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This thesis explores the process of refactoring legacy scientific software to improve

overall usability and the ease with which a researcher can modify the software. The legacy

code is Fortran code used to run different mechanical loading scenarios on a user-defined

material subroutine. Each material is represented by a Fortran subroutine, and a separate

Fortran program was used to call the material. To upgrade this program without sacrificing

too much performance and functionality, the material subroutine is compiled into a Python

library using f2py, and the driver code is translated into Python. This paper covers this

upgrade process, the impact it had on results, and how it improved analysis of the output

data.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The field of computer programming has now been around for over 65 years [1]. Many

different methods and machines have been involved in the practice of solving problems

using electronic computers. Early in the development of computers, programming lan-

guages were created to simplify the task of writing instructions for computers to execute.

Since their inception, programming languages have evolved from low-level assembly code

into hundreds of different languages with a wide range of syntax and methods of compila-

tion [2]. Despite the immense advancements in programming that has been made over the

past two decades, many universities, research institutions, and engineering firms still run

programs written in languages that are over 40 years old.

While these programs can still be very effective at accomplishing their intended task,

there are several downsides to continuing to use these programs in their original language.

For one, legacy languages like Fortran 77 can be quite cryptic to the average entry-level

researcher today. While many researchers would resist learning to operate a tool written

in an unfamiliar language like Fortran, they would be much more willing to work with

programs written in a language with widespread use today.
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Another issue with legacy code is adaptability. A tool may be able to compute perfect

results for every iteration, but the old method of printing these results to a shell’s stdout

or saving them to a custom-formatted plain text file makes it far from convenient to analyze

results. Modern languages supply more string manipulation methods that make it easier

for the average researcher to modify the program to present the results in the most suitable

fashion. Languages like Python and R even provide native packages to visualize results

without having to pipeline the data to another tool.

How can researchers continue to keep legacy code bases relevant when there are so

many advantages to using modern scripting languages? This is the key question that mo-

tivated this research project. The aim of this research is to examine the solutions that

currently exist and explore how an ideal solution is applied to a specific project.

1.2 Approach

The process for replacing or refactoring legacy code in research institutions should be

convenient and efficient to allow researchers to take advantage of it. Given the modern

push toward cloud-computing [3] [4], a solution could be a cloud-based tool that allowed

researchers to share the updated code and collaborate over the analysis. This tool should

use a modern language that has been widely adopted in the scientific computing commu-

nity. Python has been used for scientific computing since 1995 [5]. While the choice of a

programming language ultimately depends on the needs of the project, Python comes with

a wealth of libraries and packages that make it useful for a wide range of projects. Ideally,

a researcher could upload a Fortran program to a server, convert the code into a Python

2



module, run the code on the server, and share the results with collaborators through this

cloud-based environment. This was the approach taken for this research project. Using

f2py and Jupyter notebooks, a web-based workflow for converting, running, and analyz-

ing a legacy code base was developed.
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CHAPTER 2

EXPERIMENT

2.1 Problem Background

Abaqus is a finite element (FE) software package commonly used to solve structural,

thermal, and multi-physics analyses. One of the unique features of Abaqus is that it allows

the user to specify information (e.g. stress/strain response) about certain material features

through a subroutine. It does this by providing an interface for Fortran user-defined mate-

rial subroutines (or UMATs) [6]. These UMATs determine the updated tangent stiffness

matrix and multiply it by the strain increment to determine the updated stress. One major

issue with this workflow is the inability to easily debug these UMAT files before generat-

ing results with them in Abaqus. While Abaqus is great at providing the final simulation

results, it does not display any intermediary information that would be helpful in testing

the accuracy of the UMAT subroutines. Fully debugging the UMATs would require iterat-

ing over select input parameters to understand the complete material response. To supply

some level of debugging, the Mechanical Engineering Department at MSU uses another

Fortran file, MatPointSim.f, that is meant to replace the function of Abaqus in this

scenario. It runs loading scenarios (e.g. tension, compression, and torsion) through the

UMAT procedure and displays the UMAT’s direct output (Figure 2.1).
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Figure 2.1

Flowchart of MatPointSim.f
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This method makes it much easier to test the validity of the UMAT before calling it

from Abaqus. However, because UMAT files are written in Fortran, MatPointSim.f is

also written in Fortran, which means this approach to running the UMATs suffers from all

the disadvantages of legacy code programs described in the introduction. MatPointSim.f

specifically is compiler-dependent, uses an undocumented text file as input, and prints re-

sults to an unformatted text file as well as stdout. To visualize or analyze the result data,

the output from the program would have to be exported and loaded into a separate tool or

code base. Adding these extra steps to a testing workflow is far from optimal. In short,

there needs to be a method to run/debug these UMATs in a cross-platform development en-

vironment, analyze the results in a language accessible to the average technical researcher,

and create helpful visualizations of these results with ease.

