
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Honors Theses Undergraduate Research

4-29-2021

Using Spectral Graph Theory to Analyze Gene Expression Using Spectral Graph Theory to Analyze Gene Expression

Networks Networks

Chuyen Nguyen
Mississippi State University

Follow this and additional works at: https://scholarsjunction.msstate.edu/honorstheses

Recommended Citation Recommended Citation
Nguyen, Chuyen, "Using Spectral Graph Theory to Analyze Gene Expression Networks" (2021). Honors
Theses. 118.
https://scholarsjunction.msstate.edu/honorstheses/118

This Honors Thesis is brought to you for free and open access by the Undergraduate Research at Scholars
Junction. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholars Junction.
For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/honorstheses
https://scholarsjunction.msstate.edu/ur
https://scholarsjunction.msstate.edu/honorstheses?utm_source=scholarsjunction.msstate.edu%2Fhonorstheses%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/honorstheses/118?utm_source=scholarsjunction.msstate.edu%2Fhonorstheses%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Honors Thesis submitted to Shackouls Honors College, Mississippi State University, Spring 2021

Using Spectral Graph Theory to Analyze Gene

Expression Networks

By

Chuyen Nguyen

______________________________ __________________________________

Andy Perkins Bindu Nanduri

Professor Associate Professor

(Director of Thesis) (Committee Member)

Seth Oppenheimer

Professor

(Shackouls Honors College Representative)

Template APA v4.3 (beta): Created by T. Robinson 01/2021

Using Spectral Graph Theory to analyze gene expression networks

By

TITLE PAGE

Chuyen Nguyen

Approved by:

Andy Perkins (Major Professor)

Bindu Nanduri

Seth Oppenheimer

Submitted to the Faculty of

Mississippi State University

in Partial Fulfillment of the Requirements

for the Provost Scholars Research Project

Mississippi State, Mississippi

April 2021

Copyright by

COPYRIGHT PAGE

Chuyen Nguyen

2021

Name: Chuyen Nguyen

ABSTRACT

Date of Degree: April 29, 2021

Institution: Mississippi State University

Major Field: Computer Software Engineering

Major Professor: Andy Perkins

Title of Study: Using Spectral Graph Theory to analyze gene expression networks

Pages in Study 24

Member of Provost Scholarship

This paper covers the potential applications of using the spectral analysis of a graph’s

Laplacian matrix to gene co-expression networks. The general idea is to take publically available

genetic data from cancer studies, organize them into gene co-expression networks, and analyze

them using Spectral Graph theory.

The publically available cancer study data includes files that show the occurrence of

several different genes within a single person’s genetic data (given by fragments per kilobase

million). The research takes the data of several patients and organizes them into a table. From

there, each gene’s occurrence is measured against every other gene’s occurrence using Pearson

correlation values, resulting in another table of pairs of genes and their correlation values. For

each line, a gene, another gene, and their Pearson correlation value are represented in three

columns corresponding to each aforementioned piece of data. Only genes that have a Pearson

correlation value above a certain threshold were added to this file so that the file represents only

significant correlations between genes.

This file could be interpreted as an edge list for a gene co-expression network, which is a

graph showing connections between genes. Each gene represents a single node of the graph, and

every line of the file contained the connection between two genes, this connection being the edge

between two nodes. With the file able to be interpreted as a graph, Spectral Graph theory

concepts applied to it very naturally, allowing us to extract the second-smallest eigenvalue of the

graph’s Laplacian matrix and the degree of zero eigenvalues, which gave us an understanding of

the graph’s structure.

iv

TABLE OF CONTENTS

LIST OF TABLES ...v

LIST OF FIGURES ... vi

CHAPTER

I. INTRODUCTION ..1

Spectral Graph Theory ..2
The Laplacian Matrix ..2

Eigenvalues and Eigenvectors ...3
RNA Sequencing Data ..4

Gene Co-Expression Networks ...5
Data Used ..6
Approach ...6

Literature ...7

II. METHODS AND RESULTS ...8

Making Gene Co-expression Networks ...8
Deriving the Laplacian Matrix and its Eigenvalues and Eigenvectors9

Analysis of Data ..11
Visual Representation of Graph ..13

Conclusions ...14
Future Work ...14

REFERENCES ..16

APPENDIX

A. SCRIPTS UTILIZED IN THE PROCESSING AND CREATION OF DATA18

consolidateGeneData.py ..19
computeCors.R ..21

buildLaplacian.py ..22

v

LIST OF TABLES

Table 1 Table of Laplacian Eigenvalue Relationships to Graph Properties3

Table 2 TCGA Projects from which Data was Processed ..10

Table 3 Results of Calculations ..11

vi

LIST OF FIGURES

Figure 1. Visualization of TCGA-LUAD Gene Co-Expression Network13

1

INTRODUCTION

The main goal of our research is to find out if the relationship between different genes

within cancer patients can allow us to understand the way that cancer growth appears based on

the presence of certain genes within a person. We try to achieve this understanding by

performing a series of data transformations and analyzing the data which results from these

transformations.

