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 The purpose of this thesis is to obtain a better understanding of how radiation damages 

tungsten and tungsten alloys by comparing material properties of these materials before and after 

radiation as well as determining effective methods to obtain these material properties. Existing 

literature was reviewed to compare the differences in material properties of virgin and irradiated 

tungsten. Additionally, numerical analyses were performed on tungsten and tungsten-rhenium to 

determine indentation modulus. Abaqus was used to run finite element simulations and complex 

mathematics to replicating a series of indentations about the material of interest was coded into 

Python. The input of both of these methods were the elastic constants of the material in question, 

either tungsten or tungsten-rhenium, and the output was the indentation modulus.  

 

Key words: Nanoindentation, Tungsten, Python, Abaqus, Indentation Modulus 

 

 

  



 iii 

ACKNOWLEDGEMENTS 

 

 I would like to thank the Shackouls Honors College and Dr. Seth Oppenheimer for 

encouraging me to go beyond the minimum requirements for my degree. Thank you to Dr. 

Matthew Priddy and the Bagley College of Engineering for providing me the opportunity to 

participate in this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 iv 

 TABLE OF CONTENTS  

ACKNOWLEDGEMENTS………………………………………………………………………iii 

LIST OF FIGURES………………………………………………………………………………. v 

CHAPTER  

1. INTRODUCTION………………………………………………………………………... 1 

1.1 Motivation…………………………………………………………………...... 1 

1.2 Understanding Nuclear Reactors……………………………………………... 2 

1.3 Fission………………………………………………………………………… 3 

2. PROBLEM BACKGROUND……………………………………………………………. 6 

2.1 Experimental Radiation………………………………………………………. 6 

2.2 Spherical Nanoindentation……………………………………………………. 8 

2.3 Tungsten and its Alloys……………………………………………………... 14 

2.4 Summary of Literature Review……………………………………………… 17 

3. RESEARCH METHODS……………………………………………………………….. 18 

3.1 Research Focus……………………………………………………………… 18 

3.2 Finite Element Analysis……………………………………………………... 18 

3.3 Analytical Analysis using Python…………………………………………… 23 

4. CONCLUSION…………………………………………………………………………. 27 

4.1 Confirmation of Methods……………………………………………………….. 27 

4.2 Visualization of Results………………………………………………………… 28 

4.3 Limitations and Benefits………………………………………………………… 31 

4.4 Future Work…………………………………………………………………….. 35 

REFERENCES………………………………………………………………………………….. 36  



 v 

LIST OF FIGURES 

1.2 Commercial nuclear power reactors in the United States…………………………. 2 

1.3 Nuclear fission chain and single reactions………………………………………... 3 

2.2 Comparison of micrometers and nanometers in distinguishing titanium phases…. 8 

2.2 Indentation zone and structural length scales of different spherical indenter radii.. 10 

2.2 Layers in Tungsten caused by radiation damage………………………………….. 12 

2.2 Defining total, plastic, and final indentation depths ……………………………… 13 

2.3 Radiation and indentation effects of irradiated surfaces at a nanoscale………….. 15 

2.3 Concentration of elements present in W and W-30% V………………………….. 16 

3.2 Comparing experimental and FEM load-displacement graphs…………………… 19 

3.2 Comparing experimental and FEA by varying indenter tips……………………... 20 

3.2 Spherical nanoindentation model in Abaqus……………………………………… 21 

3.2 Mesh used for FEM in Abaqus…………………………………………………… 22 

3.3 Reference systems created to perform the analytical solution……………………. 25 

4.2 Snippets of script from both Python and Abaqus…………………………………. 29 

4.2 Data visualization of Abaqus results……………………………………………… 30 

4.3 Force-penetration curve and indention profile for nanoindentation and FEA……. 32 

4.3 Conical spherical indenter with blunt tip of radius considered…………………... 33 

4.3 Comparison of experimental and FE simulation results………………………….. 33 

 

 



 1 

CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 While it is useful to have an understanding of the properties of an unaltered material, 

realistically, materials do not maintain these natural or virgin properties throughout their usage as 

they are exposed to conditions that may cause damage1. Examples of such damage range from 

general wear of a material to radiation exposure. Understanding the effect radiation has on a 

material’s properties is significant for a variety of applications, including military use and nuclear 

energy plants. By studying irradiated materials and increasing the available data about properties 

of irradiated materials, the potential exists to decrease the impact radiation has on shortening the 

length of a material’s useful life2. While different components of nuclear reactors require varying 

useful lives to be commercially viable, the common acceptable life for first wall components 

(which are typically composed of tungsten) range from two to five years3.  

 The focus of the present study is to obtain a better understanding of how radiation damages 

tungsten and tungsten alloys by comparing material properties of these materials before and after 

radiation as well as determining effective methods to obtain these material properties. Because of 

limitations in resources, this research seeks to investigate existing literature to compare the 

material properties of virgin and irradiated tungsten and to perform numerical analyses on tungsten 

and tungsten-rhenium to determine indentation modulus. These analyses include performing a 

finite element simulation using Abaqus and using complex mathematics to replicate a series of 

indentations about the material of interest.  
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1.2 Understanding Nuclear Reactors 

A variety of energy sources for electricity production exist, from the more common fossil 

fuels to solar and wind power. Of these different types, nuclear energy is one of the most 

controversial forms of energy that is currently used because of the fear that surrounds radioactive 

materials. In the United States, nuclear plants were first built and used in the late 1950s and had 

productive life expectations of thirty to fifty years. At the time, the need to decrease fossil fuel use 

and decrease the amount of air and land pollution allowed for the popularity and acceptance of 

such nuclear reactors. In some cases, nuclear reactors consume over a million times less fuel than 

coal-fired plants to produce the same amount of energy7. In 2017, about twenty percent of the 

electricity generated in the United States was nuclear. France currently relies on nuclear power for 

seventy-five percent of the nation’s energy8. Figure 1 below shows a map of the locations of the 

99 commercial nuclear reactors. However, the presence of nuclear reactors is declining within the 

United States for a number of reasons, including public perception and the improved feasibility of 

solar and wind energy8,9. The long half-lives of the products from the nuclear reactors require 

decades to centuries of secure storage7.  

