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General Audience Abstract

In this project, we are interested in exploring and improving the usage

of modern day quantum annealing (QA). In short, QA is a quantum

process that is designed to solve optimization problems. Optimization

problems try to find the best answer from a choice of many. For exam-

ple, a pizza delivery driver might be interested in finding the most gas

efficient route to save money. It is believed that QA, by utilizing re-

sources like quantum tunneling, can outperform modern computational

methods to find answers to such questions. To aide us in our explo-

ration, we have developed a program that makes it easier to use the

state-of-the-art quantum annealing devices designed by D-Wave Sys-

tems as well as run our own numerical tests. Using it, we are able to

show some of the pitfalls of current quantum annealing devices as well

as some promising future directions. For example, we show a method

we created could reduce errors on modern QA devices using numeric

simulations.



Abstract

Quantum annealing (QA) is a global search-heuristic designed to solve

NP-hard optimization problems. Currently, D-Wave Systems is the

only commercial QA company, boasting a line of chips that have over

2000 working qubits. Unfortunately, their API lacks many useful fea-

tures for exploring the actual physics and efficacy of QA as an opti-

mization tool. Further, the typical QA routine is prone to errors for a

variety of reasons: noise, problem mis-specification, minor-embedding

errors, and using incorrect annealing parameters. This work attempts

to alleviate both of these issues with a single Python package: dwaveu-

tils. With it, we explore two case studies: simulations of transverse-

field Ising Hamiltonians and forward-reverse error-mitigation anneal-

ing. The first shows the utility that dwaveutils brings when it comes

to submitting and post-processing problems on D-Wave. The second

shows the power of having a numeric annealing solver that allows for

exploration of modified annealing routines. With it, we’ve uncovered

several potentially fruitful investigations that could reduce errors on

modern devices with no cost in ancilla qubits and allow for a new

feature: graph introspection. Overall, our package allows for easy ex-

ploration and improvements of modern quantum annealing.
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Chapter 1

Introduction

Thesis Overview

Throughout this thesis, we intend to give just enough details for a student familiar

with under-gradate level quantum mechanics to follow (though we do at least

include the postulates of quantum mechanics for reference in Appendix A). In this

way, we do not intend for this to be “self-contained.” In fact, we will often refer

readers to external sources for additional information.

We begin with standard and expected topics in the Introduction: history and

motivation and some prerequisite theory. In particular, we start with a brief discus-

sion of basic quantum mechanics relevant for quantum annealing. We emphasize

solution regimes to Schrödinger’s equation under a time-dependent Hamiltonian–

something often glossed over in an undergraduate physics curriculum. We also

include a section on the Ising model, as this is the basis for the quantum annealing

procedures used on D-Wave Systems devices and in our simulations. Finally, we

discuss how the Ising model is related to solving difficult optimization problems,

the theoretical basis for quantum annealing.

Next, we discuss the basic theory and practicalities of D-Wave System quan-
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1.1 History and Motivation

tum annealing devices. We emphasize the basic theoretical ideas and the process

of actually submitting a problem. Physical implementation is discussed, but not

in theoretical detail. From here, this naturally spills into a discussion of our simu-

lation package. Our package accomplishes two things. First, it makes submitting

problems on D-Wave and doing the subsequent data wrangling much easier. Sec-

ond, it allows one to submit numerical simulations of the quantum annealing that

emulates D-Wave devices.

Finally, we present two case studies that illustrate the usefulness of our pack-

age: Simulations of Ising Model Quantum Phase Transitions and Forward Reverse

Error Mitigation Annealing.

1.1 History and Motivation

Quantum computing (QC) is a relatively new field with it’s initial roots sprouting

around the 1960’s with Stephen Wiesner’s work [2]. In 1981, Richard Feynman

gave a talk at the First Conference on the Physics of Computation at MIT where

he discussed the impossibility of simulating large quantum systems with classical

computers and proposed a primitive model of quantum computation to perform

quantum chemistry [3]. For many, this was the birth of quantum computing as

it’s own field. Today, it attracts the attention of the world. With over 100 start-

up companies, Google, Microsoft, IBM, Intel, Volkswagen, and universities and

governments across the world all pouring resources into the field at once, it’s no

surprise that it’s blowing up [4], but why?

Richard Feynman’s proposal lies at the heart of people’s interest in QC: the

possibility for a quantum advantage and ultimately for quantum supremacy. Put

simply, if a problem can be solved faster on a quantum computer than on a classical

computer, then we say that there is a quantum advantage for that problem. If

2



1.1 History and Motivation

that difference is large enough to make a problem go from practically unsolvable

(intractable) on modern classical hardware to tractable on quantum hardware,

then we’ve found a demonstration of so called quantum supremacy. At this point,

it’s clear that not all problems even provide a quantum advantage; and yet, the

interest is still there [5]. This is for a variety of reasons, but perhaps the biggest

is Peter Shore’s prime-factorization algorithm [6]. Currently, this algorithm has a

demonstrable exponential speed-up over any known classical algorithm. Strictly

speaking, a lower bound on classical prime-factorization algorithms has never been

proven, but the computer science world is fairly confident that a better algorithm

will not be found. In fact, that prime-factorization is “hard”–ie intractable–via

classical algorithms is the entire basis of Random Secure Access (RSA) encryption

that helps keeps computers safe. In other words, the problems that have been

shown to potentially have a quantum advantage are very important–from RSA

encryption via prime factorization to simulations of quantum systems. Again, buy

why?

In general, the why is non-trivial, but there is a nice way to get an intuitive

picture by investigating Feynman’s conjecture more closely. In particular, his idea

is predicated on the idea that it is difficult to simulate quantum systems with

a classical computer. A classical computer relies on classical rules that we are

comfortable with. If I tell you a table is 1 meter in length, I am describing a

property of the table, but I’m also implicitly saying that if you go and measure

the table that (up to some small measurement uncertainty dependent on your

device), you will also get 1 meter. In the classical world, we take for granted that

there is a direct correspondence between an object’s properties and the results of

measurements. It turns out that this correspondence doesn’t hold in the quantum

world–so this is not just fluffy philosophizing.

As described in Appendix A, the state of a quantum system and measurements

3



1.1 History and Motivation

of that system are no longer in direct correspondence. In general, measurements

are probabilistic, and worse, the very act of measuring a quantum system alters

its state. Hence, the state of a quantum system can only be sussed out by prepar-

ing an ensemble of identically prepared quantum systems and making the same

measurement on all of them. It’s only in the statistical limit on a infinite set of

measurements that absolute certain conclusions regarding the state can be made.

Though this is certainly not obvious from our discussion so far, it turns out

that keeping track of all the strange properties of quantum systems on a classical

computer takes an enormous amount of memory and time. In fact, the memory

cost grows exponentially with the system size. For example, simulating 500 inter-

acting qubits, the simplest quantum mechanical system imaginable, requires, at

minimum, storing 2500 floating bit numbers in memory. For context, this number

is larger than the number of atoms in the Universe [7]! But in nature, quantum

systems with many more qubits than 500 interact all time; evidently, Nature is

capable of seamlessly performing enormous calculations not conceivable on any

classical computer. Quantum computation is a field that tries to harness this

unimaginable computational power.

While the world has good reason to be enthralled by the potential of quantum

computers, no breakthroughs have yet lead to an experimentally verified quantum

advantage. In truth, most well developed theory in the field relies on a fault-

tolerant quantum computer with hundreds if not thousands of qubits, the basic

logical unit of QC that we’ll discuss in more depth in the next section on theory. To-

day’s devices are Noisy Intermediate-Scale Quantum (NISQ) computers, plagued

by things like experimental noise and lack of error-correction [8]. There are two

ways to fix this: create a fault-tolerant device or re-evaluate current algorithms

and usage to make NISQ era devices useful now. While the wider community

works in both areas, our work focuses on the latter goal.

4



1.2 Prerequisite Theory

1.2 Prerequisite Theory

If you are totally unfamiliar with quantum mechanics, I would recommend reading

about the Stern-Gerlach experiment. Pedagogically, McIntyre’s treatment in the

first chapter of Quantum Mechanics: A Paradigms Approach is quite good [9],

but if you are interested in the source, you can read the original paper [10]. I’ve

included a concise statement of the postulates as taken from Nielsen and Chaung

[7] in Appendix A that I will refer to throughout my discussion, so it might

be worthwhile to give them a quick look if you aren’t comfortable enough with

undergraduate level QM to list them off the top of your head.

1.2.1 A Primer on Quantum Mechanics

Associated with every quantum system is a complex vector space with an inner

product, known as a Hilbert space, H. One of the most important properties of

Hilbert spaces is that they are complete, so once H is specified for a system, all

possible states of that system can be realized by constructing normalized linear

combinations of basis vectors in H. In the notation of quantum mechanics, these

normalized state vectors are represented with “kets”, |ψ〉.