The research begins by collecting gene data gathered from several cancer patients

through a publicly accessible database. The data shows the expression or activity of certain genes

within a person. This gene data from each patient is compiled together into one large table, and

this table is analyzed to find the relationship between each gene, namely how often one gene

appears alongside another gene.

In order to quantify this comparison, we find a value called the correlation between two

compared genes, which is a measure of how similar the two genes are. If the correlation value

does not meet a certain limit, we do not add it to the list of genes that have a relationship with

each other. The list that is compiled from these comparisons has three columns: one gene,

another gene, and their correlation value. We take this table and interpret it in a way that allows

us to form a graph from it.

A graph is a manner of representing data that consists of two major elements: nodes and

edges. A node represents a single piece of data, while an edge connects two nodes to represent a

2

relationship between the nodes. In our graph, the nodes will be the genes, and the edges will be

that relationship we found in the last step. As a result of us setting a limit to the correlation value

required to represent a relationship, only genes with a strong relationship will be represented in

this graph.

The purpose of organizing the data into a graph is to apply a method of analysis that

gives us clues to how the graph is structured, which may allow us to understand the relationship

between many genes. In this research, we derive from the graph structures called matrices, which

are essentially tables, and find the eigenvalues of these matrices which tells us properties of this

graph we constructed. Through this analysis and the properties we derive from the eigenvalues,

we hope to understand the graph structure and eventually how relationships between genes result

in cancer growth.

Spectral Graph Theory

Spectral Graph Theory (SGT) is a theory concerning graph analysis. It concerns the

spectrum of graphs, which is “the multiset of eigenvalues, that is the set of eigenvalues repeated

according to their multiplicity.” (Nica, 2018) Many different matrices related to graphs are able

to produce interesting spectrums; however, in the context of this work, the prevalent aspects of

SGT are the study and analysis of a graph through its Laplacian matrix and the eigenvalues and

eigenvectors of that matrix.

The Laplacian Matrix

The formal definition of the Laplacian matrix of a graph given by Nica Bogdan in his

publication A Brief Introduction to Spectral Graph Theory is

3

𝐿(𝑢, 𝑣) = {
deg(𝑣) 𝑖𝑓 𝑢 = 𝑣
−1 𝑖𝑓 𝑢 ~ 𝑣
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

An important belief of SGT and one that is highly relevant to this paper is that the analysis of a

graph’s Laplacian and its eigenvalues and eigenvectors can lead to an understanding of

properties of the graph and thus the data that the graph was created from.

Eigenvalues and Eigenvectors

The definition of a spectrum of the graph, which SGT is greatly concerned with, derives

solely from the existence of eigenvalues of a matrix representation of a graph. Eigenvalues in

this context allow for an in-depth understanding of several graph properties, many of which

would not be easy to find without the analysis of eigenvalues. Examples of which include the

prominence of graph spectra in minimizing energies of Hamiltonian systems and the arising links

in SGT and Riemannian geometry through analysis of spectrum. (F. Chung, 1985)

The table below demonstrates some of the potential usage of graph spectra derived from

Laplacian matrices.

Table 1 Table of Laplacian Eigenvalue Relationships to Graph Properties

Characteristic Meaning

Multiplicity of eigenvalues of 0 Represents the number of connected

components of the graph. Every Laplacian

matrix of a graph will have at least one

eigenvalue of zero. (Das, 2004)

Second smallest eigenvalue (λ1) Represents the “algebraic connectivity” of the

graph, which refers to how connected the

graph is. This eigenvalue is bounded between

zero and one. (Fiedler, 1989)

λ1 is greater than 0 The graph of the Laplacian matrix is

connected. (Fiedler, 1989)

λ1 is equivalent to 1 The graph of the Laplacian matrix is

complete. (Fiedler, 1989)

4

Lower bound on λ1 Implies an upper bound on the diameter of the

graph. (F. R. K. Chung, 1995)

An eigenvalue of 2 from a normalized

Laplacian matrix

The upper bound of any eigenvalue of a

normalized Laplacian matrix of a graph is

two. If any of a graph’s normalized

Laplacian’s eigenvalues is two, then there is a

connected component of said graph that is

bipartite and nontrivial. (F. R. K. Chung,

1995)

The sum of all eigenvalues in the Laplacian

spectrum is less than the number of vertices in

the graph.

