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Artificial neural networks, which mimic the human brain's ability to learn from 

experiences, are increasingly being used to analyze complex datasets. However, proper 

structural configuration requires intuition, trial-and-error, and frequent human attention. 

This study investigates an automated alternative that uses a Darwinian evolutionary 

strategy to optimize the structure of a small-scale Modified National Institute of 

Standards and Technology (MNIST) image classification network. Using accuracy as a 

measure of fitness, it examines the effect of varying the amount each network learns prior 

to differential reproduction. The accuracy of optimized networks was significantly higher 

than random initial networks, being increased by up to 0.133% (1.435 standard deviations 

above initial mean accuracy). The use of evolutionary strategies in design holds promise 

for producing networks that are appreciably more accurate than randomly-generated 

networks without a large ongoing input of human attention. 
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CHAPTER I 

INTRODUCTION AND PROBLEM 

 

1.1  Artificial Neural Networks 

Artificial neural networks (“neural networks,” “networks,” or “ANNs”) are 

computer algorithms that attempt to mimic, to a certain degree, the human brain's ability 

to learn from experiences. They are increasingly being used to analyze and understand 

complex datasets like medical symptoms, trends on social media, and human speech. 

Although they can never be guaranteed to be 100% accurate or optimal, well-designed 

neural networks can quickly, efficiently, and accurately outperform humans on large or 

complex tasks, and can even do surprisingly well in areas that have traditionally been 

dominated by humans such as identifying objects in images or playing Go [13]. 

The key phrase, however, is well-designed. A simple unidirectional, or 

“feedforward,” neural network has four essential components: 

1. A set of inputs. 

2. A processing center (“hidden layer”) with many artificial neurons 

(“neurons”). 

3. A set of output neurons. 

4. Weighted unidirectional connections from inputs to neurons, and from 

neurons to outputs (“weights” or “connections”). 
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If this design is insufficient for a given problem, more complex feedforward 

neural networks (“deep networks,” “multilayer perceptrons,” or “MLPs”) can be 

constructed by chaining several hidden layers together, so that the output of one becomes 

the input of the next. In either case, training the network is then achieved by iteratively 

changing its weights to bring its predictions closer to 100% accuracy. 

For a finished network to perform as desired at the end of its training period, each 

component must be properly configured before training even begins. While certain types 

of networks are known to work well in general for certain types of problems, many of the 

elements of configuration--batch size, epochs, dropout, layer size, etc.--can require 

intuition coupled with trial and error to maximize performance.  

 

1.2  Paper Topic 

The purpose of this study was to examine an automated alternative to the 

intuitive, human-designed approach. More specifically, the proposed process uses an 

evolutionary strategy to optimize the number of layers and neurons in a small-scale 

multilayer perceptron that identifies handwritten digits from images. The hypothesis for 

this study was that this process would have the ability to create networks that were more 

accurate than randomly-generated networks, while not requiring the amount of attention 

and input that a human-designed network would. If successful, it would suggest the 

feasibility of a “set and forget” approach to multilayer perceptron design, where the 

creator could simply set the problem up, then return a number of hours later to find a 

structurally optimized and fully-trained network. 
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1.3  Novelty of Concept 

The approach taken here differs from all previous approaches. Most experiments 

concerning the evolutionary optimization of MLPs, such as that of Vlahogianni and his 

colleagues [12], have focused on nonstructural elements like the network’s weights (as a 

replacement for the most commonly used training algorithm, backpropagation), the 

training algorithm details, or the input format. Those that do explore structural 

optimization, e.g. Rocha and his colleagues [8], do so by changing the connectivity of a 

single-layer MLP. This appears to be the first attempt to efficiently optimize the number 

of layers in a MLP and the number of neurons for each layer, and it does so without 

limiting the number of layers, neurons, and/or connections.  

 

1.4  Overview 

Chapter 2 will cover major limitations of neural networks, provide a brief 

summary of their history and development, and give a high-level explanation of their 

functionality. Chapter 3 will describe the methods used for this study, including hardware 

and software, code design and philosophy, and statistical analysis procedures. Finally, 

Chapter 4 will summarize, analyze, and discuss the results of the study. 
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CHAPTER II 

BACKGROUND 

 

2.1  Neural Network Limitations 

It is first important to understand that, however magical ANNs may appear, they 

are limited in several ways. As mentioned above, they can never reach a human level of 

accuracy on many tasks that humans perform with ease. Since they operate by finding a 

relatively simple function to approximate a complex problem, they are fundamentally 

incapable of giving the correct/best output for every input; the more varied a range of 

possible inputs, the less accurate an ANN can be.  