2.2 Solution

The kind of problem just described is encountered everywhere in scientific research

today [7]. Legacy code is a common occurrence now that the sphere of computational en-

gineering has been around for well over half a century. Researchers are reluctant to directly

edit code bases that have been “tried-and-true” sources of accurate results for decades. Not

only can it require a steep learning curve to translate these legacy code bases into modern

code, but a lot of times it inhibits performance. Modern languages are written more gener-

ally than older languages, and are more dependent on the vast computing power of modern

machines. Older compiled languages are written at a very low-level of abstraction and were

meant for computers with very little resources. Thus, compiled programs from Fortran or
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C will be much faster than similar scripts written in Python or Ruby [8]. Because of this,

an ideal method for refactoring legacy code would involve preserving the performance and

structure of the original code while providing an interface for modern scripting languages.

This would resemble some kind of wrapper-based solution. A wrapper handles all of the

program’s I/O and calls the original subroutine in order to do the actual computation.

To apply this approach to running the UMATs, MatPointSim.f had to be rewrit-

ten into Python to call each UMAT Fortran subroutine through a Python wrapper. This

approach not only allowed the wrapper method to be explored and tested, but also pro-

vided a way to compare this method with directly rewriting Fortran into Python, since

MatPointSim.f had to be translated into Python code. Figure 2.2 shows how both of

these methods were applied to develop a Python version of the UMAT debugging process.

2.3 Rewriting Fortran

To run the Python generated wrappers, MatPointSim.f had to be converted from

Fortran code into a Python script. While Fortran and Python are syntactically similar

enough to make this a fairly straightforward process, there are some foundational differ-

ences between the languages that provided some obstacles. This experience demonstrated

further the convenience of using a tool like f2py instead of trying to convert Fortran to

Python every time.

2.3.1 Explicit Control Transfer

One programming mechanism that was once a common concept in high-level lan-

guages is the idea of explicit control transfer [9]. This mechanism allows the programmer
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Figure 2.2

Process used to refactor MatPointSim.f
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to directly command the program to jump from one line to another. In Fortran this is man-

ifested in goto statements, which allow you to jump to a specified label. While goto

(or jump) statements were once a regular part of programming, their use was eventually

discouraged [10] [9]. Control structures such as loops, breaks, and if/else statements are

sufficient to satisfy the role the goto statement once fulfilled [11]. However, rewrit-

ing a program to use these control structures instead of goto statements is not always

straightforward. Sometimes the labels and goto statements are nested in ways that don’t

translate directly into loop or branching structures. Often, these statements will have to

be shifted or rearranged before they can be converted into loops and if/else statements

[11]. In this experiment, two labels and goto statements were used in MatPointSim.f.

One set was to iterate over the UMAT until a stress values converged to within a set toler-

ance, and the second label set repeated the entire process over a specified number of time

steps. Multiple goto statements pointed to each of these labels, so the control sequence

did not consist in a single conditional loop or branch. While it often seems impossible to

replace these unstructured control transfers with loops and if statements, in reality there

is an algorithmic process described by Erosa and Hendren that can be used to eliminate

goto statements [11]. A similar process was followed to replace the goto statements

in MatPointSim.f. Here is a snippet of the code changes that were used to eliminate

goto statements from the Fortran code:

9



Listing 2.1

Python - MatPointSim.py
whi le True : # Labe l 400

t ime [ 0 ] = t ime [ 0 ] + d t ime
. . .
whi le True : # Labe l 500

i f Kinc > MAX ITR :
t ime [ 0 ] �= dt ime
t ime [ 1 ] �= dt ime
d t ime = d t ime / 2 . 0
c o n t = True
break

Kinc += 1
. . .

i f c o n t : c o n t in u e

Listing 2.2

Fortran - MatPointSim.f
400 t ime ( 1 ) = t ime ( 1 ) + d t ime

. . .
Kinc = 0

500 i f ( Kinc . ge . M a x i t r ) then
t ime ( 1 ) = t ime ( 1 ) � d t ime
t ime ( 2 ) = t ime ( 2 ) � d t ime
d t ime = d t ime / 2
go to 400

end i f
Kinc = Kinc + 1
. . .