The graph has no isolated vertices. (F. R. K.

Chung, 1995)

Sum of Laplacian eigenvalues Equal to the sum of the degrees of a graph.

(K. CH. DAS)

RNA Sequencing Data

RNA sequencing data, or RNA-Seq for short is a method of genome data cataloging that

enables researchers who desire the means to analyze genetic information great breadths of

information to analyze. This is allowed through the usage of next-generation sequencing

techniques that give researchers information on billions of individual bases (Chu & Corey,

2012). RNA-Seq represents a great advancement in gene expression transcription from the

previous method of microarrays which were by comparison less cost and time effective than the

next-generation sequencing techniques used to produce RNA-Seq data. RNA-Seq data also

provides the benefit of being “particularly attractive for the quantitative analysis of transcript

expression levels” (Marguerat & Bähler, 2010), allowing for thorough analysis and study of the

gene expressions of the subject collected from. Particular advantages of RNA-Seq data that have

been utilized in this research is its ability to generate expression data for every base genome and

the data representation’s ease of mRNA analysis.

5

Gene Co-Expression Networks

Gene co-expression networks (GCN) are a method of organizing gene expression data in

a manner that elicits the understanding of the relationship between different genes. This is done

through the construction of an undirected graph with each node corresponding to a gene, and

edges between these nodes whenever a relationship exists among them. Analysis of a structure

created through this manner allows for the studying of what genes often appear together and

which ones do not, giving researchers the ability to determine how relationships between genes

elicit certain developmental characteristics that may be brought about by these co-expressions.

For the details of this research, the Pearson correlation coefficient formula was used to compute

the co-expressions between gene pairs.

There are many terms relating to graph theory and using graph theory to analyze

biological networks that apply to GCNs. These terms will be relevant throughout future portions

of this paper. The sparsity and density of a graph does not have a concrete definition. For this

paper, a sparse graph is one where the number of edges is close to the lowest number of edges it

could have, and a dense one having a number of edges close to the maximum number of edges it

could have. The diameter of a graph is represented as 𝐷 = max
𝑖,𝑗

𝛿𝑚𝑖𝑛 (𝑖, 𝑗), otherwise known as

the “longest shortest path of the graph.” The “clustering coefficient” of a graph tells the graph’s

tendency to divide into clusters. A network is scale-free if it’s degree distribution exhibits a

power law distribution (Pavlopoulos et al., 2011).

6

Data Used

The data used in this research is mRNA gene expression data received from the RNA-Seq

data collection methods discussed in the earlier section. This data has been provided in an open-

access model from The Cancer Genome Atlas, or TCGA (Tomczak et al., 2015). TCGA is a

government funded joint effort between the National Cancer Institute and National Human

Genome Research Institute which provides publicly accessible genomic data of cancer patients.

Approach

Efforts in this research project are made to uncover the potential uses of Spectral Graph

Theory in analyzing gene expression networks. In order to accomplish this, RNA-Seq mRNA

transcription data collected from TCGA is processed and organized into gene expression network

graphs, with nodes representing each mRNA gene expression, edges representing their

relationships and edge weights representing the Pearson correlation values derived between each

gene.

The main pilot of these research efforts is NetworkX, a Python package that allows for

the extensive code analysis of graphs (Hagberg et al., 2008). Through NetworkX, the gene

correlation data is processed and transformed into a gene co-expression network in the fashion

mentioned in the prior section. After which, NetworkX’s function to derive a Laplacian matrix

from a graph will be used and its eigenvalues and eigenvectors extracted through the utilization

of SciPy - a broad-covering science and math package for Python (Virtanen et al., 2020).

7

Literature

A Brief Introduction to Spectral Graph Theory by Bogdan Nica gives a great overview of

the concepts integral to SGT. From this beginner resource, I established a solid foundation of

understanding for the subject of this research. Many of the equations used in the Spectral Graph

Theory section of this introduction were sourced from this book. Spectral Graph Theory by Fan

Chung provides a more comprehensive coverage of SGT, where it can be applied and its usages

and is considered to be the book for those who are interested in using SGT.