 

Figure 1. A map of the 99 commercial nuclear power reactors in the United States as of May 

201710. 
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Nuclear reactors obtain energy in the form of heat from fission reactions that occur within 

the core of the reactor. Heat is created from the fission reactions in the nuclear reactor and 

transferred to water that is pumped past nuclear fuel rods11. The heated water turns into steam that 

generates work through a turbine. 

 

1.3 Fission 

Nuclear power plants are powered by the thermal energy created during nuclear fission. 

Figure 2 shows a diagram of neutron-beam fission radiation.  

 

 

Figure 2. Nuclear fission (a) chain reaction and (b) single reaction14. 

(a) 

(b) 
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During fission, a nucleus is hit with another particle, typically a neutron. As a result, the 

original nucleus is split into different product nuclei, which have new properties than the original 

nucleus. In addition to these product nuclei, neutrons are also released, which act to continue the 

fission process by hitting more nuclei and repeating the process. The product of the reactions 

differs based on the identity of the original nucleus. Uranium isotopes are commonly used as 

nuclear fuel, with uranium-235 being the best for fission chain reactions. However, only about 

0.7% of uranium is uranium-235, so it is not a widely available resource11,14.  

Another consideration for fission chain reactions is the containment of the reactions, both 

through moderators and shielding materials. To slow down the fission chain reaction so that the 

temperature of the reactor may be controlled for safety purposes and to aid in the ability of 

harnessing all of the energy produced, moderators such as water or heavy water, water whose 

hydrogen atoms are replaced by deuterium (a hydrogen isotope), are placed within the uranium11. 

The moderator absorbs neutrons from the fission reactions to prevent them from striking uranium 

nuclei to continue the reaction. However, a balance must be obtained to ensure that enough 

neutrons are hitting uranium nuclei to continue the fission without allowing too many to hit 

uranium nuclei so that the reactions do not all happen too quickly to be able to effectively use the 

thermal energy produced. Shielding materials surround this fission reaction site to control which 

materials the neutrons hit, as well as to contain the area where irradiated materials exist. Because 

of the nature of their use, both moderators and shielding materials are hit with neutrons during the 

fission process. This causes a change in identity and properties for the nuclei of these two materials 

that are impacted.  
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Much of the fear surrounding nuclear energy is the association with nuclear weapons, 

which is out of the scope of this investigation, and the fear of radioactive leaks. Small leaks in 

nuclear reactors are inevitable because it is difficult to perfectly seal reactors, which allows 

radiated gas to escape. For a population of 300 million, it is estimated that these inevitable 

emissions cause 25 additional cancer deaths in the US per year12. However, it is also important to 

consider the consequences of pollution from other energy sources, such as air pollution from coal 

plants. 
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CHAPTER 2 

PROBLEM BACKGROUND 

2.1 Experimental Radiation 

Materials in nuclear reactor environments would typically be exposed to neutron-radiation, 

however, this is unrealistic to recreate in a lab setting for experimentation. Neutron-radiation 

causes materials to become radioactive, and therefore, more difficult with which to work4. 

Acquiring the specific neutrons with the correct energy levels to simulate the setting is difficult, 

which is cost prohibitive5. While a few studies have suggested that with current technology, it is 

not possible to achieve levels of irradiation displacement per atom (dpa) considered realistic for a 

nuclear reactor setting in experimentation, this has not proved to be consistent with most of the 

literature6. 

Ion-beam radiation is one of the only methods currently available that does not cause 

hazardous activation of irradiated materials6,15. This form of radiation is also beneficial for 

research purposes because of the relatively low cost and quick time required to irradiate materials. 

Because ion-beam radiation employs low energy ions (over four times lower than neutron 

radiation)16, the depth of material impacted by ion-beam radiation is significantly decreased5,15,17. 

As a result, the methods by which these irradiated materials are tested are limited by this small 

irradiated portion of the material to methods that are able to allow its isolated access and 

manipulation.  

A significant issue noted when reviewing a number of studies performed on irradiated 

tungsten was the inconsistencies between different studies. While most studies stated a goal of 

better understanding the properties of irradiated tungsten, the magnitude varied of irradiation 

displacement per atom (dpa) from 0.01 to around 100 dpa15,18. The radiation type, speed, and dose 
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all significantly impact the change in material properties of the tungsten, making the results from 

these differing methods incomparable without additional data from a control study.  In addition, 

the temperature at which the material was irradiated impacts the alteration of the material—

notably, an increased temperature was observed to result in larger voids and a lack of dislocation 

loops19,20.  

 Varying types of reactors impact the nature of the fission chain reaction. Fast-neutron 

reactors (FNR) do not use moderators to slow the neutrons in the fission process down, hence their 

name, while light water reactors do11,21. Studies comparing the results of a FNR (JOYO) and a 

mixed spectrum reactor (HFIR) observed differences in changes to material properties of the 

sample, with a decrease in material hardening and an increase in electrical resistivity of materials 

irradiation with the FNR22,23. In addition, the irradiation dose within a material is not always 

uniform. This uniformity is largely dependent on the type of ions employed in radiation, as heavier 

ions decrease homogeneity24. 