The simplest quantum system is a qubit, or quantum bit, and it is the basic

unit of quantum information used in quantum computing. Qubits reside in H2,

a two-dimensional Hilbert space. Traditionally, the orthonormal basis for H2 is

represented by the state-vectors |0〉 and |1〉. By completeness, any arbitrary state

vector in H2 can be written as

|ψ〉 = a |0〉+ b |1〉 , (1.1)

where a and b are complex numbers. The normalization condition requires that

the inner product of |ψ〉 with itself be one, or compactly, 〈ψ|ψ〉 = 1, which implies

5



1.2 Prerequisite Theory

that |a|2 + |b|2 = 1. This is important for the statistical interpretation of quantum

mechanics encoded in the measurement postulate1. For a qubit, the statistical

interpretation means that measurements on |ψ〉 give exclusive outcomes of |0〉

with probability |a|2 or outcomes of |1〉 with probability |b|2.

The time evolution of the state of a closed quantum system is described by the

Schrödinger equation,

i~
d |ψ〉

dt
= H |ψ〉 , (1.2)

where i is the imaginary number, ~ is Plank’s constant h divided by 2π with

numeric value ~ = 1.05457 × 10−34J · s, |ψ〉 is the quantum state vector, and H

is a Hermitian operator known as the Hamiltonian. If H is independent of time,

then solving the Schrödinger equation is equivalent to finding the eigenvalues and

eigenvectors of H. In particular, since H is Hermitian, it is guaranteed to have a

spectral decomposition

H =
∑
E

E |E〉 〈E| , (1.3)

with eigenvalues E and corresponding normalized eigenvectors |E〉. In terms of

physics, E is the energy of the eigenstate |E〉. These states are also known as

stationary states because their time dependence under the Schrödinger equation

is only a phase,

|E〉 = exp(−iEt/~) |E〉 . (1.4)

Note that physical Hamiltonians are bounded below. That is, there always exists a

lowest energy state which we call the ground-state. Any state with a higher energy

is called an excited state, ordered by increasing energy. In addition, some systems

have multiple distinct states that give rise to the same energy. In this case, we say

that the system is degenerate. In particular, if a system’s first excited state has

four distinct physical states that lead to that energy, we would say that its first

1See Appendix A, Postulate 3.
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1.2 Prerequisite Theory

excited state is four-fold degenerate.

1.2.2 Time-Dependent Hamiltonians

If dH
dt
6= 0, then the solution, in general, is not nearly as straightforward. We

will summarize three important results regarding the solution of Eq. 1.2 for time-

dependent Hamiltonians in the following three sub-sections devoted to the sudden

approximation, the adiabatic theorem, and Landau-Zener transitions. In all three

cases, we will be interested in a time-dependent Hamiltonian of the form [11]

H(t) =


H1 t ≤ t1

Hi(t) t1 < t < t2

H2 t ≥ t2.

In words, this is a Hamiltonian that changes from H1 to H2 over some time interval

T = t2 − t1. In between, it can, in general, take on any functional form of a valid

Hamiltonian, Hi. Assuming the initial state was an eigenstate of H1, we’d like to

predict the state of the system at t = t2 wherein the system then evolves according

to H2. In our following discussion, it will be useful to consider the size of T with

respect to the minimum Bohr frequency of a system,

ω21 =
E2 − E1

~
, (1.5)

where E2 and E1 and the first-excited state and ground-state of the system, re-

spectively. Furthermore, it is useful to consider the point during the evolution

from H1 to H2 for which E2 and E1 are closest in value. This point is known as

7



1.2 Prerequisite Theory

the “level-crossing”, and the spectral gap at this point can be written as

∆H1→H2 = min(E2(t)− E1(t))H1→H2 , (1.6)

where the subscript H1 → H2 will be understood and left off from now on.

The Sudden Approximation [11]

As T → 0, the Hamiltonian is said to change suddenly, and intuitively, this means

that the state does not have time to react to the change. Mathematically, if the

initial state is |ψ(t1)〉, then the final state satisfies

|ψ(t2)〉 = |ψ(t1)〉

|〈ψ(t2)|ψ(t2)〉|2 = |〈ψ(t1)|ψ(t1)〉|2 , (1.7)

so it truly is the same state–just written in H2’s basis, presumably different from

H1’s.

In reality, T = 0 is not possible, but the sudden approximation is expected to

be valid as long as T is much shorter than the time-scale governing the dynamics

of states in H1. Put mathematically, we need T to be much smaller than the

time-scale given by the minimum Bohr frequency

T � 2π

ω21

. (1.8)

The Adiabatic Theorem [11]

As T → ∞, the Hamiltonian is said to change adiabatically. Intuitively, if a

Hamiltonian is changed slowly, the state always has time to adjust to the time-

dependent Hamiltonian, so it simply tracks the instantaneous eigenstates.

8
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Under this approximation, one can diagonalize the Hamiltonian at each t,

H(t) |i〉t = Ei(t) |i〉t . (1.9)

The eigenstates are called the instantaneous eigenstates since they diagonalize the

Hamiltonian at each instance. The adiabatic theorem states that,

|i(t)〉 = e
−i

∫ t
t1
dt′Ei(t

′)
eiφ(t) |i〉t (1.10)

saying that a state-ket’s time-evolution tracks the corresponding instantaneous

eigenstate. The first and second exponential are known as the dynamical and

geometrical phases, respectively, and while they are important, they will play no

role in our future discussions. Evidently, the probability distribution function

necessarily changes as well, so

|〈ψ(t2)|ψ(t2)〉|2 6= |〈ψ(t1)|ψ(t1)〉|2 .

Since T → ∞ is not a realistic (or at least useful) bound, there are numerous

adiabatic theorems defined by different constraints on H(t) that give rise to dif-

ferent minimum upper bounds on T [12]. For our case, we will employ a highly

simplified condition by flipping the inequality in Eq. 1.8 and realizing the tightest-

bound is at the level-crossing,

T � 2π~
∆

, (1.11)

where the subscript tmin refers to the instantaneous time for which this is the

tightest bound–referring to the time during which the energy gap E2 − E1 is the

smallest. Note that most rigorous minimum upper-bounds on T for the adiabatic

theorem are stricter than Eq. 1.11.

Landau-Zener Transitions [13]

9
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If the time scale of the change T neither satisfies the sudden nor the adiabatic

conditions, Eq. 1.8 and Eq. 1.11, then non-trivial energy-level transitions can occur

during the evolution of H(t). In general, that is all that can be said. Nevertheless,

a qualitative (and sometimes even quantitative) idea of what is going on can be

derived with a few simplifications to the most general case.

The Landau-Zener formula is one such analytic solution for a 2-level, non-

degenerate quantum mechanical system where H(t) varies such that the separation

between E2 and E1 is a linear function of time, ∆E(t) = E2(t)−E1(t) = αt. With

these simplifications, one can derive the probability of a non-adiabatic transition,

PD = e−2πΓ with (1.12)

Γ =
∆2

4~|α|
.

1.2.3 The Ising Model of Magnetism

This Ising model is used to understand the physics of phase transitions in magnetic

materials [14]. In particular, it tries to explain how short-range interactions be-

tween things like molecules in a crystal give rise to long-range, correlated behavior

and how this gives rise to magnetic phase-transitions.

Graphically, the Ising model can be represented by a d-dimensional lattice.

A lattice is simply a set of connected, regularly spaced points. For example, a 1-

dimensional lattice with 3 lattice sites (nodes in graph theory) is shown in Fig. 1.1,

and a 2-dimensional square lattice with 2 lattice sites is shown in Fig. 1.2. Each

line that connects lattice sites is known as a bond (edge in graph theory), and if

two lattice sites are connected by a bond, they are considered “nearest-neighbors”.

In the Ising model, each lattice site can take on a spin value of si = ±1.

Geometrically, we can think of this as bar magnets pointing “up” or “down”.

These spins can interact with external magnetic fields and with themselves. The

10



1.2 Prerequisite Theory

1 2 3

Figure 1.1: A 1-d lattice with 3 lattice sites (nodes). The curved line that connects
nodes 1 and 3 represents a periodic-boundary condition that connects the ends
of a 1-d lattice chain. This is commonly used to avoid difficult boundary-value
problems.

1 2

54

3

6

Figure 1.2: A 2-d square lattice with 6 lattice sites.

total energy of a particular configuration can be summarized classically,

E(~s; {~h, J}) =
∑
i

hisi +
∑
i<j

Jijsisj, (1.13)

where ~s = {s1, s2, . . . , sN}, ~h = {h1, h2, . . . , hN}, and J is a symmetric matrix.

The hi parameters encode the energy associated with a spin aligning parallel to

(hisi < 0) or anti-parallel to (hisi > 0) an externally applied magnetic field. The

Jij parameters capture the tendency for nearest-neighbor spins to want to align

parallel (Jij < 0) or anti-parallel (Jij > 0) with respect to each other. We often

refer to this as ferromagnetic or anti-ferromagnetic to make a connection to the

magnetic systems we are trying to model. The particular notation here is used to

emphasize that E has a direct dependence on ~s and a parametric dependence on ~h

and J . In other words, the energy depends on the spin-configuration of the lattice

for a given set of interaction parameters.