As the code demonstrates, each label was replaced with a while loop header. The

difficult part came at eliminating the line

go to 400

in the Fortran code, because this goto is in a nested loop (label 500). To allow this

goto to completely exit the inner loop and restart the outer loop, the boolean flag cont

was added. If this flag was set when the loop completed (the break was hit), then a

continue statement was used to restart the outer loop.

While the process of eliminating goto statements requires some care (not to mention

a fair amount of debugging), it is indeed doable and intuitive. It is something that will be

required often when translating legacy code into modern high-level languages.
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2.3.2 Indexing

Another complexity that was encountered in converting MatPointSim.f into

MatPointSim.pywas replacing Fortran’s one-based array indexing with Python’s zero-

based array indexing. Most of situations where indexing was an issue, it was simply a mat-

ter of subtracting one from an index value whenever an array was accessed in the Python.

However, some transformations were needed when the Fortran used certain operations on

index values. An example of this was when MatPointSim.f used the modulo operator

to modify the loading directions based on the mechanical operation. To have k be a valid

Python index but still result in the expected use of the modulo operator, the math had to be

altered slightly:

Listing 2.3

MatPointSim.f
i f ( lm . eq . ’TC ’ ) then

. . .
k = j
i = mod ( k ,3 )+1
j = mod ( k +1 ,3)+1

Listing 2.4

MatPointSim.py
i f l o ad ing mode == ”TC” :

. . .
k = l o a d i n g j � 1
i = l o a d i n g j % 3
j = ( l o a d i n g j +1) % 3

The index of the first element is not the only thing that is different about Fortran’s array

indexing. For multi-dimensional arrays, Fortran uses “column-major” ordering instead of

“row-major” ordering [12]. This means that when a 2D array (a matrix) is accessed, the

column index is the first one specified.

• Column-major order: array(col, row)

• Row-major order: array[row][col]

11



Row-major ordering is used in most common programming languages like C or Python’s

numpy library [13]. Thus, using a consistent index order is necessary when writing Python

code that is supposed to call Fortran routines. Python’s numpy library will raise a warning

whenever a Fortran subroutine is called with a numpy array that uses row-major order

instead of column-major order. To remedy this, the Python program (in the case of this

project, MatPointSim.py) has to merely convert all numpy arrays into Fortran-style

numpy arrays. The numpy method numpy.asfortranarray accomplishes this exact

task [14]. The code in MatPointSim.py runs any numpy arrays through this method

to ensure that the arrays use the same index ordering that Fortran will expect.

2.4 Fortran to Python Interface Generator

Once MatPointSim.f was rewritten as MatPointSim.py, the only step that re-

mained was to determine how to call the Fortran UMAT subroutines from a Python script.

While there are a few different software tools available for interfacing different languages

with Python, the tool selected for this project is a library aptly named, f2py.

2.4.1 F2PY

Pearu Peterson first released f2py as a single Python script in 1999 as the ”Fortran to

Python Interface Generator” (FPIG) [15]. It became part of Python’s numpy bundle in

2007, when it began to see more widespread use. The goal of f2py is to create a software

tool that

• No prior knowledge of mixed-programming techniques should be re-
quired to create and to use the interfaces between Python and Fortran
programs.
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• The development of a Fortran library of subprograms and a Python pro-
gram using that library, should be independent. That is, neither the For-
tran nor the Python user need not to be familiar with the other language.

• Creating robust and immediately usable wrappers between Fortran and
Python programs should be automatic and triggered by a single com-
mand. However, there should also be an opportunity to tune the inter-
faces.

• The interface generator tool should take advantage of the information
available in the Fortran source code and create as Pythonic an interface
as possible.