It is widely agreed that nanoindentation is one of the best methods to gather data about the 

material and mechanical properties of the isolated irradiated material, however the process of 

material preparation and implementation of indentation—including the indenter tip and size 

used—differs among studies and has been continually modified since the implementation of 

nanoindentation technology5,16,24–26.  This continual change and modification occurs because of 

new understanding about the implementation of the nanoindentation method, namely the effect of 

plastic deformation on the sample and the relationship to indenter tips, that allows for the most 

repeatable measurements.   
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2.2 Spherical Nanoindentation  

Although studies exist in which the properties of irradiated tungsten are investigated using 

spherical nanoindentation, they are limited and do not follow a standard procedure that makes 

them easily comparable. Because of this, published works whose focus was on materials other than 

tungsten, which have well documented properties were used to better understand nanoindentation 

processes as well as to validate results. Studies using spherical nanoindentation were performed 

on titanium because of the presence of the distinct  and  phases within the material and the 

microscale at which they can be distinguished27. These phases may be seen in Fig. 3.  

 

Figure 3. A comparison between micrometers and nanometers in distinguishing between  and  

phases of titanium27. 

 

Prior to testing, a material’s surface is polished to decrease roughness or deformation that 

impact the results of nanoindentation results. The comparison of (i) a mechanically polished with 

a colloidal silica suspension and hydrogen peroxide mixture polish and (ii) an electropolished 
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titanium sample showed the minimal effect of the polishing method because of similar 

indentions27. Electro polishing is a common preparation method for materials to be tested through 

spherical nanoindentation because it does not cause mechanical damage to the material27. Materials 

irradiated with ion-beam radiation are not able to be polished prior to nanoindentation because the 

polishing removes a significant amount of the irradiated material18. These materials should be 

polished prior to radiation exposure, should polishing be desired. 

Many studies using nanoindentation employ Berkovich tips to find hardness of a 

material4,6,18,25,28,29. While this information is useful, load-displacement data collected with a 

Berkovich tip is difficult to gather and convert to meaningful graphs because of the plastic 

deformation that hinders the accuracy of results1,18,30. Recent studies have noted the significance 

of the use of spherical indenter tips to gather more relevant load-displacement data about a 

material’s properties4–6,18,25. One such example is that spherical indenters allow for the 

interpretation of the load-displacement data into an indention stress-strain curve18. Spherical tips 

allow for deeper indentions and greater loads to be applied, aiding in the identification of the 

transition from elastic region to plastic region18. Studies comparing the results of spherical 

nanoindentation and Berkovich nanoindentation found agreement in the hardness and elastic 

modulus values calculated, but discrepancies in yield strengths, namely that yield strengths found 

with spherical indenters are around two times smaller18,31,32. It has been suggested that a synthesis 

of the two—using  both Berkovich tips and spherical tips—in an experiment will result in a fuller 

set of data about a sample’s material properties and information because the data acquired may be 

compared to ensure accuracy where a method is weak or lacking5,33. Because of these differing 

opinions on the relevance and usefulness of various indenter tips, inconsistencies exist among 

studies in the nanoindentation methods employed to gather data about material properties. 
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Studies on virgin materials that used a variety of indenter sizes found that no significant 

relationship existed between the size of the indenter used and both the yield strength and 

indentation modulus calculated27. It is significant to note, however, that smaller indenter tips are 

more favorable because they allow the use of continuous stiffness measurement to avoid full or 

partial unloading when determining contact radius27. For irradiated materials, varying indenter 

sizes, including relatively large indenters, is critical to understanding a variety of material and 

structural properties about the nature of the radiation effect. Figure 4 shows the impact of varying 

indenter sizes on Ti-64 by emphasizing the area of impact, a, for each radius size, Ri.    

 

Figure 4. Indentation zone and structural length scales of different spherical indenter radii for -

annealed Ti-6427. 

 

Beyond these changes to the physical process of nanoindentation, recent studies have also 

found benefits from alterations to the type of data gathered during testing. In addition to indentation 

modulus, the hardness of a material is a commonly found property in nanoindentation studies 

because it is relatively easy to obtain hardness data for a range of materials34. However, because 

of the way in which hardness is found—standardized test parameters employed to combat an 

arbitrary strain and the large presence of plastic deformation—and the relative usefulness of 

hardness as a calculated variable, some studies instead elect to consider indentation yield 
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strength30. Indentation yield strength requires no standardized test parameters and is found before 

any plastic deformation occurs, therefore making it a more reliable and relevant variable to use30. 

Spherical nanoindentation allows the collection of data concerning the elastic modulus, both 

loading and unloading and indentation yield strength for a material in its pure form and after 

damage caused by radiation1.   

As a whole, nanoindentation is limited because of the stress caused around the indention 

on the material, which causes the results to be incomparable to the material in bulk form4. 

Nanoindentation in general must be very precise to ensure correct depth—deep enough to gather 

relevant information but not too deep to be influenced by virgin material5. In addition, the change 

in indenter sizes necessary to study the differing layers of virgin and irradiated materials impacts 

the hardness measured24. 

 As briefly mentioned, these preliminary considerations for the most reliable and accurate 

implementation of spherical nanoindentation methods must be altered when considering irradiated 

materials. As shown in Fig. 5a, Helium ion radiation has been shown to impact a material by 

creating three new layers at the surface of the material—two transition layers sandwich a layer of 

high radiation impact1. To determine the depth of the radiation impact as well as the transitional 

layers in the material, a series of indenters of differing radii (1, 10, and 100 micrometer) were 

used1. The impact of varying indenter sizes is also shown in Fig. 4, which calls attention to 

indentation zone and structural length scales of three different indenter radii.  
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Figure 5. Layers in Tungsten caused by radiation damage. (a) He radiation with transitional 

layers A and C, heavily radiation damaged layer B, and virgin layer D1. (b) Self-ion irradiation15. 

 

Smaller indenters (of radius ~1 micrometer) penetrate the material only to the top layer, providing 

information about its indentation yield strength1. As larger indenters are used, the penetration depth 

of the indenter increases, providing similar data about other layers. In addition, the comparison of 

this information (yield strength and hardness) between the varying indenter sizes allows for the 

depth of each layer to be calculated1.  