In addition, current ANNs cannot reason--that is, unlike humans, they cannot 

learn a fact, remember it, prioritize and analyze it, and combine it with other facts to find 

solutions. This means that, for any kind of input on which they have not explicitly been 

trained, they cannot do better on average than an algorithm that guesses randomly. 

 

2.2  History 

Neural networks are a branch of machine learning that originated from an effort to 

reproduce human intelligence from the bottom up by simulating neurons. There have 

been three major waves of interest and research in the field, each corresponding to a new 

concept or technology. 
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The first wave began in the 1940s, fueled both by new theories about how 

learning worked [6] [3] and by the creation of some of the first learning models [9], 

although the latter were only able to simulate single “perceptrons,” or neurons. Of the 

three waves, this was the one most driven by the hope that one could use artificial neural 

networks to understand the brain and/or use knowledge of the brain to improve neural 

networks. Unfortunately, neural networks were not advanced enough for the former, 

while too little was known about cognition for the latter, and this remains the case today. 

As a result of these limitations and the demonstration that networks using linear 

algorithms are unable to learn nonlinear problems [7], interest in neural networks began 

to subside. 

The second wave began in the 1980s. Investigations were made into the idea that 

systems with many simple, interconnected, multitasking parts could produce complex 

behaviors [11], and more powerful computing technology was developed that could 

simulate these new and exciting systems. In addition, the rectified linear unit [1] and 

backpropagation [10] [5 as cited in 2] algorithms for training were developed, both still 

used today and discussed in more detail below. These four advances meant that neural 

networks could now truly be networks of more than a few neurons, and much progress 

was made. But, by the mid-1990s, the number of startup companies overpromising and 

underdelivering led to another loss of interest in neural networks. 

The third wave, which is currently still rising, began in 2006 with the advent of 

networks and algorithms that are much less computationally expensive than those used 

previously [4]. These algorithms, combined with continued advances in technology that 

enable even older, slower algorithms to perform acceptably, have led to a proliferation of 
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research and discoveries in the field of machine learning. Deep neural networks in 

particular have flourished, due to their ability to outperform not only other kinds of 

machine learning, but many human-designed solutions as well. [1] 

 

2.3  Neural Network Design 

Neural networks can be visualized as a set of interconnected neurons that perform 

several different functions as each piece of data is processed. Input neurons merely 

rebroadcast received data, while processing neurons, output neurons, and connections 

modify and/or selectively transmit data. While some networks feed the output of the 

network back to input neurons, effectively simulating a simple memory and creating a 

network capable of learning trends in data (a “recurrent network”), problems such as the 

one examined in this study are better suited to a feedforward network. Since there is no 

connection between successive images of digits, any data from a previous image would 

only confuse the issue and lessen the accuracy of the network as a whole. 

Supervised learning, the training method used for this study, requires each piece 

of training data to contain both a set of numeric inputs and a corresponding set of target 

outputs. During the training process, the network alternates between two modes: 

1. The first mode, forward propagation, where the network uses the set of 

inputs to produce a set of what it “thinks” the outputs should be. [1] 

a. Each input neuron receives one numeric value, corresponding to 

one variable of the original problem--the value of one pixel, for 

example. 
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b. These values are transmitted along connections to the processing 

neurons and transformed en route by each connection’s trainable 

scalar weight. The number of processing neurons each input 

connects to can vary from one (in a sparse hidden layer) to all (in a 

dense hidden layer). 

c. Each processing neuron calculates the sum of its inputs, which is 

then transformed using an activation function that mimics the 

firing behavior of a biological neuron to some degree. This could 

be a simple binary or linear function, but most modern networks 

use more powerful nonlinear functions such as output = max {0, 

input}. This particular function is called the rectified linear unit, or 

“ReLU,” and is the function used for this study. 

d. If the network has more than one hidden layer, steps b and c are 

repeated for each additional layer, with the inputs now coming 

from the previous layer of processing neurons instead of from the 

input neurons. 

e. Finally, the output neurons each sum their inputs and then apply an 

activation function, which may be different from that of previous 

layers. Each neuron may apply the function individually, or it may 

be applied across all the outputs. For example, a classification 

problem might set the output corresponding to the most likely class 

to 1, and set all others to 0 (“softmax”). 
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2. The second mode, back-propagation, where the network is trained based 

on the accuracy of the results of the first mode. [1] 

a. The back-propagation algorithm is used to compute the gradient 

for each weight and parameter in the network--that is, to compute a 

measure of the effect of each trainable value on the final result. 