An overview of the process used to derive RNA Sequencing data from biological

material come from the articles “RNA Sequencing: Platform Selection, Experimental Design,

and Data Interpretation” written by Yongjun Chu and David Corey and Samuel Marguerat and

Jurg Bahler’s “RNA-seq: from technology to biology”. Both articles also give insight into the

advantages and disadvantages of gathering and analyzing RNA-Seq data. I found these works to

be useful for learning about the way RNA-Seq data is extracted and reasons why it should be

used for gene analysis.

Practical usages of gene data analyzed through the lens of gene co-expression networks

can be found in the following articles. “A Gene-Coexpression Network for Global Discovery of

Conserved Genetic Modules” gives an overview of the usage of GCNs and tries to answer the

problem of co-expression of unrelated genes by analyzing co-expressed genes across several

different organisms.

8

METHODS AND RESULTS

Making Gene Co-expression Networks

In order to produce GCNs from the mRNA data gathered from The Cancer Genome

Atlas, first the correlation value for gene was computed. This was done by first compiling the

data from different patients into one table with columns representing each patient and rows

representing each gene present in the patient RNA-Seq data. An R script was then used to

compute correlation data for every gene against every other gene, producing a table with three

columns: the first being a gene, the second being another gene, and the third being their

correlation value.

𝑟 =
∑(𝑥 − 𝑚𝑥)(𝑦 − 𝑚𝑦)

√∑(𝑥 − 𝑚𝑥)2 (𝑦 − 𝑚𝑦)2

The Pearson correlation coefficient formula used by R to compute correlation

values.(Correlation Test Between Two Variables in R, n.d.)

Through limiting the output of the R script, the table only contains compared genes with

a Pearson correlation value greater than 0.75. NetworkX’s readedgelist function allowed for this

table to be read and used as an edge list to construct a graph object, allowing us to create the

gene co-expression network by reading the R script’s output and creating a weighted undirected

graph with it. The weights of this graph are the correlation values in the third column of its input.

9

Deriving the Laplacian Matrix and its Eigenvalues and Eigenvectors

NetworkX comes well equipped for spectral analysis and comes with a function that

derives the Laplacian matrix of a graph. The required input is the graph itself, and its return

value is a SciPy sparse matrix representing the Laplacian matrix of the given graph. This graph

being native to the SciPy language can now have scientific and mathematical operation ran on it

through the SciPy package.

𝐿 = 𝐷 − 𝐴

The formula used by NetworkX to construct a Laplacian matrix. L represents the

Laplacian matrix of the graph, and D and A represent the degree matrix and adjacency

matrix of the graph. Both D and A are square matrices with their rows and columns

being the nodes of the graph. D gives the number of connected edges per node across its

diagonal and A shows whether or not a node-pair has an edge (F. Chung et al., 2003).

Within the SciPy package are numerous amounts of linear algebra functions. Some of

which are compatible with sparse matrix objects of the package, one of which being the eigs

function in its sparse.linalg package. The eig function takes the input of an ndarray object, sparse

matrix or Linear Operator object and outputs two ndarray objects, the first of which being an

array containing the input’s eigenvalues and the second being an array of more ndarray objects,

each representing an eigenvector. In the eigenvector ndarray, each index of [:, i] represents the

index [i] in the eigenvalue ndarray.

𝐴𝑥𝑖 = 𝜆𝑖𝑣𝑖

10

The equation SciPy solves to find eigenvalues and vectors from the eigs function. A

represents the input matrix, 𝜆i represents the ith eigenvalue and vi represents the ith

eigenvector.

After some analysis of the output of the SciPy package, it was determined that the

eigenvalues did not output as desired, and therefore a function made available by the NetworkX

package was used: laplacian_spectrum. This function produces a sorted list of eigenvalues for the

supplied graph and was used to output the eigenvalues in place of the SciPy function.

𝐿𝑣𝑖 = 𝑏 ∗ 𝜆𝑖𝑣𝑖

𝑣𝑖
𝐻𝐿𝑣𝑖 = 𝜆𝑖

𝑣𝑖
𝐻𝑏 = 1

The eigenvalues computed by NetworkX’s laplacian_spectrum function must satisfy the

above equivalencies where L is the Laplacian matrix of the graph, vi is the eigenvector of

the ith eigenvalue, and b is positive semidefinite.