Not every type of radiation causes this same formation within a material. Fig. 5b shows 

layers formed in tungsten irradiated by tungsten ions. Rather than transitional layers above and 

below the heavily damaged radiation layer (b), there are two amorphous layers of tungsten (a) 

above the radiation and a virgin, undamaged layer below (c). Below the undamaged material there 

is an additional layer of re-deposited material. Both layers (a) and (d) were caused by the focused 

ion beam extraction method used in the study15. It is also significant to note that the relative 

thicknesses of these two radiation types are on different orders of magnitudes. The irradiated layer 

of tungsten shown in Fig. 5a is 600 nanometers thick, compared to the almost 2 micrometer (2000 

(b) (a) 
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nanometer) thick irradiated layer shown in Fig. 5b. Given the difference in scale, Fig. 5b could 

just be including the transitional layers distinguished in Fig. 5a as part of the heavily radiation 

damaged layer. It should be noted that this is another form of inconsistency among studies of this 

nature.  

At shallow indentation depths (such as indentions in layer A of Fig. 5a), the assumptions 

made about contact depth must be changed. The amount of the indenter that is in contact with the 

material is much smaller at smaller indentation depths. Understanding the correct depth to use in 

hardness calculations is critical to ensuring accurate hardness values. Figure 6 shows three 

different depths associated with an indentation.  

 

 

Figure 6. Defining total, plastic, and final indentation depths35. 

 

Based on the definitions in Fig. 6, using the final depth instead of the plastic depth would 

significantly increase the hardness measured to an inaccurate overestimate.  

In studies of irradiated materials, orientation of the grains have been found to have 

significant impact on the effect of the radiation and, therefore, the differences in values of material 

properties, including indentation yield strengths1. Accuracy of data gathered through the methods 

discussed may be increased by performing multiple indentions on a material under constant 

conditions and/or excluding data from samples whose indentation site was near grain boundaries1.  
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2.3 Tungsten and its Alloys 

 As radiation impacts a material, it causes defects that change both its material and 

mechanical properties. The type and extent of these defects is largely dependent on the 

microstructure of the material. FCC and BCC materials experience a difference in defects, namely 

stacking fault tetrahedral (SFT) and interstitial loops, respectively2. 

 When considering shielding materials to use in settings such as nuclear reactors, it is 

important to consider materials that are able to withstand the temperatures and conditions of a 

radiation environment before and after the absorption of radiation36. Tungsten is commonly used 

because of its positive performance when exposed to high temperatures and high particle 

fluxes4,15,36,37. The melting point of tungsten is over 3000 degrees Celsius6. In addition, tungsten 

has a large resistance to erosion and sputtering3,22,38. Implications of irradiated tungsten have 

significant impact on nuclear power plants. In the setting of nuclear reactors, tungsten commonly 

experiences both self-ion irradiation and helium ion irradiation3. Studies that compared hardness 

and yield stress for virgin tungsten, self-ion irradiated tungsten, and W and He ion irradiated 

tungsten showed that that while yield stress remained similar for all three, hardness values differed 

more significantly (increased with radiation exposure)25. Because, in virgin materials, it is common 

to observe a correlation between hardness and yield strength, the lack of this observation for the 

irradiated tungsten is notable25.  

The dislocation loops caused by radiation damage had no notable impact on the yield 

strength of the different samples, however, the voids and dislocation loops increased the measured 

hardness of the materials25. Materials exposed to neutron radiation experience transmutation, a 

process through which the material absorbs a neutron and consequently emit energy. During 

transmutation, new are formed because of the introduction of the neutron. The voids caused by the 
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irradiation of the tungsten are filled during the radiation and transmutation process by ions, such 

as rhenium and osmium, increasing the hardness and impacting other material properties of the 

sample22,25. Figure 7 shows the variation of the precipitates within the voids with the depth of the 

irradiated sample, as well as the non-uniform nature of radiation and the impact of indentation on 

the sample.  

 

Figure 7. Radiation and indentation effects of irradiated surfaces at a nanoscale. Dose profile, 

indentation size effect, contamination effects, and volume impacted by indenters are shown24. 

 

Irradiated tungsten experiences an increase in brittleness caused by the radiation 

damage3,39. To increase ductility, before and after radiation exposure, tungsten may be alloyed 

with one of several different elements, including rhenium. Rhenium is often combined with 

tungsten because of the desirable material properties, including ductility, hardness, and mechanical 

resistance3,37. However, the presence of other elements, such as rhenium, in virgin tungsten 

impacts the way in which it reacts to radiation damage6.  

Pure tungsten and tungsten-rhenium alloys differ after radiation exposure because of the 

nature of the void formations within the two materials37,39. The irradiated tungsten-rhenium alloy 

was not found to have structural damage dominated by the voids, suggesting the addition of the 

rhenium helps to reduce or prevent these voids19,20,39. Tungsten-rhenium alloys have also been 
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observed to have decreased hardening and fewer dislocations than pure tungsten when exposed to 

radiation19,20. Additionally, these irradiated alloys experience fewer precipitates, at smaller 

densities19,20. While rhenium in tungsten has a solubility limit of twenty-six percent, varying the 

weight of rhenium in the W-Re alloys was not found to have an impact on irradiation effect19,20.  

One reason for the differences between irradiated pure tungsten and tungsten alloys is that 

the products of transmutation differ based on the starting elements present. Figure 8 shows a 

comparison of the transmutation products of tungsten and a tungsten-vanadium alloy. The 

additional presence of vanadium in the tungsten alloy causes the presence of elements, such as 

titanium and chromium, not seen in the pure tungsten sample after transmutation.  