• The interfacing solution should be as easy to use for large Fortran li-
braries (with thousands of subprograms) as for a simple Fortran proce-
dure (Fortran function or subroutine). [16] [17]

The primary function of f2py is compiling Fortran files into a Python library file that

can be imported into another Python program. The f2py compiler completes this process

by parsing the Fortran code to determine argument types and intents (e.g. input variables

and output variables), compiling the Fortran code with the environment’s standard Fortran

compiler, and generating Pythonic wrappers for the compiled targets that account for the

argument types determined during the parse stage [17].

2.4.2 Basic Use

The complexity of using f2py depends on the project to which it is being applied. Some

basic Fortran subroutines can be compiled directly without the f2py user having to make

any intermediate specifications. However, in the majority of cases, the tool will require

the user to specify at least the intent of arguments to each subroutine for it to compile

correctly [17]. While recent versions of Fortran have the programmer specify the intent of

subroutine arguments in the code, programs written in past versions will require the f2py

13



user to specify the intents in a special file called the “signature file”. These intents can be

one or more of the following options [17]:

• in: Input parameters. These parameters will be treated as input parameters that are
not changed in the subroutine.

• out: Output parameters. All parameters labeled with this intent will be returned in
a list at the end of the subroutine.

• inplace: Parameters labeled “inplace” are input/output variables whose value will
be modified in place. This is similar to pass-by-reference in C++.

• copy: A variation of the in class. These parameters are treated as inputs, but copies
of them will be made for the subroutine so the original value isn’t altered.

There are a few other intent options that can be used as well; however, the above

covered the needs of this project.

2.4.3 Application to the Experiment

F2py was used to compile the UMAT Fortran subroutines into Python bindings for

MatPointSim.py. This process required a few different steps to complete. First, all

of the inline comments (comments starting with !) had to be removed before it would

successfully compile the program due to the version of Fortran f2py used. However, this

was the only time the syntax of the UMAT had to be modified. Theoretically, if the versions

of Fortran were the same, the Fortran code would not have to be edited. Once the file was

compiling successfully, the only further step was to assign intent attributes for the main

variables of the subroutine. F2py was used to generate a signature file for the subroutine,

and this signature file was edited to specify the input/output intent of the UMAT arguments.

While most of the parameters were untouched (leaving them as intent(in) arguments)

14



the primary output variables were specified as intent(out). As described earlier, this

meant that they were all returned from the function in a tuple.

Once the signature file was setup correctly (this required very minimal editing), the

original UMAT file was compiled along with the signature file. f2py generated the

Python.
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CHAPTER 3

VISUALIZATION

3.1 Timing

One of the disadvantages of converting a program from compiled code to a scripted

language is the performance. Python executes by compiling a Python script into virtual

machine code that it then executes in line-by-line fashion [18]. This virtual machine

code must be executed by the Python interpreter, which gives it the advantage of being

platform-independent. Any operating system that has a Python interpreter installed can

execute Python virtual machine code [19]. However, because this virtual machine code

cannot be run directly on the operating system like assembly language, it has a much

higher performance overhead than compiled languages like C or Fortran. This difference

becomes evident when comparing MatPointSim.f to MatPointSim.py. Although

the UMAT code is in compiled Fortran for both programs, MatPointSim.py takes on

the overhead of calling the UMAT from Python virtual machine code. To measure the exact

difference, both programs were timed and recorded for five runs using a simple tension and

compression loading scenario. Figure 3.1 shows the performance advantage of the pure

Fortran.

While exact performance difference is obviously machine and operating system depen-

dent, these timing measurements show a 300% increase in time to run the Python version

16



Figure 3.1

Test Case Performance of Python and Fortran

of the code. While this only results in a single second of extra time in the simple use case

of the UMAT program, it demonstrates how the overhead of a modern scripting language

can negatively impact performance.

3.2 Interactive Notebooks

One of the major advantages of using a modern scripting language like Python for sci-

entific computing is the wide variety of software tools and libraries that are readily avail-

able. Jupyter (previously iPython) is one such tool [20]. Jupyter is a web-based develop-

ment environment that allows users to write snippets of code and see them run interactively

in a web browser [20]. A researcher can create a Jupyter notebook and start analyzing data

in the browser, getting interactive results in the form of plots, tables, and even other html

widgets. The user can even execute certain snippets of code separately from the whole,

17



so certain results can be refreshed without having to run the entire notebook again. This

workflow is ideal for all kinds of simulations, particularly those that involve a lot of pro-

cessing and data generation [21]. Using Jupyter notebooks is an easy way to demonstrate

the advantages using f2py to convert Fortran simulations into a language like Python.