Table 2 TCGA Projects from which Data was Processed

Proje

ct ID

Project Name Primary Site

Analyzed

Sample

Size

Reference

TCG

A-

KIRC

Kidney Renal

Clear Cell

Carcinoma

 Kidneys 20 https://portal.gdc.cancer.gov/projects/

TCGA-KIRC

TCG

A-

LUA

D

Colon

Adenocarcino

ma

 Colon

 Rectosigm

oid

Junction

20 https://portal.gdc.cancer.gov/projects/

TCGA-COAD

TCG

A-

COA

D

Lung

Adenocarcino

ma

 Bronchus

 Lung

20 https://portal.gdc.cancer.gov/projects/

TCGA-LUAD

TCG

A-

LUSC

Lung

Squamous
 Bronchus

 Lung

20 https://portal.gdc.cancer.gov/projects/

TCGA-LUSC

https://portal.gdc.cancer.gov/projects/TCGA-KIRC
https://portal.gdc.cancer.gov/projects/TCGA-KIRC
https://portal.gdc.cancer.gov/projects/TCGA-COAD
https://portal.gdc.cancer.gov/projects/TCGA-COAD
https://portal.gdc.cancer.gov/projects/TCGA-LUAD
https://portal.gdc.cancer.gov/projects/TCGA-LUAD
https://portal.gdc.cancer.gov/projects/TCGA-LUSC
https://portal.gdc.cancer.gov/projects/TCGA-LUSC

11

Cell

Carcinoma

TCG

A-

THC

A

Thyroid

Carcinoma
 Thyroid

Gland

20 https://portal.gdc.cancer.gov/projects/

TCGA-THCA

 From each project, a set of twenty patients’ RNA-Seq data represented by fragments per

kilobase million (FPKM) files were collected.

Analysis of Data

Table 3 Results of Calculations

Dataset λ1 Degree of Zero

Eigenvalues

Number of Node Pairs with

a Pearson Correlation

Coefficient > 0.75

TCGA-KIRC 0.144396908844 9 22,775,833

TCGA-LUAD 0.0388956653568 7 784,859

TCGA-COAD 0.236749027287 4 93,020,861

TCGA-LUSC 0.118303780644 7 16,692,745

TCGA-THCA 0.167892899534 14 33,186,621

In the above table, λ1 represents the second smallest eigenvalue, with

𝜆0 < 𝜆1 < 𝜆2 < ⋯ < 𝜆𝑛

 The TCGA-LUAD dataset had the smallest output in terms of nodes with a Pearson

correlation value greater than 0.75. Conversely, the TCGA-COAD had the largest collection of

nodes with a Pearson correlation value greater than 0.75 by far, with the file representing the

correlation values nearing five gigabytes, and the next greatest runner up reaching ~1.7

gigabytes.

 It is interesting to note that the size of λ1 directly correlates with the number of node pairs

with significant Pearson correlation coefficients (greater than 0.75). This follows logical

https://portal.gdc.cancer.gov/projects/TCGA-THCA
https://portal.gdc.cancer.gov/projects/TCGA-THCA

12

assumptions as the greater the number of node pairs implies the greater connectivity of the graph,

meaning a higher algebraic connectivity (represented by λ1).

 Another interesting fact is that of the datasets, the two with the lowest algebraic

connectivity are those that originate from the same area of interest. TCGA-LUAD and TCGA-

LUSC are projects aimed at the analysis of the gene data of patients with bronchus and lung

related cancer growth.

 The degree of zero eigenvalues directly equates to the number of connected-components

that a graph contains. For instance, TCGA-KIRC’s GCN representation contains nine connected

components within its graph. In comparing the degree of zero eigenvectors to other data gathered

in this research, there seems to be no distinguishable correlation between the number of

connected components and the number of node pairs with significant Pearson correlation

coefficients.

13

Visual Representation of Graph

Figure 1. Visualization of TCGA-LUAD Gene Co-Expression Network

The above graph was generated using the OpenOrd algorithm provided by the Gephi

program. As can be seen, there are several large clusters where nodes (genes) are gathered and

many empty areas where the nodes of the graph are more sparsely distributed. These clusters are

14

strongly connected components of the graph, and it can be assumed that the algebraic

connectivity of each of these components would be greater than the average across the graph.

Conclusions

 Based on the data found above, there is some merit to the analysis of gene-co-

expression networks through the lens of Spectral Graph Theory. While the application above of

understanding a GCN network’s connectedness through the analysis of its Laplacian matrix’s

second-smallest eigenvalue only reveals one aspect of the graph and serves to compare the

connectedness of different grpahs, there are several other aspects of a graph that can be

determined from its Laplacian spectra as was shown in Table 1 from the earlier “Spectral Graph

Theory” section. The usage of studies pertaining to graph analysis in Spectral Graph Theory to

determine and approximate potentially difficult to find and complex graph properties are

bountiful, and these same analyses are very likely applicable in the same way that the algebraic

connectivity demonstrated by λ1 was. The potential for the usage of SGT in the analysis of GCNs

may lead to a greater understanding of how genes interact in order to induce the growth of cancer

cells.