 

 

Figure 8. Concentration of elements present in (a) W and (b) W-30% V after transmutation under 

conditions of a fusion power plant3. 

 

The products of the transmutation differ based on the composition of the virgin material3,39. A 

comparison of the transmutation products of pure tungsten and tungsten - 30% rhenium alloy 

reveals that the alloy has an additional product of osmium3. Osmium is not a desirable product 

because of the negative effect it has on both mechanical and structural properties3.  Studies also 

(a) (b) 
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noted that while tungsten-rhenium alloy did not cause a significant change in the amount of the 

transmutation products compared to those of pure tungsten, other alloys caused an increased 

transmutation production of helium and hydrogen gases3.  

 

2.4 Summary of Literature Review 

 After reviewing the literature, it is evident that there is not a well-developed process for 

performing research in this field. Table 1 displays the differences between seven different studies 

on irradiated tungsten.  

Table 1. Differences in Radiation Conditions across Literature. 

Study Author Reactor Type dpa Radiation Type Temperature 

Armstrong DEMO 1.0 Self-ion, Helium ion 800℃ 

Barabash Mixed spectrum 0.3 – 0.5 Neutron 200 - 1000℃ 

Ciupinski Tandem Accelerator 
0.01, 0.1, 

0.89 
Self-ion 27℃ 

Fukuda HFIR 1.0 Neutron 500, 800℃ 

Hasegawa 

JOYO (fast), JMTR, 

HFIR (mixed 

spectrum) 

0.15 – 1.0 Neutron 500 – 600℃ 

He, Tang 
JMTR (mixed 

spectrum) 
0.15 Neutron 

600, 800, 

1000℃ 

Hosemann 
Danphysik ion 

implanter 
1.0 Proton 50℃ 

 

From the table, it is clear that a variety of conditions under which a material is irradiation for 

research exist. The type of reactor (fast, slow, or mixed spectrum), the strength and type of 

radiation, as well as the temperature at which the material is irradiated all impact the way in which 

a material is damaged by radiation.  
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CHAPTER 3 

RESEARCH METHODS 

3.1 Research Focus 

 The purpose of this research is to investigate the indentation modulus of both tungsten and 

tungsten-rhenium alloys. Both analytical methods and finite element simulations are used to 

calculate the indentation modulus of both materials using inputs of the material’s elastic constants. 

The results of both methods may be compared as well as used to ensure accurate results. As 

discussed with the different indentation tips and methods, a synthesis of solutions proves to be 

helpful when the strengths of a particular method overlap the limitations of another.  

Because the focus of this work involves understanding the impact of radiation on the 

material and mechanical properties of materials that are commonly exposed to radiation, the initial 

goal was to use the published elastic constants of tungsten and various tungsten-rhenium alloys as 

well as their irradiated counterparts. However, the elastic constants of irradiated tungsten and 

irradiated tungsten-rhenium are not well documented and were not able to be included.  

 

3.2 Finite Element Analysis  

 Finite element analysis is a common engineering tool used to model different physical 

phenomena. For the purposes of this investigation, considering finite element models (FEM) to 

replicate or replace potential experimental studies using nanoindentation to examine the properties 

of irradiated materials may allow better results because of the previously discussed limitations of 

nanoindentation. Many studies comparing experimental results of nanoindentation technology 

with calibrated results of finite element models found the data from both methods to have 

negligible differences26,34,40,41. Figure 9, shown below, provides one such comparison of load-
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displacement results of two different materials, nickel and silicon, from experimental methods and 

finite element analysis.  

 

 

Figure 9. Comparing experimental and FEM load-displacement graphs of (a) silicon and (b) 

nickel34. 

 

 To implement such a model several different factors must be considered, including (i) the 

size and (ii) shape of the indenter, (iii) the contact between the indenter and the sample, and (iv) 

the mesh size of the sample. Many of the current studies using FEM assume indenters that are 

perfectly rigid28,34,42. In addition to this assumption, it is necessary to decide which indenter tip to 

use in the simulation. Studies that compared experimental data with FEM did so using a Berkovich 

tip, and as a result began simulations assuming a sharp indenter tip26,28,43,44. However, several of 

these studies also made a note of this perfect sharpness as a limitation and also ran simulations 

using a conical tip that had the same projected area as the Berkovich indenter26,43,44. Figure 10 

below shows a comparison between slightly rounding the tip of the indenter and using a perfectly 

sharp indenter. As indicated in the figure, the FEM with the rounded indenter reflects experimental 

(b) (a) 
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results, while the sharp indenter shows significant difference. Although theoretically Berkovich 

indenter tips are sharp, realistically they have a rounded tip with a radius of curvature around 150-

200 nm because of sources of errors, such as manufacturing restrictions26,45.  

 

Figure 10.  A comparison of experimental and varying tips of finite element analysis load-

displacement results of aluminum 110026.  

 

 Tip sharpness also has a large impact on stress and twinning in the material. Blunt tips 

cause larger stress near the point of contact, while sharper tips on the basal plane increase the 

likelihood of twinning for materials that have a propensity to twin43.   

Another component to consider when running simulations is the contact between the 

indenter and the material used in the sample. Studies performed on nickel, silicon, and aluminum 

showed no significant difference when assuming a variety of friction coefficients, therefore the 

contact between the two was assumed to be frictionless sliding interface28,34,42. Frictionless contact 

was found to be a valid assumption for large angle indenters as well42. 
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Mesh size must be determined for the analysis to ensure fine enough mesh to gather 

accurate results without a mesh that is so small it causes simulations to run for extended lengths 

of time. Most studies noted that the finest mesh used was near the indenter contact surface and 

mesh size increased as the distance from the indention increased34,42,45. When choosing a mesh 

size, it is critical to ensure that no significant changes in variables being studied, such as a load-

displacement curve, occur when mesh size is decreased. The amount of brick shaped elements 

used to model the material ranged widely from 461 to 23,000 eight-node linear brick elements34,45. 

