
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Honors Theses Undergraduate Research

5-1-2018

On the feasibility of using genetic algorithms to optimize the On the feasibility of using genetic algorithms to optimize the

structure of small multilayer perceptrons structure of small multilayer perceptrons

Nicholas Dinep-Schneider
Mississippi State University

Follow this and additional works at: https://scholarsjunction.msstate.edu/honorstheses

Recommended Citation Recommended Citation
Dinep-Schneider, Nicholas, "On the feasibility of using genetic algorithms to optimize the structure of
small multilayer perceptrons" (2018). Honors Theses. 31.
https://scholarsjunction.msstate.edu/honorstheses/31

This Honors Thesis is brought to you for free and open access by the Undergraduate Research at Scholars
Junction. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholars Junction.
For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/honorstheses
https://scholarsjunction.msstate.edu/ur
https://scholarsjunction.msstate.edu/honorstheses?utm_source=scholarsjunction.msstate.edu%2Fhonorstheses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/honorstheses/31?utm_source=scholarsjunction.msstate.edu%2Fhonorstheses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Template Created By: Damen Peterson 2009

On the feasibility of using genetic algorithms to optimize the structure of small multilayer

perceptrons

By

Nicholas Dinep-Schneider

An Honors Thesis

Submitted to the Faculty of

Mississippi State University

in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science

in Computer Science

in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2018

Copyright by

Nicholas Dinep-Schneider

2018

 iii

Name: Nicholas Dinep-Schneider

Date of Degree: May 7, 2018

Institution: Mississippi State University

Major Field: Computer Science

Undergraduate Advisor: Christopher Archibald

Title of Study: On the feasibility of using genetic algorithms to optimize the structure of

small multilayer perceptrons

Pages in Study: 22

Candidate for Degree of Bachelor of Science

Artificial neural networks, which mimic the human brain's ability to learn from

experiences, are increasingly being used to analyze complex datasets. However, proper

structural configuration requires intuition, trial-and-error, and frequent human attention.

This study investigates an automated alternative that uses a Darwinian evolutionary

strategy to optimize the structure of a small-scale Modified National Institute of

Standards and Technology (MNIST) image classification network. Using accuracy as a

measure of fitness, it examines the effect of varying the amount each network learns prior

to differential reproduction. The accuracy of optimized networks was significantly higher

than random initial networks, being increased by up to 0.133% (1.435 standard deviations

above initial mean accuracy). The use of evolutionary strategies in design holds promise

for producing networks that are appreciably more accurate than randomly-generated

networks without a large ongoing input of human attention.

 iv

ACKNOWLEDGEMENTS

I would not have been able to complete this honors thesis without the help of

several exceptional people.

I would like to thank Dr. Christopher Archibald, my thesis advisor, for guiding

me through this process and helping me turn my ideas into reality. I have been able to

learn and accomplish more than I had hoped, and I am truly grateful.

I would also like to thank Dr. Cindy Bethel and Mrs. Becky Gardner, for agreeing

to serve on my committee. While neither specialize in my area of research, both of them

have gone out of their way to help me see this project through to the end.

Additional thanks to the staff of the Computer Science department and of the

Shackouls Honors College, especially Dr. Joseph Crumpton and Dr. Seth Oppenheimer,

for making it possible for me to take both of my thesis classes concurrently.

Finally, I would like to thank my father, Dr. John Schneider, for his advice on

sample size and statistical analysis.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