The algorithm recursively applies the calculus chain rule across 

each junction in the network, beginning at the outputs and moving 

back along to the inputs, to obtain a map of the effect of each 

value. 

b. A separate algorithm, for example stochastic gradient descent, is 

then used to modify each value based on the effect it had on the 

final outputs, and how close those outputs were to the expected 

outputs included in the training data.  

This back-and-forth between the two modes means that, every time the network 

makes a guess, it receives immediate feedback and fine-tuning. Although this makes 

supervised learning more computationally expensive than the other common training 

methods, unsupervised and reinforcement learning, it provides more immediate, guided 

results than either of the others, and remains a viable option. 

Finally, after training concludes, the network is tested on a separate set of data 

drawn from the same distribution, staying in the first mode for each piece of data. It is 

important to test on data not previously used for training in order to accurately gauge the 

network’s final accuracy during actual use with novel inputs. 
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Figure 1 Multilayer Perceptron 

This is a visual example of a simple dense feedforward multilayer perceptron with three 

input nodes {X1, X2, X3}, one hidden layer with four neurons {Y1, Y2, Y3, Y4}, and two 

output nodes {Z1, Z2}. 
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CHAPTER III 

METHODS 

 

3.1  Hardware and Software 

This project was coded and run on an Asus ROG G751JY-VS71(WX) laptop with 

an Intel Core i7-4720HQ CPU with 16 GB RAM and a NVIDIA GeForce GTX 980M 

GPU with 4 GB RAM, running Windows 10 Home version 1709. The code was written 

in Python 3.5 using the JetBrains PyCharm Community Edition 2017.3.3 IDE, and the 

neural networks were created and trained using the Keras 2.1.5 PyCharm library with the 

Tensorflow GPU 1.6.0 PyCharm library as a backend to accelerate training. 

 

3.2  Code Design 

The networks used for this study were small deep feedforward multilayer 

perceptrons, as described above. The data used for training was the Modified National 

Institute of Standards and Technology (“MNIST”) database, consisting of 70,000 28x28-

pixel greyscale images of single handwritten digits. 60,000 images were used for training, 

and the other 10,000 were reserved for testing. Each network had 784 inputs (28 * 28 

individual pixel values per image), a variable number of hidden layers and neurons (each 

neuron using the ReLU activation function), and 10 output neurons (all using the softmax 

activation function, with each neuron corresponding to a different digit). 
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Elements of Darwinian natural selection, including differential reproduction and 

mutation, were incorporated into the model. For each trial (“population”), an initial group 

(“generation”) of 18 networks (“individuals”) was generated with 1-6 hidden layers and 

50-200 neurons per layer. Each individual in the generation was trained for a fixed 

number of training runs over the entire training image set (“epochs”), then tested and 

ranked by final accuracy on the testing image set (“fitness”). The next generation was 

then created using the following algorithm: 

1. Add the structural information (“genomes”)--number of layers, number of 

neurons per layer--of the two fittest individuals in generation Gn to 

generation Gn+1, unaltered. 

2. Repeat the following 16 times, to total 18 individuals in Gn+1: 

a. Simulate reproduction: 

i. Randomly select one individual from the fittest third of Gn. 

ii. Select a contiguous block of layers (“chromosomes”) from 

the beginning of the individual’s genome, including the 

first layer and up to but not including the output layer. 

iii. Randomly select another individual from the top third of 

individuals. 

iv. Select a contiguous block of layers from the end of the 

individual’s genome, including the output layer and up to 

but not including the first layer. 

v. Splice the two parts together, creating the genome for a 

new individual. 
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b. Simulate mutation: 

i. With a 1/10 chance for each non-output layer, add or 

remove a random number of neurons between 1 and 20 

(“point mutation”). If the best fitness of Gn is less than that 

of Gn-1, the chance rises to 1/8. If in addition the best 

fitness of Gn-1 is less than that of Gn-2, the chance rises to 

1/6. 

ii. With a 1/12 chance for each individual add or remove a 

new layer with 50-200 neurons, leaving the first and output 

layers unchanged (“chromosomal mutation”). If the best 

fitness of Gn is less than that of Gn-1, the chance rises to 

1/8. If in addition the best fitness of Gn-1 is less than that of 

Gn-2, the chance rises to 1/4. 

c. Add the new individual to the next generation. 

The best fitness, the fittest individual’s genome, and the average fitness were 

archived for each generation. After 20 generations, the saved genomes for the initial, 

final, and overall-best-fitness generations (“population test individuals” or “PTIs”) were 

each trained for 20 epochs, to assess how well the initial and final products of the 

algorithm would perform in a more real-life situation. 