Once MatPointSim was converted to a Python program that called f2py-compiled

subroutines, Jupyter notebooks were used to run the program and interact with the results.

All of the visualizations and experiments demonstrated in the next few sections were gen-

erated with the use of Jupyter notebooks.

3.3 Generating Data

Converting MatPointSim into Python made it much easier to modify the code to

generate new sets of data. By importing the main function of MatPointSim.py into a

Jupyter notebook, it became possible to iterate over several new input variables to conduct

more thorough tests than were run before. The first variable to be tested was the loading

direction. Listing A.1 in the appendix contains the code used to iterate over all nine loading

directions, run MatPointSim for each loading scenario, and save the stress and strain

from each run. From this code it only takes a few lines of code to then plot the stress

tensors for each of these loading scenarios, as demonstrated in Listing A.2. This results in

the plots shown in Figure 3.4. The component that receives the most stress can be seen to

vary depending on the direction the load is applied. In this and all of the following plots,

the stress and strain tensors are arrays that represent values in the following stress/strain

matrix:
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These plots allow the user to run a UMAT and see whether it is providing the expected

results. Several different variables can be iterated over, and the material response can be

quickly and compactly plotted to determine the UMAT’s accuracy. This is a vast improve-

ment over digging through tables of text output in a file.

3.4 Plotting

Once the code to call MatPointSim.py and generate data has been written, the

notebook allows the user to experiment with different visualization techniques without

having to rerun MatPointSim’s main subroutine over and over again. Because of the

flexibility of Jupyter notebooks, rendering new plots is simply a matter of changing the

input file and rerunning the notebook. The loading scenario in the included plots involves

simultaneous compression and torsion. Figure 3.2 through Figure 3.4 demonstrate the kind

of plots that can be generated from MatPointSim.py in a Jupyter notebook. Loading

directions cannot be the same in the torsion and compression scenario, which is why plots

in the diagonal of Figure 3.4 are missing.

Python and Jupyter have tools that can be used to plot even 3D meshes. Using the

plotly[22] Python library, plots containing 3D elements can be rendered inside of a

Jupyter notebook. This can be used to visualize the deformation gradient generated by
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Figure 3.2

Stress Tensor

Figure 3.3

Strain Tensor

20



Figure 3.4

Stress at different loading directions
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the UMAT. This is done by applying the deformation gradient matrix to the vertices of a

cube rendered in plotly [23] [24]. Figure 3.5 demonstrates the deformation loading that

MatPointSim.py performs in a simultaneous torsion and compression loading sce-

nario. Most of the code for this plot involves mapping the deformation gradient generated

by the UMAT to cube vertices. Listing A.3 demonstrates the conciseness of the plotting

routine using plotly in a Jupyter notebook.

3.5 Cloud-based solution

Jupyter notebooks run from a web server normally hosted on the client’s machine.

However, because Jupyter is a web-based tool, it is perfectly possible to launch a Jupyter

server on a remote machine and therefore permit multiple people to access the same Jupyter

notebook from two different machines. A researcher can use this feature to give a colleague

access to a hands-on analysis of research results. Not only can a researcher see the plots

and figures that a colleague is generating, he/she can modify the program interactively to

change the presentation of results or conduct different analysis in the notebook.

This aspect of Jupyter notebooks can be applied to the UMAT project to make it a

cloud-based process. Using a Jupyter server on a remote machine, a researcher can upload

their UMAT to the server and run a specified notebook to convert the UMAT and auto-

matically generate plots to test it. Jupyter notebook allows operating system commands

to be run by preceding the line with a “!”. Thus, the Python module for a UMAT can be

generated in a notebook with the single line:

!f2py -c plasticity t.pyf plasticity umat.f
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Figure 3.5

Deformation resulting from MatPointSim.py
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Because all of the UMATs share the same set of parameters, a common signature

file (plasticity t.pyf) can be used for all of them. To debug a UMAT, the user

uploads the Fortran file, changes the name of the UMAT in the Jupyter notebook (i.e.

plasticity umat.f), and runs the notebook. When the notebook is finished, the user

can use Python to code more analysis and plots, and he/she can share these results by either

pointing colleagues to the server or sending the notebook with supporting files.
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CHAPTER 4

CONCLUSION

The aim of this research project was to explore the process of refactoring legacy code

to keep outdated (but useful) programs relevant to the modern researcher. Fortran code

written as a plugin (UMAT) for Abaqus was used to demonstrate this process. The For-

tran program (MatPointSim.f) that called this UMAT was translated into Python,

while the UMAT was compiled using f2py to avoid having to directly modify the code.