In the quantum picture, each of these spins can be represented as a qubit, and

11



1.2 Prerequisite Theory

we are more interested in the Hamiltonian operator than the energy function for

a given configuration. This Hamiltonian can be written as,

H = Γ
∑
i

σxi +

(∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j

)
. (1.14)

Here, σxi (σzi ) is the x(z) Pauli-spin operator acting on the ith qubit [15]. By con-

vention, we refer to the magnetic field pointing in the z-direction as a “longitudinal

field” and that in the x-direction a “transverse field.” While there is not a “pre-

ferred” spin-direction axis, quantum computers almost always make measurements

in the z basis, so this is what we mean by longitudinal and transverse. With this

in mind, the effect of the transverse magnetic field comes from the commutator

relation,

[σx, σz] = −2iσy 6= 0. (1.15)

At risk of oversimplifying, this has an effect of “scrambling” the spins analogous

to temperature. The stronger the transverse field strength, the closer the qubit

spin-state measurement statistics approach a random 50/50 split of spin up and

down.

In many computations, it is useful to recast the Hamiltonian into a matrix.

Doing so requires knowledge of the tensor product nature of the Hilbert space of

composite quantum systems 1. The basic idea is that an N -qubit problem must

have a Hamiltonian of N -qubit operators. Thus, if any operator acts on a subset

of qubits (as nearest neighbor interactions do), then we must extend the operation

to all other qubits by applying the identity operator on everything else. As it

turns out, the tensor product, denoted ⊗, is just the right operation to translate

this intuitive idea into one of mathematical rigour. If we write our operators

as matrices, then the Kronecker product produces the matrix that respects the

1See Postulate 4 in Appendix A: The Postulates of Quantum Mechanics

12
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same mathematical rules. For example, for an N = 3 qubit Ising system with

Γ = h2 = h3 = J12 = J13 = 0, we get

H3qubits = h1σ
z
1 + J23σ

z
2σ

z
3

= h1(σz ⊗ I ⊗ I) + J23(I ⊗ σz ⊗ σz),

which produces a diagonal 2N × 2N = 8 × 8 matrix where each diagonal entry is

an eigen-energy of the system.

1.2.4 Quantum Phase Transitions

A quantum phase transition (QPT) is a change in the bulk-properties of a material

at absolute zero temperature (0K) [16]. Concretely, if a material is at 0K, then it

is necessarily in its ground-state (lowest energy state). A QPT results from con-

tinuously changing some non-temperature parameters (like magnetic field strength

or pressure), causing the ground-state to change abruptly. Since absolute zero is

not physically realizable, we must consider a more realistic limit,

~ω21 � kBT, (1.16)

which says that the energy scale associated with quantum effects must be much

greater than that due to thermal effects. Here, kB is Boltzmann’s constant. In

our case, we are interested in observing changes in the magnetic properties of an

Ising system through continuous changes in Γ, the h′is, and the J ′ijs as defined in

Eq. 1.14.

As discussed, the Ising model was originally invented as a means to study phase

transitions of magnetic systems. One common way to “study phase transitions”

of the Ising model 1.14 is as follows: fix ~h, ~J , and T = 0 and see what happens
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if Γ, the transverse magnetic field strength is continuously varied. Depending on

the values of the hi’s and Jij’s, the energy landscape can be extremely complex1.

This problem can become even more difficult if one also varies T–well at least

until thermal effects are much stronger than quantum effects. At high enough T ,

it becomes easy: everything is randomly oriented and the bulk-sum magnetization

sums to zero on average.

1.2.5 Quantum Spin Glasses and NP-Complete/NP-Hard

Intuitively, a quantum spin glass is the “hardest” instance of an Ising system in

regards to understanding the phase transition properties. One way to create a spin

glass is simply to take Eq. 1.14 and set ~h = ~0 while assigning random values to

the J ′ijs sampled from a Gaussian with zero mean and variance one [17]. For large

systems, this is practically guaranteed to create a very rugged energy landscape.

Typically, physicists consider these couplings fixed in time for an instance of a spin

glass, and for historical reasons call these fixed couplings quenched. Since the Jij’s

are random, then any given qubit is potentially coupled to neighboring qubits with

competing interactions, thereby making the entire system frustrated.

By “competing interactions” we mean something very specific: a single qubit

which–due to neighboring qubit orientations and the interaction type–is compelled

to be both spin up and down at the same time. We can understand this concretely

with a somewhat contrived example2. Consider a 1-d qubit chain as in Fig. 1.1

with J12 = J23 = 1 (anti-ferromagnetic) and J13 = 0. One valid ground-state

configuration would be |101〉–that is having qubits 1 and 3 pointing down while

qubit 2 is pointing up. If we then turn on J13 = 1 abruptly when the system is

in this state, then this creates frustration since qubits 1 and 3 now want to point

1These are often referred to as rugged landscapes.
2A physicist’s favorite pedagogical tool
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in opposite directions which competes with qubits 1 and 2 and 2 and 3 wanting

to point in opposite directions. Of course, this system is more than contrived–

it is not even a spin glass. “Turning on” J13 means we are discussing a system

with time-varying J couplings, and this isn’t allowed for a traditional spin glass.

Nevertheless, I hope this contrived example helps readers understand the dynamics

of a competing interaction that leads to a frustrated system without having to

follow the details of a more complicated physical system.

We will not go further into the details of phase transitions in spin glasses

as this could fill entire volumes. Needless to say, it is complicated, and only 1

dimensional systems can be solved analytically. For systems of dimension 2 and

greater, the properties of spin glasses must be explored computationally, and in

the computational world, there is a precise meaning of “just how hard is it really?”

Such questions fall into the domain of computational complexity theory. Loosely

speaking, this field studies how difficult it is to solve a computational problem by

monitoring how much memory, time, or energy it takes to get to a solution. To

organize the field, computer scientists have devised a number of complexity classes

that group problems of similar difficulty together. For example, if I gave you a list

of n elements and asked you to find out whether it contained a 5, you could find

out the answer in at most n steps. Hence, this problem falls into the complexity

class P–the set of problems that can be solved in polynomial time.

It turns out, spin glass Hamiltonians are hard to figure out. So hard, in fact,

that asking “What is the ground-state of some spin glass H?” is an NP-Hard

optimization problem whereas asking the slightly easier “Is the ground-state en-

ergy Egs ≤ 0?” is still an NP-complete optimization problem [18]. Defining these

computational complexity classes precisely is difficult without going on a long tan-

gent in the theory of computation. In short, problems that fall into these classes

are difficult to solve and extremely important. Loosely speaking, it takes expo-
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nential time to solve them, but this is only a half-truth. By extremely important

we mean two things: they are pervasive in real world applications and solving

one NP-complete problem efficiently means you’ve solved all other NP problems

efficiently too1. For example, the question, “Given a set of houses a UPS driver

needs to visit, is there a route that uses less gas than he or she has in her tank?”

is NP-complete. If a computer scientist found an efficient solution to this problem,

then they automatically have an efficient solution to, say, the seemingly unrelated

clique problem. Put simply, the clique problem asks “Given a graph, is there a

node that has at least K edges?” In other words, we might be asking something

like: does at least one friend on your Facebook have at least 1500 friends?

The connection between the Ising model and NP-complete/NP-hard questions

made physicists begin to wonder: could Feynman’s idea of efficiently simulating

quantum systems via quantum systems apply here too? That is, could we build

an Ising model machine whose natural evolution computes the answer to difficult

optimization problems that arise in the every-day world? This lead to a number

of papers that sought to formalize this notion [12; 18; 19; 20]. When the solution

uses the adiabatic theorem (see Eq. 1.10) to solve difficult optimization problems,

we call the computational model quantum annealing.

This brings us nicely to our next chapter: Quantum Annealing on the D-Wave

2000Q, one modern physical implementation of this idea.

1NP-complete is a subset of NP problems for which a solution to one NP-complete problem
means you can find a solution to any NP problem from there in polynomial time. In general,
NP-hard problems are not in the complexity class NP–as confusing as that is.
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Chapter 2

Quantum Annealing on the

D-Wave 2000Q

Summary

Here we develop the basic theory behind quantum annealing (QA) [12; 21], a

special case process of adiabatic quantum computation (AQC) that was developed

in light of the adiabatic theorem (see Eq. 1.10).

2.1 The Physics of Annealing

Adiabatic quantum computation (AQC) starts by preparing a system into the

ground-state of some Hamiltonian that is easy to prepare. Then, the system is

evolved adiabatically to some final Hamiltonian that encodes the solution to a

computational problem. If the final Hamiltonian can encode any computational

problem (that can be solved, of course), the process is universal and equivalent

to the gate-based model 1 of quantum computation [12]. Due to the engineering

1By gate-based model, we mean quantum computation via unitary transformation–aka quan-
tum logic gates. This model is much more similar to that of classical computation via circuit
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2.1 The Physics of Annealing

difficulties associated with building a universal AQC, D-Wave took a slightly less

general route, instead opting for a final Hamiltonian suited to solve optimization

problems 1. Due to its similarity to simulated annealing, and to help differentiate

it from universal AQC, optimization-based AQC is known as Quantum Annealing

(QA).