 I. INTRODUCTION AND PROBLEM ..1

Artificial Neural Networks ..1

Paper Topic ..2

Novelty of Concept ..3

Overview ..3

 II. BACKGROUND ...4

Neural Network Limitations ..4

History..4

Artificial Neural Networks ..6

 III. METHODS ..10

Hardware and Software..10

Code Design ...10

Statistical Analysis ...13

 IV. RESULTS AND DISCUSSION ..14

Results and Analysis ..14

Discussion and Conclusions ..19

REFERENCES ..21

 vi

LIST OF TABLES

 4.1. Mean Best Accuracy Per Generation ...15

 4.2. Mean Average Accuracy Per Generation ..16

 4.3. Mean Final Trained Accuracies ...17

 4.4. Paired T-Test and Cohen’s d Significance Results ..18

 vii

LIST OF FIGURES

 2.1. Multilayer Perceptron ..9

 4.1. Mean Best Accuracy Per Generation ...15

 4.2. Mean Average Accuracy Per Generation ..16

 4.3. Mean Final Trained Accuracies ...17

 4.4. Best PTI Frequency Per Generation ..18

 1

CHAPTER I

INTRODUCTION AND PROBLEM

1.1 Artificial Neural Networks

Artificial neural networks (“neural networks,” “networks,” or “ANNs”) are

computer algorithms that attempt to mimic, to a certain degree, the human brain's ability

to learn from experiences. They are increasingly being used to analyze and understand

complex datasets like medical symptoms, trends on social media, and human speech.

Although they can never be guaranteed to be 100% accurate or optimal, well-designed

neural networks can quickly, efficiently, and accurately outperform humans on large or

complex tasks, and can even do surprisingly well in areas that have traditionally been

dominated by humans such as identifying objects in images or playing Go [13].

The key phrase, however, is well-designed. A simple unidirectional, or

“feedforward,” neural network has four essential components:

1. A set of inputs.

2. A processing center (“hidden layer”) with many artificial neurons

(“neurons”).

3. A set of output neurons.

4. Weighted unidirectional connections from inputs to neurons, and from

neurons to outputs (“weights” or “connections”).

 2

If this design is insufficient for a given problem, more complex feedforward

neural networks (“deep networks,” “multilayer perceptrons,” or “MLPs”) can be

constructed by chaining several hidden layers together, so that the output of one becomes

the input of the next. In either case, training the network is then achieved by iteratively

changing its weights to bring its predictions closer to 100% accuracy.

For a finished network to perform as desired at the end of its training period, each

component must be properly configured before training even begins. While certain types

of networks are known to work well in general for certain types of problems, many of the

elements of configuration--batch size, epochs, dropout, layer size, etc.--can require

intuition coupled with trial and error to maximize performance.

1.2 Paper Topic

The purpose of this study was to examine an automated alternative to the

intuitive, human-designed approach. More specifically, the proposed process uses an

evolutionary strategy to optimize the number of layers and neurons in a small-scale

multilayer perceptron that identifies handwritten digits from images. The hypothesis for

this study was that this process would have the ability to create networks that were more

accurate than randomly-generated networks, while not requiring the amount of attention

and input that a human-designed network would. If successful, it would suggest the

feasibility of a “set and forget” approach to multilayer perceptron design, where the

creator could simply set the problem up, then return a number of hours later to find a

structurally optimized and fully-trained network.

 3

1.3 Novelty of Concept

The approach taken here differs from all previous approaches. Most experiments

concerning the evolutionary optimization of MLPs, such as that of Vlahogianni and his

colleagues [12], have focused on nonstructural elements like the network’s weights (as a

replacement for the most commonly used training algorithm, backpropagation), the

training algorithm details, or the input format. Those that do explore structural

optimization, e.g. Rocha and his colleagues [8], do so by changing the connectivity of a

single-layer MLP. This appears to be the first attempt to efficiently optimize the number

of layers in a MLP and the number of neurons for each layer, and it does so without

limiting the number of layers, neurons, and/or connections.

1.4 Overview

Chapter 2 will cover major limitations of neural networks, provide a brief

summary of their history and development, and give a high-level explanation of their

functionality. Chapter 3 will describe the methods used for this study, including hardware

and software, code design and philosophy, and statistical analysis procedures. Finally,

Chapter 4 will summarize, analyze, and discuss the results of the study.