Future Work

There are several broad-spanning conclusions that were made from this analysis that

leads to questions regarding the effectiveness of spectral graph analysis in the examination of

gene co-expression networks. A potential future endeavor would be to take a graph and split it

down to its individual strongly-connected components, then finding the algebraic connectivity of

15

each in order to potentially understand the contribution that strongly-connected genes of a cluster

may have to cancer growth. Another potential study to conduct is the relevancy of different

Laplacian spectrum values to the analysis of GCNs, as the Laplacian spectrum values can give

approximations of values that are difficult to accurately compute, and therefore have not been as

thoroughly explored in GCN analysis.

There is room to explore the direct relation of algebraic connectivity to cancer growth. A

study can be conducted concerning the relationship of the second smallest eigenvalue and other

spectral analysis values derived from gene data to other well-understood scientific studies of that

data. From that analysis, a more solid understanding of the link between certain properties that

can be ascertained from spectral graph analysis and real world effects of genes of cancer patients

can be reached.

Stemming from the derivation of the algebraic connectivity of graphs conducted in this

analysis, one can question how effective the comparison of GCNs would be through the usage of

SGT. Algebraic connectivity is not a concrete value and is more an approximation of other

values relating to the connectivity of a graph. The potential usage of approximated values seem

strongest in the comparison of graphs, where prior research of the genetic data used to generate

said graphs can be compared and analyzed with those values to understand how SGT can play a

part in more deeply understanding different GCNs and their origins.

There are other aspects of graphs that may be useful in the analysis of GCNs and can

relate to spectral graph analysis, such as the aforementioned diameter and girths of graphs.

Computation of these values was not accomplishable due to time constraints within this research,

but may give way to interesting results in terms of the relationships of those values to the genetic

data that they derive from.

16

REFERENCES

Chu, Y., & Corey, D. R. (2012). RNA sequencing: Platform selection, experimental design, and

data interpretation. Nucleic Acid Therapeutics, 22(4). https://doi.org/10.1089/nat.2012.0367

Chung, F. (1985). Spectral Graph Theory - Chapter 1. In Linear and Multilinear Algebra (Vol.

18, Issue 2).

Chung, F., Lu, L., & Vu, V. (2003). Spectra of random graphs with given expected degrees.

Proceedings of the National Academy of Sciences of the United States of America, 100(11).

https://doi.org/10.1073/pnas.0937490100

Chung, F. R. K. (1995). Eigenvalues of Graphs BT - Proceedings of the International Congress

of Mathematicians (S. D. Chatterji (Ed.); pp. 1333–1342). Birkhäuser Basel.

Correlation Test Between Two Variables in R. (n.d.). Retrieved April 12, 2021, from

http://www.sthda.com/english/wiki/correlation-test-between-two-variables-in-r

Das, K. C. (2004). The Laplacian spectrum of a graph. Computers and Mathematics with

Applications, 48(5–6). https://doi.org/10.1016/j.camwa.2004.05.005

Fiedler, M. (1989). Laplacian of graphs and algebraic connectivity. Banach Center Publications,

25(1). https://doi.org/10.4064/-25-1-57-70

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and

function using NetworkX. 7th Python in Science Conference (SciPy 2008).

Marguerat, S., & Bähler, J. (2010). RNA-seq: From technology to biology. In Cellular and

Molecular Life Sciences (Vol. 67, Issue 4). https://doi.org/10.1007/s00018-009-0180-6

17

Nica, B. (2018). A Brief Introduction to Spectral Graph Theory. In A Brief Introduction to

Spectral Graph Theory. https://doi.org/10.4171/188

Pavlopoulos, G. A., Secrier, M., Moschopoulos, C. N., Soldatos, T. G., Kossida, S., Aerts, J.,

Schneider, R., & Bagos, P. G. (2011). Using graph theory to analyze biological networks. In

BioData Mining (Vol. 4, Issue 1). https://doi.org/10.1186/1756-0381-4-10

Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA):

An immeasurable source of knowledge. In Wspolczesna Onkologia (Vol. 1A).

https://doi.org/10.5114/wo.2014.47136

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,

J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., …

Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in

Python. Nature Methods, 17(3). https://doi.org/10.1038/s41592-019-0686-2

18

SCRIPTS UTILIZED IN THE PROCESSING AND CREATION OF DATA

19

consolidateGeneData.py

 The following Python code was used to take separated FPKM files and combine

them into a table with columns being patients and rows being genes.