Concretely, the time-dependent Hamiltonian used on D-Wave’s QA can be

written in the form of a transverse-field Ising model (TFIM) Hamiltonian,

H(s) =
A(s)

2

N∑
i

σxi +
B(s)

2

(
N∑
i

hiσ
z
i +

N∑
i<j

Jijσ
z
i σ

z
j

)
, (2.1)

where s = t/T ∈ [0, 1] for total anneal time T , and A(s) and B(s) are hard-

ware defined functions that evolve the Hamiltonian from the ground-state of the

first term to the ground-state of the second term (also described as going form

an equal superposition state to the ground-state of the problem Hamiltonian in

the computational basis, z). In particular, A(s) is a monotonically decreasing

function whereas B(s) is a monotonically increasing function that together satisfy

A(0) � B(0) and A(1) � B(1). These functions can be seen in Fig. 2.1, plotted

with respect to the average thermal energy associated with the finite temperature

of the environment enclosing the 2000Q chip.

Although the form of A(s) and B(s) cannot be altered, users have control

over several advanced anneal features [21]. These features are introduced by a

user-specified anneal schedule that defines a s(t). A user defined anneal schedule

must be a piece-wise-linear function that satisfies several hard-ware constraints.

An example of a valid anneal schedule is shown in Fig. 2.2.

Looking at Fig. 2.2, we see that different portions of s(t) are given different

boards that simulate classical logical gates.
1This is hardly as limiting as it sounds as a very large class of computational problems can

be asked as an optimization problem.
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A(s) B(s)

kbT

Figure 2.1: The functions, A(s) and B(s), defining the 2000Q’s adiabatic evolution.
The horizontal line shows the average thermal energy associated with the finite
temperature of the chip, T ≈ 15mK.
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Figure 2.2: An example piece-wise-linear anneal schedule that defines the linear
change in s as a function of t over an anneal on D-Wave’s 2000Q quantum com-
puter.

labels. This distinction is not entirely arbitrary–it has to do with how the slope of

s(t) at a point relates to the intended physics that should govern the change of the

quantum state |ψ〉. The types of annealing schedules, along with their intended

effects, can be summarized as follows.

1. A Forward Anneal is defined by a shallow positive slope. Ideally, this

causes H(s) to change slowly enough that |ψ〉 evolves adiabatically.

2. A Reverse Anneal is defined by a shallow negative slope. Ideally, |ψ〉

evolves adiabatically.

3. A Pause is defined by 0 slope. In a closed quantum system, this means that

|ψ(s′)〉 evolves solely due to the Hamiltonian H(s′). In an open quantum

system, a pause allows thermal and quantum decoherence effects to play
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a role over a longer time-span than normal. For example, more thermal

excitations/ relaxations are probable in the case of a pause.

4. A Quench is defined by a steep positive slope. Ideally, this causes H(s) to

change quickly enough that |ψ〉 evolves according to the Sudden Approxi-

mation.

2.2 Submitting a Problem

Running a problem on D-Wave’s 2000Q requires finding a representation of that

problem encoded in Eq. 2.1, defining an appropriate anneal schedule in accordance

with the desired evolution of |ψ〉, and finally, embedding the problem onto the

native topology of the Chimera lattice that defines the connections available on

the hardware, shown in Fig. 2.3–which may require adjusting the above two steps

in some iterative process.

The process of finding an appropriate embedding, known as minor-embedding,

is viewed in depth in several papers [22; 23; 24; 25], so we will only explain the idea

and not discuss the details of any efficient algorithms to find them, like that of Cai,

Macready, and Roy [25] available through D-Wave’s pre-processing API [26]. A

problem graph H is said to have an embedding onto the D-Wave Chimera lattice

G if H is a minor of G. That is, if H can be constructed by deleting nodes and

contracting edges of G. For example, the graph shown in Fig. 1.1 (the 1-d, 3 qubit

graph with periodic boundary conditions) is a minor of 4 qubits in a single unit

cell shown in Fig. 2.4. To see this, we will show how one can embed (short for

finding a minor embedding) this 3 qubit problem into the 4 qubits 1, 2, 5, and 6

of the unit cell. One way is to contract the edge connected qubits 2 and 6, turning

these two qubits into an effective qubit, qeff . In this case, qubits 1, 5, and qeff form

the logical graph of Fig. 1.1. Of course, we could always contract as many edges
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Figure 2.3: The upper-left corner of D-Wave’s 2000Q Chimera lattice consisting
of a 16 × 16 sparsely connected tiling of 8 qubit unit cells. Each unit cell is a
complete bipartite graph. Image obtained from Calude [1].
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0 1 2 3

4

5

6

7
Figure 2.4: A graphical representation of a single 8 qubit unit cell on D-Wave’s
2000Q Chimera lattice with the qubit coloring emphasizing the complete bipartite
connectivity.

as we like to form one super qeff whereby we use all 8 qubits of the unit cell to

form the 3 qubit logical problem.

Obviously, these unit-cell couplers cannot actually be “contracted” on the de-

vice, so to actually perform this operation, one must instead adjust the weights in

the Hamiltonian (Eq. 2.1) to produce the same effect. Going back to our previous

example, if we wish to contract the edge connecting q2 and q6, we can instead

“chain” them together. To do this, we add a strong ferromagnetic J2,6 � −1

penalty on the coupler between q2 and q6. This makes it very likely that the two

qubits will always align. Hence, we can treat the two physical qubits as a sin-

gle logical qubit in our problem, as long as we make sure to adjust the field-bias

strengths (in this case we would apply half of the desired logical bias strength to

each physical qubit) and do appropriate post-processing.

Before moving on, we’d like to address to natural questions that may arise

from this idealized discussion of chaining to turn a logical problem in a physical
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problem that works on the Chimera lattice. 1) What happens if two chained qubits

actually point in opposite directions at the end of an anneal? How do we decide

which direction the effective/logical qubit should be pointing pointing? 2) How

high should the chaining coupling be with respect to the problem couplings, and

what effect does different choices have on output statistics? For both of these

questions, it is best to appeal to the thorough analysis that already exists in the

literature [24; 25]. However, without running a problem otherwise, D-Wave pre-

and post-processing routines heuristically decide the best way to handle these

nuances with no user input.
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Chapter 3

Our dwaveutils Software Package

Summary

The purpose of our dwaveutils package [27] is simple1. We wanted a single package

that makes it easy to create an Ising Hamiltonian, submit the problem to D-

Wave or a numerical quantum annealing routine, and post-process the data. In

particular, we emphasized the ability to sweep over a large number of coupling

values, as this problem came up time and time again with regular use of a D-Wave

device, but was not easily supported with D-Wave Systems’ Ocean API [26].

3.1 High Level Package Description

When constructing an Ising Hamiltonian, a user may choose to represent their

problem in any number of different ways: an adjacency matrix, a Python dictio-

nary, or a NetworkX graph2. The dwaveutils package is designed to be input-

agnostic. Once a problem is represented by a certain data structure, all the class

methods and output behavior behaves the same. That is, if Alice encodes her

1The source code can be found at github.com/naezzell/dwaveutils
2See their homepage: networkx.github.io/
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problem as an adjacency matrix and Bob encodes his problem as a Python dic-

tionary, they would still call the same exact method to queue their problem onto

a D-Wave 2000Q processor. Further, they can both seamlessly go from running

the problem on the D-Wave 2000Q processor to performing a numerical quantum

annealing to performing direct diagonlization.

We enforce this behavior with an abstract base class (ABC) called ProbRep

(aka Problem Representation). This construct allows us to design class attributes

and methods without specifying an implementation. When we create a concrete

class, inheriting ProbRep enforces a “reasonable behavior standard.” For example,

the class I use most often is DictRep (or Dictionary Representation). This class

understands inputs in the form of a Python dictionary. If I failed to write a

method that queued an instance of DictRep on the 2000Q annealer device, this

would throw an error. Of course, once a concrete class is written, it can have its

own methods that are not shared with ProbRep, but at minimum, it must have a

working implementation of those methods specified in ProbRep.

Other than that, the code contains typical things: various helper functions

contained in a dwavetools directory, scripts to run simulations that have been

deemed useful to run over and over again, and tests.

3.2 Functionality I: Running Problems on D-Wave

Given the way the optimization process works on D-Wave quantum annealers,

there are an infinite set of equivalent formulations of a problem. Even for a fixed

graph topology, one can (theoretically) fine tune their parameters (h’s and J ’s)

as much as they like. Ideally, this wouldn’t change the answer that D-Wave spits

out, but the D-wave is not an ideal system, so it often does.

Because of this, users consistently run into the same problem: they want to

26



3.2 Functionality I: Running Problems on D-Wave

Figure 3.1: This code shows the creation of a logical encoding of a 3-qubit Ising
problem with a triangular graph topology, along with the ease with which such a
problem is visualized.

sweep over a fixed set of h and J hyper-parameters for an Ising model with a fixed

graph topology. We will from now on refer to this as “hyper-parameter sweeping.”