 4

CHAPTER II

BACKGROUND

2.1 Neural Network Limitations

It is first important to understand that, however magical ANNs may appear, they

are limited in several ways. As mentioned above, they can never reach a human level of

accuracy on many tasks that humans perform with ease. Since they operate by finding a

relatively simple function to approximate a complex problem, they are fundamentally

incapable of giving the correct/best output for every input; the more varied a range of

possible inputs, the less accurate an ANN can be.

In addition, current ANNs cannot reason--that is, unlike humans, they cannot

learn a fact, remember it, prioritize and analyze it, and combine it with other facts to find

solutions. This means that, for any kind of input on which they have not explicitly been

trained, they cannot do better on average than an algorithm that guesses randomly.

2.2 History

Neural networks are a branch of machine learning that originated from an effort to

reproduce human intelligence from the bottom up by simulating neurons. There have

been three major waves of interest and research in the field, each corresponding to a new

concept or technology.

 5

The first wave began in the 1940s, fueled both by new theories about how

learning worked [6] [3] and by the creation of some of the first learning models [9],

although the latter were only able to simulate single “perceptrons,” or neurons. Of the

three waves, this was the one most driven by the hope that one could use artificial neural

networks to understand the brain and/or use knowledge of the brain to improve neural

networks. Unfortunately, neural networks were not advanced enough for the former,

while too little was known about cognition for the latter, and this remains the case today.

As a result of these limitations and the demonstration that networks using linear

algorithms are unable to learn nonlinear problems [7], interest in neural networks began

to subside.

The second wave began in the 1980s. Investigations were made into the idea that

systems with many simple, interconnected, multitasking parts could produce complex

behaviors [11], and more powerful computing technology was developed that could

simulate these new and exciting systems. In addition, the rectified linear unit [1] and

backpropagation [10] [5 as cited in 2] algorithms for training were developed, both still

used today and discussed in more detail below. These four advances meant that neural

networks could now truly be networks of more than a few neurons, and much progress

was made. But, by the mid-1990s, the number of startup companies overpromising and

underdelivering led to another loss of interest in neural networks.

The third wave, which is currently still rising, began in 2006 with the advent of

networks and algorithms that are much less computationally expensive than those used

previously [4]. These algorithms, combined with continued advances in technology that

enable even older, slower algorithms to perform acceptably, have led to a proliferation of

 6

research and discoveries in the field of machine learning. Deep neural networks in

particular have flourished, due to their ability to outperform not only other kinds of

machine learning, but many human-designed solutions as well. [1]

2.3 Neural Network Design

Neural networks can be visualized as a set of interconnected neurons that perform

several different functions as each piece of data is processed. Input neurons merely

rebroadcast received data, while processing neurons, output neurons, and connections

modify and/or selectively transmit data. While some networks feed the output of the

network back to input neurons, effectively simulating a simple memory and creating a

network capable of learning trends in data (a “recurrent network”), problems such as the

one examined in this study are better suited to a feedforward network. Since there is no

connection between successive images of digits, any data from a previous image would

only confuse the issue and lessen the accuracy of the network as a whole.

Supervised learning, the training method used for this study, requires each piece

of training data to contain both a set of numeric inputs and a corresponding set of target

outputs. During the training process, the network alternates between two modes:

1. The first mode, forward propagation, where the network uses the set of

inputs to produce a set of what it “thinks” the outputs should be. [1]

a. Each input neuron receives one numeric value, corresponding to

one variable of the original problem--the value of one pixel, for

example.

 7

b. These values are transmitted along connections to the processing

neurons and transformed en route by each connection’s trainable

scalar weight. The number of processing neurons each input

connects to can vary from one (in a sparse hidden layer) to all (in a

dense hidden layer).

c. Each processing neuron calculates the sum of its inputs, which is

then transformed using an activation function that mimics the

firing behavior of a biological neuron to some degree. This could

be a simple binary or linear function, but most modern networks

use more powerful nonlinear functions such as output = max {0,

input}. This particular function is called the rectified linear unit, or

“ReLU,” and is the function used for this study.

d. If the network has more than one hidden layer, steps b and c are

repeated for each additional layer, with the inputs now coming

from the previous layer of processing neurons instead of from the

input neurons.

e. Finally, the output neurons each sum their inputs and then apply an

activation function, which may be different from that of previous

layers. Each neuron may apply the function individually, or it may

be applied across all the outputs. For example, a classification

problem might set the output corresponding to the most likely class

to 1, and set all others to 0 (“softmax”).