MatPointSim.py imported the UMAT’s compiled (.pyf) module and called it as a

Python function. Once the code was converted to a Python program, the performance

was evaluated and the program was used to generate different visualizations that would not

have been practical in Fortran.

4.1 Advantages

While there are some downsides to converting the UMAT testing process to Python

(such as poorer performance), the advantages far outweighed these downsides.

4.1.1 Platform-Independence

Fortran has been around for over 60 years now, and has evolved substantially over that

period [25]. While considerable effort has been put forward to keep Fortran versions as
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backward compatible as possible, not all Fortran compilers honor that goal and support

older versions of Fortran code. Because of this, it often takes some measure of tampering

with the program or compiler parameters in order to build older versions of Fortran code.

This makes running something like MatPointSim.f on a new machine a nontrivial pro-

cess. However, because f2py compiles the UMAT’s Fortran code into a Python module,

running MatPointSim.py is not a compiler-dependent or platform-dependent process.

The user can simply drop the scripts onto their file system, ensure they have Python in-

stalled, and run the program. While few entry-level researchers will know how to write or

compile Fortran code, almost all will have a level of familiarity with Python and will be

much more willing to use a program written in Python than one in Fortran.

4.1.2 Increased Functionality

Probably the most significant advantage of using a scripting language like Python is

the increased functionality it offers. Generating new results by iterating over different

input variables and then plotting those results only requires a few lines of code in Python.

Python also offers a wide range of builtin libraries and environments (such as the Jupyter

notebooks) that provide flexibility in working with simulations and result data.

4.1.3 Adaptability

As mentioned previously, it is much easier for today’s STEM researchers to read and

modify scripted Python code than to edit and recompile Fortran code. As Python continues

to gain steam in the scientific community [26], programs written in Python will see more

sustained future use than a program written in an outdated version of Fortran. According
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to a study done in 2012 of mechanical engineering programs in the United States, 20 out

of 74 said they taught Fortran in a required ME course [27].

4.1.4 Collaboration

Using Jupyter notebook provides a streamlined user experience that is especially use-

ful to researchers that are collaborating on a computing project. For the UMAT project,

a Jupyter server can now be setup on a remote machine that MSU researchers can easily

access. If a faculty member wants to test the validity of a new UMAT file before pub-

lishing results through Abaqus, he/she can upload the file to the remote machine and run

the Jupyter notebook used for testing. The notebook can handle the conversion to Python,

gathering results, and generating of the plots all in one web page, quickly and easily pre-

senting the researcher with everything he/she needs to know if the UMAT is providing

expected results. If the researcher wants to write any more custom tests for the UMAT,

he/she can code new tests in Python directly in the web page and see interactive results,

potentially without even having to rerun the UMAT.

4.2 Future Work

Now that the process for testing Fortran UMAT’s is in Python, there are several more

steps that could be taken to make the testing as streamlined and flexible as possible. By

using Python GUI libraries or even continuing to use Jupyter notebooks, an interface could

be created for selecting different loading scenarios and input variations to run the UMAT

on. Results could be immediately presented in the form of plots or tables that would be

compared with expected values. If tests on lots of variations of the inputs are desired,
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the program could even be parallelized with relative ease using MPI (Message Passing

Interface) and Python’s mpi4py library.

The foundational work for all kinds of improvements has been accomplished. Even

a researcher with just a basic understanding of Python could implement new features or

modifications to how the UMATs are tested. Whatever direction the software will be taken

next just depends on what kind of features or tools researchers want out of it.

28



REFERENCES

[1] J. E. Sammet, “Programming Languages: History and Future,” Commun. ACM, vol.
15, no. 7, 7 1972, pp. 601–610.

[2] “TIOBE Programming Community Index Definition,” 2018, Available at
https://www.tiobe.com/tiobe-index/programming-languages-definition/.

[3] A. Ricadela, “Computing heads for the clouds,” Business Week, 2007.