Our code makes this process simple, but to understand it, we will first go over a

couple of simpler examples that run only a single instance of a problem then get

to the heart of what we are discussing.

In the first example, we queue a so-called “logical” Hamiltonian with actual

numeric weights ( Fig. 3.1). By this, we mean that we understand our problem may

or may not have a native representation on the D-Wave 2000Q Chimera topology,

and we allow the D-Wave pre-processing API to handle the minor-embedding

process. The results of running this on an actual D-Wave 2000Q chip be seen in

Fig. 3.2.

For contrast, we immediately run the same problem with the encoding param-

eter set to direct (Fig. 3.2). This throws an error on the D-Wave chip because
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Figure 3.2: The results of running the problem created in Fig. 3.1 on a D-Wave
2000Q chip.

Figure 3.3: Creates the same exact problem as Fig. 3.1 but with a direct graph
encoding.

qubits 0, 1, and 2 do not have a triangular topology.

The next example in Fig .3.4 begins to show the actual power of our software.

Here, we give each h and J coupling parameter a variable weight. This allows us to

define a list of values we would like for these weights to take on. In particular, we

collect all hyper-parameters that will be swept over in the parameters dictionary.

By populating our problem with these parameters, we are essentially taking the

Cartesian product over them all and insisting that a call the D-Wave quantum

annealer try them all. The data from each run is saved to the problem’s data

parameter, so it is easy to view and post-process it afterwards as seen in Fig. 3.5.

In this example, we use get state plot to show the distribution of final states

produced by the sum total of all our trials thus far.

Next, we show just how powerful our hyper-parameter sweeping and post-
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Figure 3.4: Creates the same exact problem as Fig. 3.1 but with variable weights.
This makes it very easy to perform hyper-parameter sweeps over different h’s and
J ’s.
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Figure 3.5: Keeping track of everything within the confines of a Python class
means plotting bulk-results after running many trials can be made trivial. We
illustrate this by plotting the states obtained from a D-Wave 2000Q device after
trying out the parameter sweep of Fig. 3.4.

30



3.2 Functionality I: Running Problems on D-Wave

Figure 3.6: This code shows how we set up the hyper-parameter sweep that cor-
responds to continuously varrying the effective transverse field strength of the
D-Wave Ising Hamitlonian.

processing utilities can be by generating a transverse-field Ising quantum phase

transition plot. This is quite the mouthful, and we will have much more to say

about it in the next chapter when we discuss applications of our software. For now,

we will only discuss the steps in the process. In Fig. 3.6 we set up the problem

by associating the appropriate s′ value to the desired effective transverse field

strength (given by A(s)/B(s)). In Fig. 3.7 we show how this problem is passed to

a D-Wave 2000Q device and print a few trial values. Finally, in Fig. 3.8, we use

a get ferro diagram to plot the transverse-field quantum phase plot. In truth, we

didn’t do nearly enough trials in this example code to save time, so this plot is not

illustrative of any actual results–it’s meant merely to show what can be done.

Finally, we show a couple miscellaneous features that come up from time to time

in Fig. 3.9. Suppose you don’t want to trust the native D-Wave API to perform

the minor-embedding process for you. While that’s great, this can create a clash

with hyper-parameter sweeping. In the past examples, we gave all couplings that
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3.2 Functionality I: Running Problems on D-Wave

Figure 3.7: Here, we submit our desired problem to a D-Wave 2000Q device and
print out a few trial values.

we wish to vary together always with the same value the same name. For example,

in Hembedding, we want qubit 0 and qubit 4 to both take on the same value of “h”

regardless of which value that ends up being. But in this example, we are creating

a 3 qubit triangle by embedding it into a 4 qubit square, a topology that does exist

on the hardware. This means that weights on qubits 5 and 1 which together make

up a single effective qubit should be halved to keep the energy effects the same. If

we gave them a different name, the hyper-parameter sweeping would naively take

a Cartesian product over all values–not producing the desired behavior. Instead,

we added a feature that allows you to pre-pend a multiplier (or divisor) after a

parameter as we have done here. Hence, it varies always with those values given

only an h, but it always takes half it’s value. Further, we show a simple feature

where you can save the embedding for future use at the very end.
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3.2 Functionality I: Running Problems on D-Wave

Figure 3.8: Finally, we use each saved value from our parameter sweep to create
a transverse-field quantum phase transition plot. This is an example to show the
power, so not enough trials were done to draw actual conclusions. We will have
more to say about this in the next chapter.
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3.3 Functionality II: Running Numerical Quantum Anneals

Figure 3.9: This code shows various miscellaneous features: the ability to create
one’s own custom embedding, to alter the variable weights by a multiplier, and to
save the Ising problem for future uses.

3.3 Functionality II: Running Numerical Quan-

tum Anneals

Being able to check the answer from a D-Wave run is invaluable. Our numerical

utilities allow for both direct diagonalization and numerical quantum annealing.

We use the Python QuTiP library [28; 29] as the base for these operations, but

we’ve created our own numerical quantum annealing routine that follows the D-

Wave quantum annealing theory of Sec. 2.1 closely. We’ve also tested augmenting

the D-Wave algorithm in physically NISQy1 ways which has lead to potential

performance improvements2.

Actually running a numerical anneal is simple: set up a problem as we’ve shown

Sec. 3.2 but flag is as “numerical”, create a numerical anneal schedule, and call

1As in, possible to engineer in the near future by not being far from what is already done.
2We’ll have more to say about that soon in Chapter 4: Forward-reverse error-mitigation

annealing. We think the answer is yes.
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3.3 Functionality II: Running Numerical Quantum Anneals

Figure 3.10: This code shows the creation of a numeric Ising Hamiltonin which
now requires explicitely making a numeric anneal schedule.

the numerical anneal. For completeness, we will go through a detailed example

that shows just how exactly our internals work, but all these steps are unnecessary

when actually using the package.

First, we define the problem as shown alongside a numeric anneal schedule as

shown in Fig. 3.10. Internally, this numeric anneal schedule is used to create the

numeric representation of the time-varying Ising Hamiltonian as seen in Figs. 3.11

and 3.12.

After setting up the numeric Ising Hamiltonian, it’s simple to utilize QuTiP

built-in function to solve the time-varying Schr”ødinger equation as seen in Fig. 3.13.

This can then be compared to direct diagonzlation of the final Hamiltonian as seen

in Fig. 3.14.
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3.3 Functionality II: Running Numerical Quantum Anneals

Figure 3.11: This shows the “internals” of creating our discretized numeric Hamil-
tonian that is used for direct numerical diagonalization and QuTiP-assisted quan-
tum annealing.
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3.3 Functionality II: Running Numerical Quantum Anneals

Figure 3.12: This code gives a clear picture of what we mean by “numeric anneal
schedule.” In particular, it’s just the entire Hamiltonian of Eq. 2.1 adjusted by a
discretized list of A(t) and B(t) weights at each time t during the anneal.

37



3.3 Functionality II: Running Numerical Quantum Anneals

Figure 3.13: Here, we perform the numeric quantum anneal using QuTiP’s built-in
Schr”ødinger equation solver and plot the distribution of states.
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3.3 Functionality II: Running Numerical Quantum Anneals

Figure 3.14: Here, we directly diagonalize the final QA Hamiltonian to compare
it to the results of Fig. 3.13.
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Chapter 4

Case Study I: Simulations of

Transverse-field Ising

Hamiltonians

Context and Summary of Investigation

In Summer 2018, I completed an internship at Oak Ridge National Laboratory

(ORNL) under Dr. Travis Humble1 and Paul Kairys2. They had recently come

across an interesting paper by Xia, Bian, and Kais entitled “Electronic Structure

Calculations and the Ising Hamiltonian.” [30]. In short, this paper showed how to

convert a quantum chemistry problem into an Ising problem: opening the door for

quantum chemistry calculations on D-Wave quantum annealers.

It turns out, there is a pretty large qubit cost (overhead) in doing this conver-

sion. But in summer 2018, the D-Wave 2000Q-2 had 2048 working qubits while

the best gate-model architecture (IBM’s Q20 Tokyo) had a qubit number of 20 [4].

1The director of the Quantum Computing Institute at ORNL
2Travis’s newest graduate student who actually began working only about a week before I

arrived
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Could the D-Wave 2000Q outperform the gate-model that is theoretically more

“natural” for quantum chemistry calculations? If it’s easier to produce high qubit

quantum annealing (QA) chips1, could QA be the more promising NISQ era tech-

nology?

To make this comparison as concrete as possible, Paul and I decided to mirror

each others calculations. He would submit problems to IBM’s device, and I would

work on the D-Wave front. As a proof-of-principle, we wanted to begin by show-

ing that both devices could get the same answer with the simplest “non-trivial”

problem imaginable: a 3 qubit Ising problem. To make comparison interesting and

more relatable to our eventual goal of simulating interesting physics, we wanted to

use these NISQ devices to generate a quantum phase transition plots. More than

that, being able to effectively sample the Ising Hamiltonian with a transverse field

present would reduce necessary ancilla qubits in quantum chemistry calculations.