 8

2. The second mode, back-propagation, where the network is trained based

on the accuracy of the results of the first mode. [1]

a. The back-propagation algorithm is used to compute the gradient

for each weight and parameter in the network--that is, to compute a

measure of the effect of each trainable value on the final result.

The algorithm recursively applies the calculus chain rule across

each junction in the network, beginning at the outputs and moving

back along to the inputs, to obtain a map of the effect of each

value.

b. A separate algorithm, for example stochastic gradient descent, is

then used to modify each value based on the effect it had on the

final outputs, and how close those outputs were to the expected

outputs included in the training data.

This back-and-forth between the two modes means that, every time the network

makes a guess, it receives immediate feedback and fine-tuning. Although this makes

supervised learning more computationally expensive than the other common training

methods, unsupervised and reinforcement learning, it provides more immediate, guided

results than either of the others, and remains a viable option.

Finally, after training concludes, the network is tested on a separate set of data

drawn from the same distribution, staying in the first mode for each piece of data. It is

important to test on data not previously used for training in order to accurately gauge the

network’s final accuracy during actual use with novel inputs.

 9

Figure 1 Multilayer Perceptron

This is a visual example of a simple dense feedforward multilayer perceptron with three

input nodes {X1, X2, X3}, one hidden layer with four neurons {Y1, Y2, Y3, Y4}, and two

output nodes {Z1, Z2}.

 10

CHAPTER III

METHODS

3.1 Hardware and Software

This project was coded and run on an Asus ROG G751JY-VS71(WX) laptop with

an Intel Core i7-4720HQ CPU with 16 GB RAM and a NVIDIA GeForce GTX 980M

GPU with 4 GB RAM, running Windows 10 Home version 1709. The code was written

in Python 3.5 using the JetBrains PyCharm Community Edition 2017.3.3 IDE, and the

neural networks were created and trained using the Keras 2.1.5 PyCharm library with the

Tensorflow GPU 1.6.0 PyCharm library as a backend to accelerate training.

3.2 Code Design

The networks used for this study were small deep feedforward multilayer

perceptrons, as described above. The data used for training was the Modified National

Institute of Standards and Technology (“MNIST”) database, consisting of 70,000 28x28-

pixel greyscale images of single handwritten digits. 60,000 images were used for training,

and the other 10,000 were reserved for testing. Each network had 784 inputs (28 * 28

individual pixel values per image), a variable number of hidden layers and neurons (each

neuron using the ReLU activation function), and 10 output neurons (all using the softmax

activation function, with each neuron corresponding to a different digit).

 11

Elements of Darwinian natural selection, including differential reproduction and

mutation, were incorporated into the model. For each trial (“population”), an initial group

(“generation”) of 18 networks (“individuals”) was generated with 1-6 hidden layers and

50-200 neurons per layer. Each individual in the generation was trained for a fixed

number of training runs over the entire training image set (“epochs”), then tested and

ranked by final accuracy on the testing image set (“fitness”). The next generation was

then created using the following algorithm:

1. Add the structural information (“genomes”)--number of layers, number of

neurons per layer--of the two fittest individuals in generation Gn to

generation Gn+1, unaltered.

2. Repeat the following 16 times, to total 18 individuals in Gn+1:

a. Simulate reproduction:

i. Randomly select one individual from the fittest third of Gn.

ii. Select a contiguous block of layers (“chromosomes”) from

the beginning of the individual’s genome, including the

first layer and up to but not including the output layer.

iii. Randomly select another individual from the top third of

individuals.

iv. Select a contiguous block of layers from the end of the

individual’s genome, including the output layer and up to

but not including the first layer.

v. Splice the two parts together, creating the genome for a

new individual.