The numbers of generations per population, individuals per generation, initial 

hidden layers per individual, and initial neurons per layer were chosen in an attempt to 

maximize the number of trials that could be run--larger initial values tended to result in a 

prohibitive increase in the amount of time needed to run each trial. 
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The percentage of individuals considered reproductively fit, as well as the 

mutation rates in 2.b.i and 2.b.ii, were chosen based on initial results during the algorithm 

design process. While obviously not optimal, the former appeared to pass on fit genomes 

while rejecting undesirable ones. Similarly, the latter appeared to introduce a necessary 

amount of genetic variation without creating too much random fluctuation, while at the 

same time giving the next generation a “kick” of increased mutation if performance was 

decreasing. 

The dependent variable for this study was the amount of training each individual 

in a given population received before assessment of fitness: 1 epoch, 2 epochs, 3 epochs, 

or 4 epochs. Data was gathered by simulating 12 initially random populations for each 

case. This variable was chosen because of its relationship to the amount of time taken by 

the algorithm--a parallel real-world study might examine the characteristics of a crop at 1, 

2, 3, and 4 weeks of growth to determine which age provided the best early predictor of a 

plant’s health at 20 weeks. 

 

3.3  Statistical Analysis 

The average accuracies of the first and last, and first and best, PTIs were 

compared for each case to determine whether there had been a significant improvement 

in accuracy from the first generation (i.e., whether the algorithm could indeed produce 

networks more accurate than random generation could). Due to the small (< 30) sample 

size, the paired t-test was used to assess significance at a 95% level of statistical 

confidence, and Cohen’s d was used to determine how impactful the effect was. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1  Results and Analysis 

Taking the mean of all 12 instances of each generation for every case, the best 

accuracy (Table 1, Figure 1) and average accuracy (Table 2, Figure 2) were increased by 

the genetic algorithm for all four cases, as shown below.  

The important values, however, are those in Table 3, which shows the mean of all 

12 instances of each PTI for every case. Although all four mean final-generation (“last”) 

PTI accuracies were greater than their corresponding initial-generation (“first”) PTIs, the 

3- and 4-epoch cases had a much larger difference between first and last PTIs than the 1- 

and 2-epoch cases did (Figure 3), suggesting a larger chance of improvement even before 

analysis. The overall-best-accuracy (“best”) PTIs did not present any obviously 

consistent behavior, presumably due to their inconsistent distribution across generations 

(Figure 4). 

The following hypotheses were used to test the eight firstPTI-bestPTI and 

firstPTI-lastPTI differences for statistical significance: 

Null hypothesis  H0: μbestPTI ≤ μfirstPTI and alternative hypothesis  H1: μbestPTI > 

μfirstPTI, or null hypothesis  H0: μlastPTI ≤ μfirstPTI and alternative hypothesis  H1: μlastPTI > 

μfirstPTI. 
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Generation 1-Epoch 2-Epoch 3-Epoch 4-Epoch 

1 0.9487 0.9648 0.9712 0.9747 

2 0.9501 0.9657 0.9722 0.9760 

3 0.9509 0.9665 0.9729 0.9755 

4 0.9517 0.9669 0.9730 0.9767 

5 0.9527 0.9671 0.9738 0.9764 

6 0.9532 0.9676 0.9734 0.9761 

7 0.9529 0.9681 0.9735 0.9765 

8 0.9527 0.9672 0.9742 0.9763 

9 0.9524 0.9680 0.9741 0.9765 

10 0.9531 0.9683 0.9735 0.9767 

11 0.9532 0.9679 0.9734 0.9764 

12 0.9537 0.9683 0.9732 0.9766 

13 0.9535 0.9683 0.9738 0.9768 

14 0.9542 0.9676 0.9740 0.9764 

15 0.9539 0.9686 0.9734 0.9763 

16 0.9540 0.9684 0.9736 0.9766 

17 0.9541 0.9677 0.9738 0.9766 

18 0.9541 0.9680 0.9735 0.9765 

19 0.9537 0.9683 0.9739 0.9770 

20 0.9542 0.9677 0.9739 0.9769 

 

Table 1 Mean Best Accuracy Per Generation 

 

 

Figure 1 Mean Best Accuracy Per Generation 
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Generation 1-Epoch 2-Epoch 3-Epoch 4-Epoch 