[4] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good,
“On the Use of Cloud Computing for Scientific Workflows,” 2008 IEEE Fourth

International Conference on eScience, 2008, pp. 640–645.

[5] K. J. Millman and M. Aivazis, “Python for Scientists and Engineers,” Computing in

Science & Engineering, vol. 13, no. 2, 2011, pp. 9–12.

[6] R. D. Mcginty, Multiscale Representation of Polycrystalline Inelasticity, doctoral
dissertation, Georgia Institute of Technology, 2001.

[7] A. van Deursen, P. Klint, and C. Verhoef, “Research Issues in the Renovation of
Legacy Systems,” Fundamental Approaches to Software Engineering, J.-P. Finance,
ed., Berlin, Heidelberg, 1999, pp. 1–21, Springer Berlin Heidelberg.

[8] J. K. Ousterhout, “Scripting: higher level programming for the 21st Century,” Com-

puter, vol. 31, no. 3, 1998, pp. 23–30.

[9] L. Marshall and J. Webber, “Gotos Considered Harmful and Other Programmers’
Taboos.,” PPIG, 2000, p. 14.

[10] E. W. Dijkstra, “Letters to the Editor: Go to Statement Considered Harmful,” Com-

mun. ACM, vol. 11, no. 3, 3 1968, pp. 147–148.

[11] A. M. Erosa and L. J. Hendren, “Taming control flow: a structured approach to
eliminating goto statements,” Proceedings of 1994 IEEE International Conference

on Computer Languages (ICCL’94), 1994, pp. 229–240.

[12] “Fortran Programming Guide,” 2010, Available at
https://docs.oracle.com/cd/E19957-01/805-4940/6j4m1u7qp/index.html.

29



[13] D. M. Ritchie, B. W. Kernighan, and M. E. Lesk, The C programming language,
Prentice Hall Englewood Cliffs, 1988.

[14] “numpy.asfortranarray,” 2018, Available at https://docs.scipy.org/doc/numpy-
1.15.0/reference/generated/numpy.asfortranarray.html.

[15] P. Peterson, “f2py history and future,” 2006, Available at
http://pearu.blogspot.com/2006/07/f2py-history-and-future.html.

[16] P. Peterson, F2PY: A tool for connecting Fortran and Python programs, vol. 4, 1
2009.

[17] P. Peterson, “F2py users guide and reference manual,” Revision, vol. 1, 2005, pp.
2001–2005.

[18] J. Aycock, “Converting Python virtual machine code to C,” Proceedings of the 7th

International Python Conference, 1998, pp. 76–78.

[19] M. Lutz, Learning Python: Powerful Object-Oriented Programming, ” O’Reilly
Media, Inc.”, 2013.
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APPENDIX A

CODE SNIPPETS
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This appendix contains some of the code snippets that were used in a Jupyter notebook

to generate the plots shown throughout this thesis. Listing A.1 is essentially a driver for

MatPointSim that repeats a loading scenario over nine different loading directions.

Listing A.1

Iterating UMAT Call
from MatPointSim import sim

a l l s t r e s s = [ ]
a l l s t r a i n = [ ]
a l l t i m e = [ ]
f o r i in range ( 3 ) :

a l l s t r e s s . append ( [ ] )
a l l s t r a i n . append ( [ ] )
a l l t i m e . append ( [ ] )
f o r j in range ( 3 ) :

t ime , e f f , s t r e s s , s t r a i n = sim ( l o a d i n g i = i +1 ,
l o a d i n g j = j +1)

a l l s t r e s s [ i ] . append ( s t r e s s [ : ] )
a l l s t r a i n [ i ] . append ( s t r a i n [ : ] )
a l l t i m e [ i ] . append ( t ime [ : ] )

The code in Listing A.2 can then be used to plot the stress over each of these loading

directions.