 12

b. Simulate mutation:

i. With a 1/10 chance for each non-output layer, add or

remove a random number of neurons between 1 and 20

(“point mutation”). If the best fitness of Gn is less than that

of Gn-1, the chance rises to 1/8. If in addition the best

fitness of Gn-1 is less than that of Gn-2, the chance rises to

1/6.

ii. With a 1/12 chance for each individual add or remove a

new layer with 50-200 neurons, leaving the first and output

layers unchanged (“chromosomal mutation”). If the best

fitness of Gn is less than that of Gn-1, the chance rises to

1/8. If in addition the best fitness of Gn-1 is less than that of

Gn-2, the chance rises to 1/4.

c. Add the new individual to the next generation.

The best fitness, the fittest individual’s genome, and the average fitness were

archived for each generation. After 20 generations, the saved genomes for the initial,

final, and overall-best-fitness generations (“population test individuals” or “PTIs”) were

each trained for 20 epochs, to assess how well the initial and final products of the

algorithm would perform in a more real-life situation.

The numbers of generations per population, individuals per generation, initial

hidden layers per individual, and initial neurons per layer were chosen in an attempt to

maximize the number of trials that could be run--larger initial values tended to result in a

prohibitive increase in the amount of time needed to run each trial.

 13

The percentage of individuals considered reproductively fit, as well as the

mutation rates in 2.b.i and 2.b.ii, were chosen based on initial results during the algorithm

design process. While obviously not optimal, the former appeared to pass on fit genomes

while rejecting undesirable ones. Similarly, the latter appeared to introduce a necessary

amount of genetic variation without creating too much random fluctuation, while at the

same time giving the next generation a “kick” of increased mutation if performance was

decreasing.

The dependent variable for this study was the amount of training each individual

in a given population received before assessment of fitness: 1 epoch, 2 epochs, 3 epochs,

or 4 epochs. Data was gathered by simulating 12 initially random populations for each

case. This variable was chosen because of its relationship to the amount of time taken by

the algorithm--a parallel real-world study might examine the characteristics of a crop at 1,

2, 3, and 4 weeks of growth to determine which age provided the best early predictor of a

plant’s health at 20 weeks.

3.3 Statistical Analysis

The average accuracies of the first and last, and first and best, PTIs were

compared for each case to determine whether there had been a significant improvement

in accuracy from the first generation (i.e., whether the algorithm could indeed produce

networks more accurate than random generation could). Due to the small (< 30) sample

size, the paired t-test was used to assess significance at a 95% level of statistical

confidence, and Cohen’s d was used to determine how impactful the effect was.

 14

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Results and Analysis

Taking the mean of all 12 instances of each generation for every case, the best

accuracy (Table 1, Figure 1) and average accuracy (Table 2, Figure 2) were increased by

the genetic algorithm for all four cases, as shown below.

The important values, however, are those in Table 3, which shows the mean of all

12 instances of each PTI for every case. Although all four mean final-generation (“last”)

PTI accuracies were greater than their corresponding initial-generation (“first”) PTIs, the

3- and 4-epoch cases had a much larger difference between first and last PTIs than the 1-

and 2-epoch cases did (Figure 3), suggesting a larger chance of improvement even before

analysis. The overall-best-accuracy (“best”) PTIs did not present any obviously

consistent behavior, presumably due to their inconsistent distribution across generations

(Figure 4).

The following hypotheses were used to test the eight firstPTI-bestPTI and

firstPTI-lastPTI differences for statistical significance:

Null hypothesis H0: μbestPTI ≤ μfirstPTI and alternative hypothesis H1: μbestPTI >

μfirstPTI, or null hypothesis H0: μlastPTI ≤ μfirstPTI and alternative hypothesis H1: μlastPTI >

μfirstPTI.