The purpose of this code is to take the separated genetic files of the

patients and consolidate them into a one-dimensional table.

Input: The folder containing all of the raw genetic data of the patients.

Output: A tab-delimited text file. X-axis will be patients, Y-axis will be

genes, and data will be the quantity of the gene that each patient has.

import os

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('-i', '--input', required=True, help="Input directory")

parser.add_argument('-o', '--output', required=True, help="Output directory")

args = parser.parse_args()

READ INPUT SECTION

Getting files through input of directory.

readFilePath = args.input

pathExists = os.path.isdir(readFilePath)

while pathExists == False:

 filePath = input("ERROR:File path entered does not exist. Please enter a

valid file path.\n")

 pathExists = os.path.isdir(readFilePath)

geneFiles = os.listdir(readFilePath)

os.chdir(readFilePath)

print(geneFiles) - debug print statement

This section takes the files and creates dictionaries of them, key being

gene, value being gene value.

listOfDicts = []

for gfile in geneFiles:

 dict = {}

 with open(gfile) as f:

 for line in f:

 lineSplit = line.split("\t")

 lineSplit[1] = lineSplit[1].replace("\n", "")

 dict[lineSplit[0]] = lineSplit[1]

 listOfDicts.append(dict)

Getting a list of all genes that are present between files.

listOfGenes = [x.keys() for x in listOfDicts]

allGenes = list(set().union(*listOfGenes))

allGenes = list(dict.fromkeys(allGenes))

WRITE OUTPUT SECTION

20

Get the directory to output the gene table to.

writeFilePath = args.output

Open the file to be written to.

os.chdir(writeFilePath)

writeFile = open("patientTable.txt", "w+")

Constructing the first line.

The first line will contain patient by number, so the first patient is p1,

second is p2, and so forth.

writeFile.write("name\t")

lineString = ""

for i in range(1,len(listOfDicts)):

 lineString += "p" + str(i) + "\t"

lineString += "p" + str(i + 1) + "\t" #need this tab to match with later gene

tabs

lineString += "\n"

writeFile.write(lineString)

This code block writes each subsequent line past the first line.

Each line begins with the gene, then tab delimiters between the data for

each patient in order.

for gene in allGenes:

 lineString = str(gene)

 lineString += "\t"

 for x in listOfDicts:

 try:

 lineString += x[gene]

 except:

 lineString += "NULL"

 lineString += "\t"

 lineString += "\n"

 writeFile.write(lineString)

writeFile.close()

21

computeCors.R

The following code is an R script which takes the table generated by the previous

section’s code and generates the edgelist with the Pearson correlation values acting as weights.

This edgelist has columns of a gene, another gene, and their Pearson correlation value.

rawData <-

read.table("C:\\Users\\Persons\\Documents\\Research\\OrganizeResearch\\tarfil

es\\TCGA-LUAD\\patientTableLUAD.txt", header = TRUE, sep = "\t")

formattedData <- rawData[,-1]

rownames(formattedData) <- rawData[,1]

transpose <- t(formattedData)

totalGenes <- nrow(formattedData)

filePath <-

"C:\\Users\\Persons\\Documents\\Research\\OrganizeResearch\\testOutput\\RTabl

eLUAD.txt"

file.create(filePath)

outFile <- file(filePath, open = "wt")

for (i in 1:totalGenes)

{

 if(i+1 <= totalGenes){

 for (j in (i+1):totalGenes)

 {

 geneOne <- colnames(transpose)[i]

 geneTwo <- colnames(transpose)[j]

 corVal <- cor(transpose[,i], transpose[,j], use = "complete.obs")

 if(!is.na(corVal) & corVal >= 0.75) {

 lineString <- paste(geneOne, geneTwo, corVal, sep = "\t")

 writeLines(c(lineString), outFile)

 }

 }

 }

}

close(outFile)

22

buildLaplacian.py

The Python script below takes the edgelist created in the computeCors.R R script and

outputs the eigenvalues, second smallest eigenvalue’s eigenvector, and diameter of the graph.

import argparse

import os

import sys

import networkx as nx

import numpy as np

from scipy.sparse.linalg import eigs

from math import isclose

import time

Sets any NumPy or SciPy print operations to print without truncation.

