0.8 V. After an additional 500 s a fluctuation in the current at the 

steel substrate is seen. Nearly coincident with the current fluctuations at the substrate, the tip current shows 

an increase in cathodic current. At 1400 s a large current spike is observed at the steel substrate. 

Accompanying this pulse, the current on the tip fluctuates and then saturates at 1 A, the current–limit of 

the transducer.  

 

 
Figure 5. Current–time traces at the tip and steel substrate during an SECM–initiated corrosion 

pit event. Conditions: 30 mM trichloroacetic acid adjusted to pH 2.4 with KOH. Tip is a 50–m 

radius Au amalgam disk electrode positioned about 100 m from the steel surface. Cl– 

generation at the tip occurs when the tip is biased to –1.1 V vs Ag/AgCl. The steel potential was 

set for 0.6 and then 0.8 V during the course of the experiment. 
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The current spike observed at the steel substrate is consistent with initiation, growth, and 

repassivation of a single corrosion pit [8]. Figure 6 shows a current–time graph for the same electrode with 

10 mM of Cl– present in the bulk solution. In this solution and at a potential of 0.3 V, stable (that is, 

continuously growing) pits are not observed, but many small pits are nucleated, grow, and then repassivate. 

As observed, the slow rise during the growth phase, and the sharp current drop with passivation is 

characteristic of unstable pit formation [7–8]. Note that the shape of the current spike in Figure 5 is 

qualitatively similar to the largest spike in Figure 6. In addition, optical microscopic examination of the 

region of the steel surface located where the SECM had been generating Cl– showed a small corrosion  

pit of dimension 15 × 20 m. A rough calculation of the volume of material removed during the pitting 

event of Figure 5, based on 90 C of charge passed during the spike, gives a cube of material 16 m on a 

side, in good agreement with the observed microscopic size.  

 

 
Figure 6. Current–time trace for the 304 SS electrode in a pH 3.1 solution containing 10 mM 

Cl– . At time zero the potential was stepped from the rest potential of 0.12 V to 0.3 V vs 

Ag/AgCl.  

Figure 7 is an expanded view of the pit initiation region of Figure 5. This shows that the substrate pit 

location must be physically close to the site of Cl– generation. The 60 nA current increase at the steel 

electrode 200 s before the pit formation is matched by a 50 nA cathodic current increase at the tip 

electrode. This suggests the oxidizable species dissolving from the sample are being reduced at the tip, with 
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the implication that the source of the oxidized species is close to the tip location. At this point, the identity 

of the species being reduced at the tip is unknown, although Fe(II) seems the most likely candidate. A 

further increase in current occurs at the pitting current spike. It is unclear why the current decreases and 

then increases to saturation as the pit repassivates. A speculative explanation for the current increase after 

the pitting event is increased hydrogen ion reduction catalyzed by metal deposited on the tip electrode.   

 

 
Figure 7. Expanded current–time trace of Figure 5.  

A second attempt at pit generation is shown in Figure 8. This attempt was made under similar 

conditions to those of Figure 5. In this situation the tip was poised to produce Cl– and again current 

fluctuations at the substrate were observed along with an increase in the cathodic current at the tip. This 

suggests again that the oxidized products of the steel dissolution were formed near the tip electrode. In 

contrast to the data in Figure 5, no single current spike corresponding to a single pitting event is observed. 

At a time of 750 s the Cl– generation was interrupted, at this point the current at the steel substrate 

immediately dropped to baseline levels. Optical microscopic examination of the steel surface after this 
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attempt at pit generation did not show a single pit, but instead a group of small pits with diameters of 1–5 

μm clustered within a 30 m dia. region.  

 
Figure 8. An additional set of current time traces for the pit initiation experiment. Conditions 

are identical to those in Figure 5 but with the tip moved to a position about 1 cm distant from 

the pit initiated in Figure 5. The tip–steel separation was about 100 m.  

The data in figures 5 through 8 raise a question. For both SECM initiated pit nucleation events, 

about 700 s transpire after application of 0.8 V and tip Cl– generation. Why is there such a long induction 

time for pit formation with localized Cl– generation? This is in contrast to the situation where pits form 

nearly instantaneously when Cl– is present in the bulk solution and the steel is held at a potential of 0.8 V. 