 15

Generation 1-Epoch 2-Epoch 3-Epoch 4-Epoch

1 0.9487 0.9648 0.9712 0.9747

2 0.9501 0.9657 0.9722 0.9760

3 0.9509 0.9665 0.9729 0.9755

4 0.9517 0.9669 0.9730 0.9767

5 0.9527 0.9671 0.9738 0.9764

6 0.9532 0.9676 0.9734 0.9761

7 0.9529 0.9681 0.9735 0.9765

8 0.9527 0.9672 0.9742 0.9763

9 0.9524 0.9680 0.9741 0.9765

10 0.9531 0.9683 0.9735 0.9767

11 0.9532 0.9679 0.9734 0.9764

12 0.9537 0.9683 0.9732 0.9766

13 0.9535 0.9683 0.9738 0.9768

14 0.9542 0.9676 0.9740 0.9764

15 0.9539 0.9686 0.9734 0.9763

16 0.9540 0.9684 0.9736 0.9766

17 0.9541 0.9677 0.9738 0.9766

18 0.9541 0.9680 0.9735 0.9765

19 0.9537 0.9683 0.9739 0.9770

20 0.9542 0.9677 0.9739 0.9769

Table 1 Mean Best Accuracy Per Generation

Figure 1 Mean Best Accuracy Per Generation

 16

Generation 1-Epoch 2-Epoch 3-Epoch 4-Epoch

1 0.9374 0.9555 0.9629 0.9676

2 0.9403 0.9595 0.9676 0.9715

3 0.9432 0.9610 0.9684 0.9725

4 0.9441 0.9620 0.9688 0.9730

5 0.9449 0.9624 0.9695 0.9736

6 0.9455 0.9633 0.9697 0.9732

7 0.9458 0.9628 0.9697 0.9735

8 0.9460 0.9629 0.9703 0.9736

9 0.9456 0.9633 0.9705 0.9735

10 0.9455 0.9632 0.9701 0.9735

11 0.9454 0.9636 0.9701 0.9737

12 0.9462 0.9639 0.9698 0.9737

13 0.9469 0.9637 0.9702 0.9736

14 0.9467 0.9633 0.9702 0.9738

15 0.9467 0.9637 0.9700 0.9735

16 0.9467 0.9634 0.9704 0.9738

17 0.9467 0.9635 0.9702 0.9735

18 0.9461 0.9636 0.9702 0.9738

19 0.9461 0.9635 0.9703 0.9738

20 0.9465 0.9634 0.9706 0.9738

Table 2 Mean Average Accuracy Per Generation

Figure 2 Mean Average Accuracy Per Generation

 17

Trial Group PTI Mean Final Trained Accuracy Mean Standard Error

1-Epoch

First 0.9814 0.000383

Best 0.9821 0.000338

Last 0.9817 0.000471

2-Epoch

First 0.9815 0.000527

Best 0.9818 0.000280

Last 0.9821 0.000255

3-Epoch

First 0.9815 0.000381

Best 0.9819 0.000209

Last 0.9827 0.000228

4-Epoch

First 0.9813 0.000314

Best 0.9822 0.000200

Last 0.9826 0.000213

Table 3 Mean Final Trained Accuracies

Figure 3 Mean Final Trained Accuracies

 18

As shown in Table 4 below, there were five PTIs with a significant increase in

accuracy: the 1-epoch best PTI, and 3- and 4-epoch best and last PTIs. All five increases

had a Cohen’s d above 0.2 and were therefore nontrivial; the 3-epoch best increase was

small, the 1-epoch best was medium, and the three other increases were large.