Ideally, this would let us simulate larger molecules as well. This proof-of-principle

first step, however, ended up being an interesting exploration in and of itself,

showing that some D-Wave features do not work as advertised (at least if used

naively).

4.1 Statement of the Problem

In this work, we will focus on simulating quantum phase transitions (QPTs) of

the 3-qubit Ising problem shown in Fig. 4.1. In particular, we will are looking for

changes in the magnetic properties of our system through continuous changes in

Γeff = A(s)/B(s) (see Eq. 1.14), the h′is and the J ′ijs as in Eq. 2.1. By magnetic

properties, we are specifically referring to the probability that the ground-state

(which, in general, is degenerate) is ferromagnetic, denoted PFM . While it is more

1...and more importantly, keep improving this number
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4.1 Statement of the Problem

J1

J1

J2

0

1

2

Figure 4.1: The 3-qubit Ising problem we simulate on D-Wave’s 2000Q quantum
computer.

informative, in general, to find an expectation of the magnetization, for our 3-

qubit system, a state is either ferromagnetic or contains a single spin-flip (i.e. 2

up and 1 down or 1 up and 2 down). Hence, PFM , aside from the sign which is

not important here, contains all the information about the magnetization.

More specifically, we will create contour plots to display QPTs for Longitudinal-

field Ising Models (LFIM) and Transverse-field Ising Models (TFIM). Making con-

tact with Eq. 2.1, the LFIM corresponds to an anneal all the way to s′ = 1 with

specified hi, J1, and J2 values whereas the TFIM corresponds to an anneal to some

0 < s′ < 1 such that Γeff = A(s′)/B(s′) is the effective transverse-field strength

with hi = 0 and J1, J2 specified. By fixing J1 < 0 to a ferromagnetic value, we can

see the effect of introducing frustration by tuning J2 from a ferromagnetic cou-

pling J2 < 0 to an anti-ferromagnetic coupling J2 > 0. Furthermore, in the LFIM,

increasing hi increases the chance that all the qubits will align with the external

field whereas in the LFIM, increasing Γeff decreases the chance that qubits will
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4.1 Statement of the Problem

be aligned (scrambling analogous but not exactly the same as finite temperature

fluctuations).

Though there has been recent success on solving a much larger 8× 8× 8 cubic-

lattice Ising problem [31], this problem is interesting and useful for a variety of

reasons. In the near-term quantum hardware era, one of the major obstacles is

predicting whether or not a problem will reproduce exact results a priori. We wish,

among other things, to begin probing this question with simple test-problems that

begin uncovering the relationship between a problem’s parameters and its success-

rate on current hardware so that non-domain experts can get an estimate on the

success-rate of a posed problem. In addition, this problem was chosen because:

1. Being an Ising problem from the start, we are testing D-Wave architecture

exactly on the types of problems it was built to solve without the added com-

plexity of interpreting the success in the context of some other mathematical

problem.

2. Our problem exhibits frustration due to competing objectives, giving rise

to non-trivial quantum phase-transition plots. In addition, encoding the

problem on a D-Wave requires utilizing advanced anneal features (i.e. quench

and potentially pause).

3. This problem is small enough to run using the variational quantum eigen-

solver (VQE) method [32] on existing gate-based architectures such as Rigetti

and IBM. Hence, comparisons between the different models of hardware can

be made.

4. Furthermore, being small means numerical simulations are not only tractable,

but fast enough to run quickly. This makes it trivial to check our answers

with numerics and to obtain adequate statistics.
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4.2 Methods

4.2 Methods1

We performed three types of simulation: (1) idealized numerical simulations, (2)

closed-system numerical simulations, and (3) D-Wave 2000Q device simulations.

4.2.1 Idealized Numerical Simulations

In the ideal limit that D-Wave’s device perfectly samples the ground-state of the de-

sired Hamiltonian, then finding PFM simply requires solving the time-independent

Schrödinger equation by diagonlization (see Eqs. 1.2 and 1.3). Our algorithm was

written in Mathematica and works as follows:

1. Loop over parameters J1 = −1, J2 ∈ [−4, 4] and hi (or Γeff = A(s)/B(s))

∈ [0, 4] for the LFIM(TFIM).

2. Construct ideal Hamiltonian (basically Eq. 1.14 without A(s) and B(s) as

in Eq. 2.1) and diagonalize it.

3. Find the ground-state and compute the probability that it is ferromagnetic,

PFM .

4.2.2 D-Wave 2000Q Simulations2

As discussed in Sec. 2.2, a particular embedding strategy must be chosen. In our

work, we tried manually embedding our triangular graph onto a square graph than

can be formed on a particular unit cell, choosing parameter values in the range of

[−0.4, 0.4] rather than [−4, 4] to allow chained qubits to have a stronger coupling of

J = −1, as this is the max coupling strength. However, doing a manual embedding

1Throughout, I will refer to the numerical simulations as having been done in Mathematica.
This is true, as I originally simply adapted some of Travis’s code for numerics. However, I used
my hyper-parameter features for D-Wave submissions. In addition, I decided I wanted more
flexibility in the numerics, so as discussed before, my own Python package could do all of this
now. Redoing things would be a waste of time, though.

2As seen in Sec. 3.2, doing this type of hyper-parameter sweeping is simple with our package.
This project was the motivation for those features.
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4.2 Methods

gave the same results as allowing D-Wave’s internal algorithms to automatically

embed and adjust weights.

With these detail aside, all testing was done using D-Wave’s native embedding

algorithms and full-tiling onto the entire chip. Our simulation routine on the

quantum computer went as follows:

1. Choose a set of parameters hi, J1, J2, and s′ (essentially choosing Γeff ).

2. Anneal adiabatically to s′ over 20µs then quench over (1− s′)µs (the fastest

time) to s = 1 to sample H(s′). Note, for the LFIM, s′ = 1, so only the

adiabatic evolution matters.

3. Measure distribution of states at s = 1 and determine whether it is ferro-

magnetic.

4. Repeat these steps (both in discretization of parameters and number of sam-

ples for each set of parameters) until convergence of contour plot is obtained.
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4.3 Results

4.3 Results

4.3.1 Idealized Numerical Simulation Results

Figure 4.2: Quantum phase transition plot of idealized numerical simulations of
longitudinal-field Ising model showing the probability that the ground-state of
Fig. 4.1 is ferromagnetic for a given set of field-bias and coupling parameters.

Figure 4.3: Quantum phase transition plot of idealized numerical simulations
of transverse-field Ising model showing the probability that the ground-state of
Fig. 4.1 is ferromagnetic for a given set of field-bias and coupling parameters.
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4.3 Results

4.3.2 D-Wave 2000Q Simulation Results

Figure 4.4: Quantum phase transition plot of D-Wave 2000Q simulations of
longitudinal-field Ising model showing the probability that the ground-state of
Fig. 4.1 is ferromagnetic for a given set of field-bias and coupling parameters.

Figure 4.5: Quantum phase transition plot of D-Wave 2000Q simulations of
transverse-field Ising model showing the probability that the ground-state of
Fig. 4.1 is ferromagnetic for a given set of field-bias and coupling parameters.
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4.4 Conclusion

From plots 4.2 and 4.4, we see that D-Wave’s 2000Q quantum computer is very

capable of simulating our 3-qubit LFIM. However, plots 4.3 and 4.5 show that

the same cannot be said of the TFIM; in fact, the D-Wave simulation shows a

QPT plot identical to idealized numerical calculations of a LFIM with hi = 0,

showing that Γeff played no role. Our future work will explore whether the TFIM

can be simulated at all by lowering the Bohr frequency even further (Eq. 1.5 and

Eq. 1.8) or whether this just makes thermal effects too dominant. In addition, we

are interested in using the reverse-anneal feature in a Marokovian process to see if

this could potentially make a difference. Whatever the case, any attempt to lower

ancilla qubit requirements of quantum chemistry calculations on D-wave cannot

rely on the quench feature.
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Chapter 5

Case Study II: Forward-reverse

Error-mitigation Annealing

Context and Summary of Investigation

Put succinctly, quantum annealing is a global search heuristic for a minimum. In

classical heuristics, analogous routines are improved by local refinements, but due

to the no-cloning theorem, such local improvements are not possible in traditional

QA [33; 34]. Various alternative quantum annealing routines were proposed [35],

and in 2017, D-Wave announced their solution: reverse (quantum) annealing1 [33].

In summary, forward annealing explores the energy landscapes globally while

reverse annealing does so locally. Our investigation asked a simple question: what

happens if we try to combine them to get the “best of both worlds?” The end

result was a new annealing protocol: forward-reverse error-mitigation (FREM)

annealing. We guide you through our investigation by carefully defining FREM,

outlining a few numerical experiments we ran with it, commenting on its poten-

1This is why we often refer to “standard quantum annealing” as simply forward (quantum)
annealing.
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5.1 Defining FREM

tial, and discussing possible future directions. Ultimately, FREM has shown the

potential to reduce errors compared to forward or reverse annealing alone without

the cost of ancilla qubits. Further, it has uncovered a potentially fruitful line of

investigation: graph introspection via critical qubits.