In addition, discrepancies were noted between studies who opted for three-dimensional meshes44,46 

as opposed to using a two-dimensional model and assuming the indenter and the sample are bodies 

of revolution34. Once the parameters of the simulation have been established, the indention is 

modeled by giving the indenter a downward and upward displacement to replicate applying a force 

with the indenter on surface of the material. 

For this research, Abaqus (a finite element software package) was used to perform a finite 

element simulation of spherical nanoindentation of a small block of material. Figure 11 shows the 

spherical indenter on top of the rectangular specimen, both (b) in Abaqus and (a) rendered to show 

a clearer image of the process.  

 

Figure 11. (a) Two-dimensional profile of spherical nanoindentation. (b) Spherical indenter on 

top of the block of material in Abaqus.  

(b) (a) 
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To perform the simulations in Abaqus, a mesh was created for the block of material of interest. 

The mesh in these simulations is shown in Fig. 12 and includes both finite and infinite elements.  

 

Figure 12. Mesh used to examine the material during simulations.  

 

The finite elements are shown by the pale green blocks in Fig. 12 while the infinite elements are 

the outer, lime green colored parts of the cube. The use of infinite elements within the mesh helps 

to minimize the impact of the boundary conditions on the indentation modulus. Because the 

indenter is spherical, the contact between the specimen and the indenter was modeled to be 

frictionless.   

This program was created so that the nanoindentation process remained the same, while 

different material properties were assigned to the block to simulate tungsten and alloys of tungsten. 

The elastic constants of these materials were obtained from published works and used to code the 

simulation in Abaqus. For each simulation, the indenter was programmed to have a set 

displacement of 1.0 nm to load and 0.1 nm to unload the indenter on the block of material. Data 
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from this displacement and the corresponding force experienced by the block of material were 

collected during each simulation for the initial unloaded step, the loaded step and for the final 

unloaded step post-test. The data collected during the simulation was then exported to Microsoft 

Excel and calculations were performed to determine the indentation modulus of the material.    

Equation 1 was used to convert the calculated force (Fcalc) by raising it to the power of two-

thirds.  

F' = (Fcalc)
2/3

 (1) 

This modified force, F’, was used with the corresponding displacements () to calculate the slope 

(m) as shown in Eqn. 2.  

m =  
δ2  −   δ1

F'
2  −  F'1

 
(2) 

Finally, Eqn. 3 was used to calculate the indentation modulus (E) using the calculated slope and 

the indenter radius. 

E = (m − 
3
2)(

3 4⁄

√r
 ) 

(3) 

The radius (r) of the indenter used in the simulations was 13.5 micrometers.  

 

3.3 Analytical Analysis using Python  

 A second analytical solution was considered to collect data about the indentation modulus 

of various materials. A Python script was developed based on the work of Franzoso (2008) that 

simulates spherical nanoindentation at varying angles about an anisotropic material. The 

indentation modulus for an anisotropic material is dependent on the material’s elastic constants 

and the direction of indentation. By obtaining the published elastic constants of an anisotropic 

material, nanoindentations may be performed at a variety of angles to understand the indentation 
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modulus at all angles of the material. This process may be simplified by performing a mathematical 

analysis using a series of equations, whose input is the material in question’s elastic constants. One 

specific method is an analytical solution which takes a material’s elastic constants and performs 

iterations to determine the local indentation modulus while rotating about the material. The 

mathematics behind this solution are detailed below and has been coded in Python and published 

for public use.  

To understand this mathematical analysis, the basic principles behind the indentation 

modulus must be understood. Anisotropic materials, by nature, require more elastic stiffness 

constants to be defined than isotropic materials. Rather than individually performing 

nanoindentations at different angles on the material, mathematics may be performed to calculate 

the indentation moduli. These values may then be graphed to provide a visual of the changes in 

indentation modulus throughout the material. The elastic stiffness tensor, 𝕊, is the input and 

provides information about orientation. 

During this process, several reference coordinates are defined to perform the rotation about 

the material. Figure 13 shows these reference coordinates, where the coordinates (e1, e2, e3) 

indicate the coordinate system of the material, (e1`, e2`, e3`) indicate the initial coordinate system, 

and (a1, a2, a3) indicate the corrected coordinate system.  
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Figure 13. Reference coordinate systems for mathematical analysis of anisotropic 

materials47. 

 

A positive-definite tensor, 𝐵(𝑡, 𝕊), is defined using the (r, s, t) coordinate system (also 

shown in Fig. 13) whose inputs are the elastic stiffness tensor and t. 𝐵(𝑡, 𝕊) is defined so that it 

considered the elastic properties of the material.  

𝐵 (𝑡, 𝕊) =  − 
1

2𝜋
∫ [(𝑟𝑠)(𝑠𝑠)−1(𝑠𝑟) − (𝑟𝑟)]𝑑𝜑

2𝜋

0

 (4) 

 

The ellipse ratio, 
a1

a2
⁄ , is given by Eqn. 5 and is solved through iterations, where Eqn. 5 is 

assumed to be equal to one initially and a new value for 
a1

a2
⁄  is obtained and the process is 

repeated setting Eqn. 5 equal to this new calculated value.  