Trial Group Comparison T-Statistic
Indicated Hypothesis at

t0.05 = 1.796
Cohen’s d

1-Epoch
First-Best t = 1.962 H1 d = 0.553

First-Last t = 0.499 H0 --

2-Epoch
First-Best t = 0.584 H0 --

First-Last t = 0.932 H0 --

3-Epoch
First-Best t = 1.902 H1 d = 0.438

First-Last t = 2.505 H1 d = 1.156

4-Epoch
First-Best t = 1.965 H1 d = 0.922

First-Last t = 3.843 H1 d = 1.435

Table 4 Paired T-Test and Cohen’s d Significance Results

Figure 4 Best PTI Frequency Per Generation

 19

4.2 Discussion and Conclusions

The results of this study confirm the hypothesis that, by assessing, reproducing,

and mutating generations of networks--in other words, using the simplest of evolutionary

principles-- the structures of small deep feedforward MLPs can be improved.

Even with the simple approach used, the algorithm was able to increase the

average accuracy of the last PTIs by up to 0.00133, or 0.133%. Although this may not

seem like a useful improvement in absolute terms, a network of this type with a

processing throughput of 500,000 images a minute would make 665 fewer errors every

hour.

In addition, these results present several interesting and nontrivial possibilities for

continued exploration, such as:

• Due to hardware speed limitations, it was impractical to test cases beyond

4 epochs; more epochs might or might not produce even higher accuracies.

• One approach considered during the design of this project was to have

networks pass on their weights in addition to their structures during

reproduction, mimicking Lamarckian evolution; the effects of this on

accuracy are unknown, but could be informative.

• Many of the values used, as mentioned above, were partially intuited and

are presumably non-optimal. Adjusting them could greatly improve the

performance of the algorithm.

This study, admittedly, had several limitations. The scarcity of published research

on related topics made it difficult to confirm that no previous work was being duplicated.

The hardware available for the project, although consistent with the intended small scale

 20

of the project, was still a limitation in that it substantially limited the number of

individuals, epochs, layers, and neurons which could reasonably be tested. In addition,

the relatively small number of tests performed for each case meant that significance of

results was more difficult to prove.

However, despite these and other difficulties, this study resulted in a significant

advance in small-scale neural network design philosophy. It is important to recognize that

this study’s main accomplishment is a proof of principle. It answers the question of

whether structural genetic optimization can be done, not how it can be done best or

whether it should be done at all. This approach does indeed create networks that are more

accurate than randomly-generated networks without requiring as much human input as

current approaches, and it opens the door to potential streamlining of neural network

creation.

 21

REFERENCES

[1] K. Fukushima, “Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position,” Biological

Cybernetics, vol. 36, 1980, pp. 193-202.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.

http://www.deeplearningbook.org.

[3] D. Hebb, The Organization of Behavior, Wiley, 1949.

[4] G.E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief

nets,” Neural Computation, vol. 18, 2006, pp. 1527-1554.

[5] Y. LeCun, Modèles connexionistes de l’apprentissage, Ph.D. thesis, Université de

Paris VI, 1987.

[6] W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” Bulletin of Mathematical Biophysics, vol. 115, no. 5, 1943, pp. 115-133.

[7] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry,

MIT Press, 1969.

[8] M. Rocha, P. Cortez, and J. Neves, “Evolution of neural networks for classification

and regression,” Neurocomputing, vol. 70, no. 16-18, 2007, pp. 2809-2816.

[9] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization in the brain,” Psychological Review, vol. 65, no. 6, 1958, pp. 386-

408.

[10] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, 1986, pp. 533-536.

[11] D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, MIT Press, 1986.

 22

[12] E.I. Vlahogianni, M.G. Karlaftis, and J.C. Golias, “Optimized and meta-optimized

neural networks for short-term traffic flow prediction: A genetic approach,”

Transportation Research Part C: Emerging Technologies, vol. 13, no. 3, 2005,

pp. 211-234.

[13] M. Watson, “Computer Learns To Play Go At Superhuman Levels 'Without Human

Knowledge',” blog, 18 Oct. 2017; https://www.npr.org/sections/thetwo-

way/2017/10/18/558519095/computer-learns-to-play-go-at-superhuman-levels-

without-human-knowledge

	On the feasibility of using genetic algorithms to optimize the structure of small multilayer perceptrons
	Recommended Citation

	tmp.1634740871.pdf.17kky