One aspect of this is the small size of the region undergoing pitting. For the conditions here, generation of 

about 30 mM Cl– at a 100 m dia. tip, a region of the steel surface approximately 200 m in diameter 

would be expected to be exposed to Cl– concentrations higher than 10 mM. 1 pit every 700 s leads to a 

nucleation frequency of about 4.5 cm–2 s–1. In contrast, the pit nucleation frequency for the data in Figure 6, 

at a substrate potential of +0.3 V and 10 mM Cl–, is about 0.3 –2 s–1. Although the limited data makes 

quantitative asessment impossible, the nucleation frequency for the SECM initiated experiments is at least 

roughly similar to the frequency when bulk Cl– is present, suggesting that there is not a qualitative 

difference in the initiation process between the two methods.  
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Pit Initiation on Aluminum with the SECM 

Initiation of pits on high purity aluminum was also attempted. Figure 9 shows a current–time trace 

for SECM–initiated pitting. Conditions for this experiment are essentially identical to conditions for the 

stainless–steel pitting experiment. The aluminum substrate was high purity wire (1 mm dia., 99.999% Al) 

held at a potential of –0.2 V. At a time of about 100 s after initiation of Cl– generation at the tip, a large 

pulse of substrate current (sufficient to saturate the current transducer) was observed. This was 

accompanied by fluctuations in the tip current. This large current persisted for about 75 s and then fell to a 

level of about 18 A . This current persisted and grew to a magnitude of greater than 50 A over a period 

of 800 s. Attempts to return the current to prepitting levels by stopping Cl– generation at a time of 240 s and 

900 s were unsuccessful. Bubble formation at the Al surface was observed during the time the current–time 

trace was recorded. In addition, the pit grew large enough to be visible during the course of the experiment. 

The oscillations at the tip and substrate are likely due to the bubble formation process. Note that here, 

unlike in the steel experiment, no increase in tip current is observed upon pitting, since the Al(III) ion is not 

electroactive at the tip potential.  

 

 
Figure 9. Current–time traces at the tip and high–purity Al (99.999%) substrate during an 

SECM–initiated corrosion pit event. Conditions: 30 mM trichloroacetic acid adjusted to pH 2.4 

with KOH. Tip is a 50 m radius Au amalgam disk electrode positioned about 100 m from the 

Al surface. Cl– generation at the tip occurs when the tip is biased to –1.0 V vs Ag/AgCl. The Al 

electrode was biased at –0.2 V during the course of the experiment. 
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Examination of the Al surface by optical microscopy showed 2 large pits: one pit of 100 × 200 m 

and another of about 60 × 100 m at the edge of the Al disk. The interior of these pits showed numerous 

rectangular crystallites 2–3 m in size.  

For these experiments it is not clear if the pit initiation was triggered by the SECM–generated Cl–, 

since at this pH, the corrosion rate of Al is large. Once initiated, the free corrosion that occurred to enlarge 

the pits was certainly due to the low pH conditions. However, the formation of the initial pitting seems to 

be linked with the Cl– generation at the SECM tip.  

 

Conclusions 

The preliminary results presented here demonstrate that SECM can be a useful tool for the examination of 

corrosion process. Future work will examine SECM–initiated pitting as a function of pH, substrate 

potential, and Cl– concentration. The use of generated Cl– and other aggressive anions will allow 

examination of pit nucleation at very positive potentials, where pit nucleation processes in the presence of 

bulk Cl– are obscured by the large number of corrosion pits and the subsequent large background current. 

In addition, g/c mode SECM will also be used to image the initiated pit to examine the rate of growth and 

corrosion products. Use of smaller tips will allow greater spatial resolution. Also, experiments are planned 

in which imaging in the feedback mode is used to preselect sites for pit initiation. In this way, pitting 

processes can be examined as a function of surface heterogeneity. For example, pit initiation is expected to 

require lower bias potentials and shorter induction times at scratches and sulfide inclusions than at 

undisturbed metal. 
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