Listing A.3 contains code that uses a Python library called plotly to visualize the de-

formation of the material caused by the loading scenario.
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Listing A.2

Plotting Stress
f i g , axs = p l t . s u b p l o t s ( 3 , 3 , f i g s i z e = ( 1 5 , 1 0 ) )
f o r j in range ( 3 ) :

f o r k in range ( 3 ) :
t ime = a l l t i m e [ j ] [ k ]
n = l e n ( t ime )
i f not n : # S k i p p l o t s t h a t don ’ t have da ta

axs [ j , k ] . a x i s ( ’ o f f ’ )
c o n t in u e

# Normal i z e S t r e s s

s t r e s s = np . a r r a y ( a l l s t r e s s [ j ] [ k ] )
s min = s t r e s s . min ( )
s max = s t r e s s . max ( )

f o r i in range ( 6 ) :
axs [ j , k ] . s c a t t e r ( t ime ,

[ i +1 , ]⇤ l e n ( s t r e s s ) , s =144 ,
c =[ s [ i ] f o r s in s t r e s s ] ,
vmin=s min , vmax=s max ,
cmap= p l t . cm . coolwarm )

axs [ j , k ] . s e t t i t l e ( ” S t r e s s wi th l o a d i n g {} ,{} ” . format (
j +1 , k + 1 ) )

axs [ j , k ] . s e t x l a b e l ( ” Time ” )
axs [ j , k ] . s e t y l a b e l ( ” Tensor Components ” )

from m a t p l o t l i b . l i n e s import Line2D
l e g e n d i t e m s = [ Line2D ( [ 0 ] , [ 0 ] , c o l o r = ’w’ ) ,

Line2D ( [ 0 ] , [ 0 ] , marker = ’ o ’ , c o l o r = ’w’ ,
m a r k e r f a c e c o l o r = p l t . cm . coolwarm ( 0 ) , m a r k e r s i z e =15) ,
Line2D ( [ 0 ] , [ 0 ] , marker = ’ o ’ , c o l o r = ’w’ ,
m a r k e r f a c e c o l o r = p l t . cm . coolwarm ( 1 . ) ,
m a r k e r s i z e = 1 5 ) ]

axs [ 1 , 1 ] . l e g e n d ( l e g e n d i t e m s ,
[ ’ Shaded t o show s t r e s s i n t e n s i t y ’ , ’Minimum S t r e s s ’ ,
’Maximum S t r e s s ’ ] , l o c =” c e n t e r ” , f o n t s i z e = ’ l a r g e ’ )

p l t . t i g h t l a y o u t ( )
p l t . show ( )
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Listing A.3

Deformation Plot
from p l o t l y import t o o l s

a l l d a t a = [ ]
f o r d e f g r d in a l l d f g r d [ i ] [ j ] :

d e f g r d = np . a r r a y ( d e f g r d )
c o o r d s = z i p ( x , y , z )
new coords = [ np . a r r a y ( c ) f o r c in c o o r d s ]
new coords = [ ( np . d o t ( d e f g r d [ 0 ] , coo rd ) , np . d o t ( d e f g r d [ 1 ] ,

coo rd ) , np . d o t ( d e f g r d [ 2 ] , coo rd ) )
f o r coord in new coords ]

new coords = z i p (⇤ new coords )

d a t a = [
go . Mesh3d (

x = new coords [ 0 ] ,
y = new coords [ 1 ] ,
z = new coords [ 2 ] ,
i = [ 7 , 0 , 0 , 0 , 4 , 4 , 6 , 6 , 4 , 0 , 3 , 2 ] ,
j = [ 3 , 4 , 1 , 2 , 5 , 6 , 5 , 2 , 0 , 1 , 6 , 3 ] ,
k = [ 0 , 7 , 2 , 3 , 6 , 7 , 1 , 1 , 5 , 5 , 7 , 6 ] ,
f l a t s h a d i n g =True ) ]

a l l d a t a . append ({ ’ d a t a ’ : d a t a } )

new da ta = [ a l l d a t a [ 0 ] [ ’ d a t a ’ ] [ 0 ] ,
a l l d a t a [ l e n ( a l l d a t a ) / 2 ] [ ’ d a t a ’ ] [ 0 ] ,
a l l d a t a [ �1][ ’ d a t a ’ ] [ 0 ] ]

l a y o u t = go . Layout (
x a x i s =go . l a y o u t . XAxis (

t i t l e = ’ x ’ ,
) ,

y a x i s =go . l a y o u t . YAxis (
t i t l e = ’ y ’

) )

f i g = go . F i g u r e ( d a t a = new data , l a y o u t = l a y o u t )
py . o f f l i n e . i p l o t ( f i g , f i l e n a m e = ’ Simul Compress ion T o r s i o n ’ )
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