 26 

𝑎1

𝑎2
=

(

 
 
 
 

𝜋

2
 

[
 
 
 
 
 
 

1 − 2

∫
(1 − |sin 𝛾′|) ∙ (𝐵−1(𝛾′, 𝕊) ∶  [𝑎3⨂𝑎3])

√(
𝑎1

𝑎2
⁄ ) cos2 𝛾′ + (

𝑎2
𝑎1

⁄ ) sin2 𝛾′

𝑑𝛾′
𝜋
2

−
𝜋
2

∫
𝐵−1(𝛾, 𝕊) ∶  [𝑎3⨂𝑎3]

√(
𝑎1

𝑎2
⁄ ) cos2 𝛾 + (

𝑎2
𝑎1

⁄ ) sin2 𝛾

𝑑𝛾
2𝜋

0

]
 
 
 
 
 
 

)

 
 
 
 

2

 

 

(5) 

Ultimately, the indentation modulus, E, of the material is given by Eqn. 6 and is a function 

of the elastic stiffness tensor, 𝕊, and the direction of indentation, 𝑎3 47.  

𝐸 (𝕊, 𝑎3) =  
4𝜋

∫
𝐵−1(𝛾, 𝕊)  ∶  [𝑎3⨂𝑎3]

√(
𝑎1

𝑎2
⁄ ) cos2 𝛾 + (

𝑎2
𝑎1

⁄ ) sin2 𝛾

𝑑𝛾
2𝜋

0

 

(6) 

 The initial direction of indentation is assumed to be zero. After one value for the indentation 

modulus is calculated, the corrected reference coordinates become the new initial reference 

coordinates (in other words, the reference coordinates are rotated by ). This process is repeated 

to find a new value for 𝐵(𝑡, 𝕊), the ellipse ratio, and indentation modulus.  

The code outputs each iteration so that the range of indentation moduli may be obtained 

and so that a three-dimensional graph may be plotted using the varying indentation moduli for the 

material. Along with the indentation moduli, the angle of indentation, the ellipse ratio, and angle 

of rotation () are all given for each iteration performed. As with the Abaqus simulations, the 

elastic constants for various materials (tungsten and tungsten alloys) were obtained from published 

works and used as inputs for the Python code. The code was run for each material and the output 

data were exported to be analyzed with Microsoft Excel.   
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CHAPTER 4 

CONCLUSION 

4.1 Confirmation of Methods 

 To ensure that the finite element simulations and analytical solutions were functioning 

correctly, these were both run with a well-documented material. Both the elastic constants and the 

indentation modulus of titanium are known values, so titanium was used for this purpose. The 

elastic constants of titanium used are listed in Table 2.  

Table 2. Elastic Constants of Titanium.  

Material Type 

Elastic Constants (GPa) 

C11 C12 C13 C33 C44 C66 

Ti-64 Tetragonal 162.2 91.8 68.8 180.5 46.7 35.2 

 

These constants were input into Abaqus and into the Python code and the results of these 

simulations are compared with the accepted indentation modulus in Table 3.  

Table 3. Indentation Modulus of Tungsten.  

Material Type 
Indentation Modulus (GPa) 

Analytical FEA Accepted 

Ti-64 Cubic 121.1 – 142.6 122 120 – 145  

 

From Table 3, it is evident that both the analytical solution and the finite element analysis of the 

indentation modulus are accurate models.  
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4.2 Visualization of Results 

 The elastic constants of tungsten and different tungsten-rhenium alloys gathered from 

different published works are displayed in Table 4. These values were used for both the simulations 

and the analytical solutions.  

Table 4. Elastic Constants of Tungsten and its Alloys.  

Material Type 

Elastic Constants (GPa) 

C11 C12 C13 C33 C44 C66 

W48,49 Cubic 522.4 204.4 -- -- 160.0 -- 

W50 Tetragonal 466.0 259.0 180.0 545.0 93.0 95.0 

W0.75Re0.25
37 Cubic 550.0 217.0 -- -- 156.0 -- 

W0.75Re0.25
37 Tetragonal 540.0 235.0 212.0 552.0 89.0 128.0 

W0.50Re0.50
51 Cubic 427.9 278.9 -- -- 222.0 -- 

W0.25Re0.75
51

 Cubic 485.9 273.7 -- -- 299.0 -- 

 

 Figure 14 displays snippets of the script from both the (a) Abaqus simulations and (b) the 

analytical solution. The elastic tensor values in both codes are of tungsten.  
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Figure 14. Snippets of (a) Abaqus script and (b) Python script.  

 

The finite element simulation produces both numerical data and a visualization of the material of 

interest’s mesh throughout the simulation. Figure 15 shows images of the mesh of the tungsten 

(corresponding to the script in Fig. 14) during each of the three major stages of simulation: (a) 

prior to the test, (b) when entire load has been placed on the tungsten by the indenter, and (c) after 

the tungsten has been unloaded.  
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Figure 15. Visualization of a tungsten mesh (a) before testing, (b) loaded, and (c) after it 

has been unloaded. 

 

The numerical results from the finite element simulations and the analytical solutions are 

listed in Table 5 below. Because the output of the Python code is multiple indentation moduli at a 

variety of angles, the average of these values was used for this table.  

Table 5. Indentation Moduli from FE Simulations and Analytical Solutions. 

Material Type 

Indentation Modulus (GPa) 

Analytical 

Average 
Analytical Range FEA 

W48,49 Cubic 443.57 443.45 – 443.71 380.68 

W50 Tetragonal 339.23 320.99 – 372.51 389.03 

W0.75Re0.25
37 Cubic 451.76 450.41 – 452.97 359.72 

W0.75Re0.25
37 Tetragonal 365.34 355.26 – 382.06 359.72 

W0.50Re0.50
51 Cubic 401.62 384.10 – 423.18 330.99 

W0.25Re0.75
51 Cubic 514.08 490.33 – 543.33 422.28 
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From the literature, the maximum indentation modulus for tungsten is around 380 GPa52, but 

depends on the temperature at which it was processed. The same sample processed at a lower 

temperature had an indentation modulus of around 320 GPa, which is consistent with values found 

in other published works52,53. The results from the finite element simulations appear to be more 

consistent with the published literature than those from the analytical solutions. Even when 

considering the minimum indentation modulus from the range calculated analytically, there is a 

difference of nearly 120 GPa between the analytical result and the lower published value for 

indentation modulus of tungsten using cubic elastic constants. The range indentation moduli of 

tungsten found using tetragonal elastic constant matches the published values well.  Ultimately, 

there is some uncertainty in these results because of the lack of research in this area. Indentation 

modulus is not widely published for tungsten or for its alloys, particularly rhenium alloys, 

therefore, it is difficult to ensure the accuracy of these results other than by checking the accuracy 

of the methods with different, more researched materials.  