1 0.9374 0.9555 0.9629 0.9676 

2 0.9403 0.9595 0.9676 0.9715 

3 0.9432 0.9610 0.9684 0.9725 

4 0.9441 0.9620 0.9688 0.9730 

5 0.9449 0.9624 0.9695 0.9736 

6 0.9455 0.9633 0.9697 0.9732 

7 0.9458 0.9628 0.9697 0.9735 

8 0.9460 0.9629 0.9703 0.9736 

9 0.9456 0.9633 0.9705 0.9735 

10 0.9455 0.9632 0.9701 0.9735 

11 0.9454 0.9636 0.9701 0.9737 

12 0.9462 0.9639 0.9698 0.9737 

13 0.9469 0.9637 0.9702 0.9736 

14 0.9467 0.9633 0.9702 0.9738 

15 0.9467 0.9637 0.9700 0.9735 

16 0.9467 0.9634 0.9704 0.9738 

17 0.9467 0.9635 0.9702 0.9735 

18 0.9461 0.9636 0.9702 0.9738 

19 0.9461 0.9635 0.9703 0.9738 

20 0.9465 0.9634 0.9706 0.9738 

 

Table 2 Mean Average Accuracy Per Generation 

 

 

Figure 2 Mean Average Accuracy Per Generation 



 

 17 

Trial Group PTI Mean Final Trained Accuracy Mean Standard Error 

1-Epoch 

First 0.9814 0.000383 

Best 0.9821 0.000338 

Last 0.9817 0.000471 

2-Epoch 

First 0.9815 0.000527 

Best 0.9818 0.000280 

Last 0.9821 0.000255 

3-Epoch 

First 0.9815 0.000381 

Best 0.9819 0.000209 

Last 0.9827 0.000228 

4-Epoch 

First 0.9813 0.000314 

Best 0.9822 0.000200 

Last 0.9826 0.000213 

 

Table 3 Mean Final Trained Accuracies 

 

 

Figure 3 Mean Final Trained Accuracies 
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As shown in Table 4 below, there were five PTIs with a significant increase in 

accuracy: the 1-epoch best PTI, and 3- and 4-epoch best and last PTIs. All five increases 

had a Cohen’s d above 0.2 and were therefore nontrivial; the 3-epoch best increase was 

small, the 1-epoch best was medium, and the three other increases were large. 

 

Trial Group Comparison T-Statistic 
Indicated Hypothesis at 

t0.05 = 1.796 
Cohen’s d 

1-Epoch 
First-Best t = 1.962 H1 d = 0.553 

First-Last t = 0.499 H0 -- 

2-Epoch 
First-Best t = 0.584 H0 -- 

First-Last t = 0.932 H0 -- 

3-Epoch 
First-Best t = 1.902 H1 d = 0.438 

First-Last t = 2.505 H1 d = 1.156 

4-Epoch 
First-Best t = 1.965 H1 d = 0.922 

First-Last t = 3.843 H1 d = 1.435 

 

Table 4 Paired T-Test and Cohen’s d Significance Results 

 

 

Figure 4 Best PTI Frequency Per Generation 
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4.2  Discussion and Conclusions 

The results of this study confirm the hypothesis that, by assessing, reproducing, 

and mutating generations of networks--in other words, using the simplest of evolutionary 

principles-- the structures of small deep feedforward MLPs can be improved.  

Even with the simple approach used, the algorithm was able to increase the 

average accuracy of the last PTIs by up to 0.00133, or 0.133%. Although this may not 

seem like a useful improvement in absolute terms, a network of this type with a 

processing throughput of 500,000 images a minute would make 665 fewer errors every 

hour. 

In addition, these results present several interesting and nontrivial possibilities for 

continued exploration, such as: 

• Due to hardware speed limitations, it was impractical to test cases beyond 

4 epochs; more epochs might or might not produce even higher accuracies. 

• One approach considered during the design of this project was to have 

networks pass on their weights in addition to their structures during 

reproduction, mimicking Lamarckian evolution; the effects of this on 

accuracy are unknown, but could be informative. 

• Many of the values used, as mentioned above, were partially intuited and 

are presumably non-optimal. Adjusting them could greatly improve the 

performance of the algorithm. 

This study, admittedly, had several limitations. The scarcity of published research 

on related topics made it difficult to confirm that no previous work was being duplicated. 

The hardware available for the project, although consistent with the intended small scale 
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of the project, was still a limitation in that it substantially limited the number of 

individuals, epochs, layers, and neurons which could reasonably be tested. In addition, 

the relatively small number of tests performed for each case meant that significance of 

results was more difficult to prove. 

However, despite these and other difficulties, this study resulted in a significant 

advance in small-scale neural network design philosophy. It is important to recognize that 

this study’s main accomplishment is a proof of principle. It answers the question of 

whether structural genetic optimization can be done, not how it can be done best or 

whether it should be done at all. This approach does indeed create networks that are more 

accurate than randomly-generated networks without requiring as much human input as 

current approaches, and it opens the door to potential streamlining of neural network 

creation. 
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