5.1 Defining FREM

To give a good definition of FREM, we’re going to have to do a better job of

defining reverse annealing than we did in Sec. 2.1.

5.1.1 Revisiting Reverse Annealing

In Eq. 2.1, we defined the Hamiltonian that D-Wave uses, and we saw it’s of the

form

H(s) =
A(s)

2
Hx +

B(s)

2
Hz, (5.1)

where s = t/T ∈ [0, 1], H(0) = Hx, and H(1) = Hz based on the behavior the

A(s)/B(s) “control function.” We saw that in forward annealing, the job ofHx is to

put the system in an easily achievable ground-state (i.e. an equal superposition in

the computational basis) and that it is Hz that actually encodes our optimization

problem of interest. Operationally, forward annealing means starting out with

s = 0 and ending with s = 1 over some anneal length Tf .

As the name implies, reverse annealing goes in the opposite direction. Opera-

tionally, reverse annealing

1. starts out with s = 1 at t = 0 and a classical state (typically a guess of the

ground-state from a previous forward anneal)

2. reduces s to 0 < s′ < 1 over time Tr (anneals backwards)

3. forward anneals from s = s′ to s = 1 over time Tf
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5.1 Defining FREM

4. and ends with s = 1, t = Tr + Tf , and a possibly different classical state

readout.

In other words, it does a local exploration of the energy landscape around the point

corresponding to the initial classical bit-string fed as a guess for the ground-state.

Ideally, it would return the original guess if it was correct and only a different

bit-string if the new answer has lower energy.

In actual uses, it is not that simple. As the D-Wave White Paper points

out [33], there is typically a problem-dependent “Goldilocks” region. In other

words, if you anneal too far backwards (i.e. make s′ too small), you run the risk

of “forgetting” anything about your input guess, performing a standard forward-

anneal in disguise. But if you don’t go far enough (i.e. make s′ too large), you

aren’t allowing the system to perform a local search at all–it simply spits the

original answer back out every time.

5.1.2 The FREM Algorithm

Forward-reverse error-mitigation (FREM) annealing is an annealing protocol that

performs forward and reverse annealing on a single Hamiltonian simultaneously.

For this to make any sense in the context of D-Wave annealing, we must partition

the qubits that make up our Ising Hamiltonian into two classes: those that will

be forward annealed (say, team F) and those that will be reverse annealed (team

R). Of course, a typical problem will also include some couplings that connect two

qubits that are assigned to the different teams. We call these couplings mixed. An

example partition is shown in Fig. 5.1. To actually perform FREM, these mixed

edges must be assigned to one team or the other. Though we’ve yet to prove it, we

suspect assigning each mixed edge to team R is the most effective way to reduce

error. One of our goals, of course, is to see whether this is true.

Recapitulating, we can define FREM annealing operationally. To perform
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5.1 Defining FREM

hi JijR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partition F partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partition

Mixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edgesMixed (M) edges

hj

Figure 5.1: An example of a partition of an Ising Hamiltonian represented as a
graph. In this case, we have not placed any of the mixed edges into either team R
or F yet. A real partition must ultimately decide to which partition each of these
edges belongs.

FREM, you must have an Ising Hamiltonian, a partition (generated from a scheme

of your choice), a forward anneal schedule, a reverse anneal schedule, and a bit-

string that encodes the initial state assigned to the qubits in team R. Given these,

the job is straightforward: simply forward anneal team F while reverse annealing

team R. Since pause is a valid operation even on current D-Wave devices, it is not

necessary even that the two partitions finish annealing at the same time.

One thing we’ve glossed over is a good choice of the initial classical state for

the team R qubits. Our choice in this work is simply to perform a forward anneal

on the entire system first. In any given FREM anneal, we project the predicted

ground-state of the forward anneal onto the qubits in team R.

Put in algorithmic steps, the FREM algorithm is:

1. input Hz; annealing schedule (Tf , Tr and s′); partitioning scheme

2. forward anneal (FA) H over time length Tf

3. reverse anneal (RA) starting with most probable classical state from FA over

time length Tr + Tf
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5.1 Defining FREM

4. perform FREM annealing on each partition.

At the end, our algorithm dumps out two files: one that stores the raw data and

one that summarizes all the major results we currently know to ask. In particular,

the summary file keeps track of the following information

1. input data

2. number of FREM partitions tried

3. forward annealing (FA) ground-state probability (gsp)

4. reverse annealing (FA) gsp

5. the best FREM annealing gsp

6. average FREM gsp

7. percentage of FREM partitions that outperformed FA/RA gsp

8. the distribution of partition sizes for those FREM partitions that outper-

formed FA/RA gsp

9. “critical qubit” information.

It is somewhat obvious why we are interested in (1 - 5). This data answers the

question: is it possible for FREM to improve ground-state sampling compared to

the best available methods on quantum annealing hardware? Next, (6) and (7) help

address: if so, how likely is that to occur if I choose a random partition? Datum

(8) helps address the question: is there an ideal way to partition an arbitrary

Hamiltonian? While this is a pretty coarse way to do so, we actually prefer this

as it is typically not possible to ask extremely granular questions about spin-

glasses. Datum (9) is slightly more complicated than the rest. Our hope is that

investigations with (9) will help lead the way in answering granular questions

about spin-glasses by allowing for “graph introspection,” but we’ll address it more

thoroughly in Sec. 5.3.
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5.2 Sidon Set Complete Graph (SKn) Tests

5.2.1 The Sidon Spin Glass Hamiltonian

To test the efficacy of FREM as an error-mitigation protocol, we wanted to per-

form experiments on a “typical Ising Hamiltonian.” One such useful notion is the

quantum spin-glass discussed in Sec. 1.2.5 since answering a question about a spin-

glass is at least as hard as answering the question on any other Ising Hamiltonian.

To generate a spin-glass, one need only randomly assign Jij coupling values from

a Gaussian distribution with mean 0 and variance 1 while making all hi = 0.

Unfortunately, assigning random real numbers to these couplings is generally a

bad idea. For one, a computer will always truncate a real number due to memory

constraints. Worse, even floating-point precision is lost once these coupling values

are actually used on the D-Wave device due to hardware constraints (i.e. only

the first 3 or 4 decimal places, in general, will matter). To avoid an ambiguity

between the logical problem submitted and the physical problem that is actually

solved using D-Wave (or even numerics), we instead randomly picked Jij’s from

the Sidon set S28 = {±8/28,±13/28,±19/28,±1} [36]. This finite set of rational

numbers has an extremely useful property: it creates spin-glasses just as well as

selecting real numbers from a 0 mean Gaussian.

5.2.2 A Few Heuristic Decisions

We also decided to run our simulations on complete graphs. A complete graph is

simply one where every vertex is connected to every other vertex. For this reason,

a complete graph is unambiguously specified by the number of vertices and is

typically denoted Kn. For this reason, we refer to these experiments as Sidon

Complete SKn tests. We made this choice for two reasons, (1) complete graphs

have the potential to introduce as much frustration as is possible for a fixed number
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R partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partitionR partition F partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partitionF partition

R edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edgesR edges

Jij ∈ S28
0 0

00

Figure 5.2: An example SK4 partition.

of qubits and (2) our qubit numbers are limited by the exponential memory cost

of adding more, so we wanted to have as “complex” of an Ising Hamiltonian as

possible.

Next, our initial tests explicated here are “R biased” in that all mixed edges are

assigned to team R. An example for SK4 can be seen in Fig. 5.2. Our reasoning at

this point is purely heuristic: we designed our algorithm so that it could globally

explore the energy landscape while being influenced by a good guess on the team

R qubits. In this model: we want team R qubits to influence the global search

performed by team F. In this sense, it should be team R dictating when the mixed

couplings should be turned on and off. In addition, this heuristic decision cuts

down on the shear number of possible partitions that should be tried to generate

useful statistics.

Even with an R-biased heuristic, the sample space of possible partitions for
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an SKn graph is much too large to try them all. The combinatorics are actually

fairly simple for complete graphs (see Appendix B). For these experiments, there

are
√

8(n2−n)(2n − 2) unique partitions. Trying every combination for a mere 10

qubits would mean running ≈ 4.45×1043 FREM anneals. . . not exactly reasonable.

Instead, we adopt the following heuristic: for a given set of couplings, try every

partition. For example, an exhaustive test of SK10 with fixed random couplings

now only takes 210 − 2 = 1022 FREM anneals.

5.2.3 Some Promising Results

Our eventual goal with FREM is to prove that it can improve ground-state sam-

pling as compared to both forward annealing and reverse annealing alone. Ideally,

we will also find a way to do so without having to explore an extremely large

hyper-parameter space that nullifies the point of a quantum advantage (insofar as

time complexity is concerned). We’ve yet to make significant progress on the latter

goal, but the former goal has been realized by a suitable choice of parameters.

In particular, using Tf = 1, Tr = 1; s′ = 0.27 (see D-Wave White Paper [33]

for choice of s′), we find that FREM is capable of outperforming both FA and RA.