In addition, there is a lack of published work for the elastic constants of both irradiated 

tungsten and irradiated tungsten-rhenium. Therefore, it was not possible to analyze the indentation 

modulus of tungsten or tungsten-rhenium post-radiation exposure to compare this information with 

the virgin materials. While this lack of information indicates the significance of this work, more 

experimental data is needed to perform an accurate and useful comparison.  

 

4.3 Limitations and Benefits of the Methodology 

As with other data analysis methods, the limitations and benefits must be considered to 

understand how to most effectively use finite element models. Understanding and comparing 
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results obtained from finite element simulations allows these benefits and limitations to be 

considered. FEA is limited because of the parameter knowledge required before running 

simulations. Figure 16 below shows a comparison between nanoindentation and simulation results 

from spherical indentation of Ni-Co. While the force-displacement graph shows strong agreement 

between the experimental and simulation curves, the profile of indention in the material differs 

significantly. Without exact knowledge of the indenter geometry, studies performing FEA may 

falsely assume indenter tips to be defect-free (see Fig. 16b)33.  

 

Figure 16. (a) Force-penetration curve and (b) indention profile comparison for spherical 

nanoindentation and FEA simulation of Ni-Co33. 

 

Many studies employing FEA used reverse analysis to determine significant parameters of the 

simulation28,33,54. This process combined with the additional knowledge provided by FEA as 

compared to nanoindentation has aided in findings of the significance of indenter tip bluntness55. 

As previously discussed, indenter sharpness is necessary parameter to consider when performing 

finite element simulations. Surface conditions and defects of the indenter tip have a significant 

impact on the force-displacement data gathered at indentation depths of 20 nm or less54. Of these 

(b) (a) 
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defects, the bluntness of the tip, specifically its radius was found to be the most significant 

parameter to achieve FEA simulations that agree with experimental data54. Figure 17 shows a 

diagram of this bluntness radius, a.  

 

Figure 17. Conical spherical indenter with blunt tip of radius, a, considered54. 

 

Using reverse analysis, various bluntness radii were considered to determine the radius that best 

fit the experimental data for the indentation tip used, as shown in Fig. 18 below.  

 

 

Figure 18. Comparing experimental and simulation results (a) to determine the radius of 

bluntness and (b) to examine the difference between a perfectly sharp and blunt tip54. 

(b) (a) 



 34 

 

Finite element analysis is beneficial because it allows for the collection of data about stress 

and strain fields directly under indenter tips26. Studies have used information about plastic strain 

from FEM to determine which part(s) of the sample experienced significant amounts of strain28. 

Using FEM, strain and deformation can be analyzed during both loading and unloading stages of 

the indentation without interrupting the constant loading process.  

 Although elastic tensors of a material vary with temperature, there is relatively little 

uncertainty in their calculation56. Because the Python simulation calculates modulus directly from 

elastic constants, it should not produce a large variation of the indentation modulus. However, the 

simulation has been coded to provide a range of acceptable indentation values based on the elastic 

tensors to incorporate attempted uncertainty quantification in experimental data. Two sources of 

uncertainty exist, aleatoric and epistemic, both of which were considered in the creation of the 

range of indentation moduli. Aleatoric uncertainty, or uncertainty caused by natural randomness, 

must be accounted for in all experiments. Epistemic uncertainty, or uncertainty in the model, may 

be caused by inaccurate measurements, limited data or a small sample size, or even limited 

knowledge of the subject. Literature has suggested that the most significant source of error and 

uncertainty in experiments concerning elastic tensors is experimental measurement error56. With 

the output of indentation modulus given as a range of acceptable values, researchers may use the 

Python simulation in conjunction with their research to verify their results. The variability of 

elastic modulus of a material depends on the nature of the material; because tungsten is a metal, 

the variability of its elastic modulus is expected to be within 6 – 10%57. Because the elastic tensors 

were used as an input for both the finite element simulations and the analytical solution, the 

uncertainty that exists for the elastic tensors reflect the uncertainty in the results of both.  
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4.4 Future Work 

It is critical to understand the impact of irradiation on a substance’s material and 

mechanical properties. Through a survey of current literature, it has been determined that a 

synthesis of methods is the most effective way to acquire accurate, repeatable data about such 

properties. No single method is able to provide whole and perfect results; therefore, a combination 

of methods is able to ensure complete and accurate data. This synthesis includes the use of both 

Berkovich and spherical nanoindenter tips, as well as both experimental indentations and analytical 

simulations.  

Future work for this study aims to perform more extensive and varied finite element 

simulations. As discussed, the lack of published data on the elastic constants of irradiated tungsten 

and tungsten-rhenium prevented simulations from being performed on such materials to analyze 

indentation moduli. However, as such information becomes available, the techniques discussed 

may be performed. In addition to expanding the type of materials, several aspects of the finite 

element simulations may be varied in future research. Instead of a spherical nanoindenter, a 

Berkovich indenter may be simulated. With a Berkovich indenter, the radius of the indenter tip 

may be varied to investigate the impact. Finally, the contact between the indenter and the material 

being indented may be analyzed by incorporating different friction coefficients to determine the 

impact of friction on the simulation. Several studies cited in this work have performed similar tests 

on nanoindentation experiments and simulations of materials other than tungsten, so a comparison 

to these works would be of interest.  
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