np.set_printoptions(threshold=sys.maxsize)

def main():

 start_time = time.time()

 try:

 parser = argparse.ArgumentParser()

 except:

 print("ERROR: Argument parsing error.")

 sys.exit(1)

 parser.add_argument("-i", "--input", required=True, help="REQUIRED: The

input file. Must be a weighted edge list.")

 parser.add_argument("-e", "--eig_output", required=True,

 help="REQUIRED: The output location and name of the

eigenvalue and eigenvector output file.")

 parser.add_argument("-l", "--lap_output", required=False,

 help="OPTIONAL: The output location and name of the

Laplacian Matrix output file.",

 default=None)

 parser.add_argument("-a", "--adj_output", required=False,

 help="OPTIONAL: The output location and name of the

adjacency matrix output file.",

 default=None)

 try:

 args = parser.parse_args()

 user_input = args.input

 eig_output = args.eig_output

 laplacian_output = args.lap_output

 adjacency_output = args.adj_output

 except ValueError as e:

 print("ERROR:" + str(e))

 sys.exit(1)

 # Open consolidated gene file

 fh = open(user_input, "rb")

23

 # Reads gene file as edgelist and creates graph from it

 cor_graph = nx.read_edgelist(fh, nodetype=str, data=(("weight", float),))

 fh.close()

 # Debug statement

 # print(cor_graph)

 # Optional output for the adjacency matrix

 if adjacency_output is not None:

 with open(adjacency_output, "w+") as adj:

 adj_matrix = nx.linalg.graphmatrix.adjacency_matrix(cor_graph,

nodelist=cor_graph.nodes(), weight=None)

 adj_matrix_print = adj_matrix.todense().tolist()

 adj.write(str(adj_matrix_print))

 # Creates scipy sparse matrix object that is the laplacian matrix of the

graph

 lap_matrix = nx.linalg.laplacianmatrix.laplacian_matrix(cor_graph,

nodelist=cor_graph.nodes(),

weight=None).asfptype() # , weight="weight")

 # Optional output for the Laplacian matrix

 if laplacian_output is not None:

 with open(laplacian_output, "w+") as lap:

 lap_matrix_print = lap_matrix.todense()

 lap.write(str(lap_matrix_print))

 # Use NetworkX laplacian_spectrum function to get all Laplacian

eigenvalues of the graph sorted in ascending order

 eigenvalues = nx.laplacian_spectrum(cor_graph)

 # Loop that finds the index of the second smallest eigenvalue

 smallest_eig_ind = 0

 for i in range(0, len(eigenvalues)-1):

 if not isclose(eigenvalues[i], 0.0, abs_tol=1e-09):

 smallest_eig_ind = i

 break

 # Use SciPy's sparse library to get the first two eigenvectors of the

graph's Laplacian matrix

 # smallest_eig_ind is one less than the number of eigenvectors to compute

 # TODO: find a way to compute an eigenvector for a known eigenvalue so

that this operation can take much less time

 eigenvectors = [np.real(x) for x in eigs(lap_matrix, which='SM',

k=(smallest_eig_ind+1))[1]]

 # Use NetworkX to find the diameter of the graph

 connected_components = [list(cc) for cc in

nx.connected_components(cor_graph)]

 diameter = 0

 for node_list in connected_components:

 temp_diameter = nx.diameter(cor_graph.subgraph(node_list))

 if temp_diameter > diameter:

24

 diameter = temp_diameter

 # Write eigenvalues and vectors to new file

 with open(eig_output, "w+") as eig:

 eig.write("eigenvalues: ")

 for i in range(len(eigenvalues) - 1):

 write_string = str(eigenvalues[i]) + ", "

 eig.write(write_string)

 eig.write(str(eigenvalues[i + 1]))

 eig.write(os.linesep)

 eig.write("diameter of graph: {:.2f}".format(diameter))

 eig.write(os.linesep)

 eig.write("eigenvector of second smallest

eigenvalue({0:0.6f}):\n".format(eigenvalues[smallest_eig_ind]))

 for i in range(len(eigenvectors) - 1):

 write_string = str(eigenvectors[i][smallest_eig_ind]) + ", "

 eig.write(write_string)

 eig.write(str(eigenvectors[i + 1][smallest_eig_ind]))

 print('It took {0:0.1f} seconds to run the program computing eigenvalues

for .'.format(time.time() - start_time) +

 user_input)

if __name__ == "__main__":

 main()

	Using Spectral Graph Theory to Analyze Gene Expression Networks
	Recommended Citation

	CN
	Chuyen Nguyen