These results are summarized in Fig. 5.3 which show the probability of measuring

the ground-state after a forward anneal, a reverse anneal, and the best FREM

anneal. By best, we mean the best ground-state probability attainable of those

partitions tried–which as explained is every possible partition for fixed randomly

chosen S28 couplings.

As discussed in Sec. 5.1.2, the FREM algorithm also outputs information about

how likely a partition is to outperform FA/RA. This data is summarized in Fig. 5.4.

In this particular example, FREM is more likely to outperform FA with a random

partition for every graph size tried except for n = 6. The success rate compared to

RA is not as good, but this is to be expected since RA is also intended to improve
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Figure 5.3: This graph summarizes the results for SKn FREM tests for Tf = Tr = 1
and s′ = 0.27. The x-axis shows the number of qubits used while the y-axis
shows the probability of measuring the ground-state for forward annealing, reverse
annealing, and (the best) FREM anneal, respectively.

Figure 5.4: This graph summarizes the results for SKn FREM tests for Tf = Tr = 1
and s′ = 0.27. The x-axis shows the number of qubits used while the y-axis
shows the percentage of partitions tried for which FREM annealing ground-state
probability outperformed forward annealing and reverse annealing, respectively.
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ground-state sampling.

5.3 Critical Qubit (CQn) Tests

This is still very much an experimental section of work, but we thought it was

interesting enough to include here. This line of inquiry pursues the aforementioned

“graph introspection.” Is it possible that FREM can be used to identify “critical”

regions of a graph? Our intuition of critical meaning “somehow more important

than any other region in helping determine the eventual end-state that an anneal

ends in.” Of course, this is a somewhat vague and purely intuitive notion. Our

eventual hope is that this line of inquiry will also shed light on a good definition

of critical itself–though we suspect the notion of critical also depends on how one

explores the energy landscape. Because of this, it is probably more accurate to

call this “graph introspection in the context of an annealing protocol,” but this is

so wordy as to be cumbersome.

5.3.1 The CQn Hamiltonian

Succinctly, a CQn graph is a complete graph of n qubits for which Jij = 1 ∀i, j,

h0 = −1, and hi = 1 ∀i 6= 0. An example CQ4 graph is shown in Fig. 5.5. Now

for a little context. . .

The developed of the CQn graph began with our desire to create a highly

degenerate graph given a complete topology of n qubits. Of course, this is very

easy: set Jij = hi = 1 ∀i, j. This creates the ultimate frustration: every qubit

wants to point down due to its hi bias. But due to the anti-ferromagnetic Jij

coupling, they also all want to point in opposite direction–which, of course, isn’t

possible. By mistake, I happen to set h0 = −1 instead with all other couplings as

described. This made me begin to think about the notion of a “critical qubit.” Is
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Figure 5.5: An example CQ4 partition.

q0 somehow special since it is the asymmetric qubit?

5.3.2 Some Promising Results

In regards to the procedure, we used the exact same methods as were used in the

SKn tests–except our couplings were actually fixed and we kept track of whether

the R partition contained the critical qubit q0 or not. Once again, we used Tf = 1,

Tr = 1; s′ = 0.27 as our annealing parameters, and we kept track of the same

metrics as we did for SKn. That is, Fig. 5.6 shows the ground-state sampling

probability of forward, reverse, and (the best partition) FREM annealing while

Fig. 5.7 shows how many partitions tried were successfully better than FA/RA.

Once again, FREM shows promise in being an error-mitigation routine.

This time around, however, we have an addition graph of interest, Fig. 5.8. This
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Figure 5.6: This graph summarizes the results for CQn FREM tests for Tf = Tr = 1
and s′ = 0.27. The x-axis shows the number of qubits used while the y-axis
shows the percentage of partitions tried for which FREM annealing ground-state
probability outperformed forward annealing and reverse annealing, respectively.

Figure 5.7: This graph summarizes the results for CQn FREM tests for Tf = Tr = 1
and s′ = 0.27. The x-axis shows the number of qubits used while the y-axis
shows the percentage of partitions tried for which FREM annealing ground-state
probability outperformed forward annealing and reverse annealing, respectively.
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Figure 5.8: This graph summarizes the results for CQn FREM tests for Tf = Tr = 1
and s′ = 0.27. The x-axis shows the number of qubits used while the y-axis shows
the percentage of partitions where FREM outperformed FA/RA that included the
critical qubit, q0.

shows, given those FREM anneals that outperformed FA/RA, what percentage of

these trials contained the critical qubit, q0. In each case, the percentage is over 50,

and is is typically in the 70-90 range. While this does not in any way conclusively

show that FREM is capable of so-called “graph introspection,” it is an interesting

step in that direction, nevertheless.

5.4 Conclusions

No strong conclusions should be made at this point about the efficacy of FREM. In

truth, this exploration has been but a mere proof-of-concept of our algorithm and

only the beginning of collecting numerical evidence that it is effective. There are

many avenues to explore. For one, we need to explore more of our enormous hyper-

parameter space–ideally running some computations on super-computers where we

can play with more qubits. Next, we should probably conduct our explorations
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more realistically by intentionally giving FREM a bad guess for the ground-state

of the R partition. Does it improve the answer then? If so, can it continually do

so, iteratively?

Nevertheless, the little we have shown here has already sparked a number of

interesting questions. For example, while Fig. 5.6 shows that FREM has the

potential to correct errors in the same way that Fig. 5.3 did, there is an interesting

difference between Fig. 5.7 and Fig. 5.4. In particular, a random partition performs

worse, on average, for the CQn tests. Is this because CQn is simpler? More

degenerate?

Finally, and most interestingly, our algorithm begins to probe at a very inter-

esting line of thought regarding graph introspection. Is FREM capable of sussing

out critical portions of a graph? If so, what does critical even mean? We hope

that we can find answers soon as we explore this topic further in the near future!
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Chapter 6

Conclusions

In summary, we have developed a package, dwaveutils, that allows users to study

quantum annealing on the D-Wave as quickly and easily as possible. First, it

makes pre- and post-processing, especially as it concerns hyper-parameter sweep-

ing, extremely easy. Second, it makes checking one’s answer numerically by direct

diagonalization and numeric quantum annealing a breeze. We’ve illustrated the

use of the package by carrying out two investigations we were already interested

in with it: simulations of transverse-field Ising Hamiltonians and forward-reverse

error-mitigation annealing.

In the first study, we found that, at least for our 3 qubit problem, the quench

dynamic is not necessarily sufficient to approximate a sudden transition. Our

leading hypothesis is that it is simply too slow for the problem tested, but we’ve

yet to ascertain that this is the culprit. Whatever the case, it’s certainly not

possible to sample with a transverse field present for all problems.

In the second study, we say that FREM has the potential to be a viable error

reduction protocol that does not require ancilla qubits. In particular, we mean

FREM could increase the probability that D-Wave devices correctly find the solu-

tion to an optimization problem. Further, FREM may allow for information about

the internals of a graph to be explored through critical qubit analysis.

64



Appendix A

The Postulates of Quantum
Mechanics

To encapsulate the essence of quantum mechanics quickly, we will explicate the

essential postulates as stated in Nielsen and Chuang’s excellent textbook Quantum

Computation and Quantum Information[7].

Postulate 1. Associated to any isolated physical system is a complex vector space
with inner product (that is, a Hilbert space) known as the state space of the system.
The system is completely described by its state vector, which is a unit vector in
the system’s state space.

Postulate 2. The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |ψ〉 of the system at time t1 is related to the
state |ψ′〉 of the system at time t2 by a unitary operator U which depends only on
the times t1 and t2,

|ψ′〉 = U |ψ〉.

Postulate 3. Quantum measurements are described by a collection of {Mm} of
measurement operators. These are operators acing on the state space of the system
being measured. The index m refers to the measurement outcomes that may occur
in the experiment. If the state of the quantum system is |ψ〉 immediately before
the measurement, then the probability that result m occurs is given by

p(m) =
〈
ψ|M †

mMm|ψ
〉
,

and the state of the system after the measurement is

Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
.
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The measurement operators satisfy the completeness equation,∑
mM

†
mMm = I.

The completeness relation equation expresses the fact that probabilities sum to
one:

1 =
∑

m p(m) =
∑

m
Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
.

Postulate 4. The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number i is prepared in the state |ψi〉,
then the joint state of the total system is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉.
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Appendix B

Some Complete Graph
Combinatorics

First of all, every vertex of a complete graph is connected to every other vertex.

Hence, the total number of edges for a complete graph with n vertices is

EC(n) = (n− 1) + (n− 2) + . . .+ 0 =
n2 − n

2
. (B.1)

Next, the total number of “R-biased” partitions of a graph is easy: we need

only look at the unique combinations of qubits that could belong to team R. That’s

just the powerset throw away the entire graph and the null set, i.e.,

|2{0,1,...,n}| − 2 = 2n − 2, (B.2)

where | · | stands for the cardinality of the powerset.

Then, if each vertex is allowed to take on a random value from a set of 8 choices

(the number of distinct choices in S28), as in SKn graphs, then the total number

of unique partitions is simply

8EC(n)(2n − 2) =
√

8n2−n(2n − 2). (B.3)
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