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This paper covers the potential applications of using the spectral analysis of a graph’s 

Laplacian matrix to gene co-expression networks. The general idea is to take publically available 

genetic data from cancer studies, organize them into gene co-expression networks, and analyze 

them using Spectral Graph theory.  

The publically available cancer study data includes files that show the occurrence of 

several different genes within a single person’s genetic data (given by fragments per kilobase 

million). The research takes the data of several patients and organizes them into a table. From 

there, each gene’s occurrence is measured against every other gene’s occurrence using Pearson 

correlation values, resulting in another table of pairs of genes and their correlation values. For 

each line, a gene, another gene, and their Pearson correlation value are represented in three 

columns corresponding to each aforementioned piece of data. Only genes that have a Pearson 

correlation value above a certain threshold were added to this file so that the file represents only 

significant correlations between genes.  

This file could be interpreted as an edge list for a gene co-expression network, which is a 

graph showing connections between genes. Each gene represents a single node of the graph, and 

every line of the file contained the connection between two genes, this connection being the edge 



 

 

between two nodes. With the file able to be interpreted as a graph, Spectral Graph theory 

concepts applied to it very naturally, allowing us to extract the second-smallest eigenvalue of the 

graph’s Laplacian matrix and the degree of zero eigenvalues, which gave us an understanding of 

the graph’s structure. 
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INTRODUCTION 

The main goal of our research is to find out if the relationship between different genes 

within cancer patients can allow us to understand the way that cancer growth appears based on 

the presence of certain genes within a person. We try to achieve this understanding by 

performing a series of data transformations and analyzing the data which results from these 

transformations. 

The research begins by collecting gene data gathered from several cancer patients 

through a publicly accessible database. The data shows the expression or activity of certain genes 

within a person. This gene data from each patient is compiled together into one large table, and 

this table is analyzed to find the relationship between each gene, namely how often one gene 

appears alongside another gene. 

In order to quantify this comparison, we find a value called the correlation between two 

compared genes, which is a measure of how similar the two genes are.  If the correlation value 

does not meet a certain limit, we do not add it to the list of genes that have a relationship with 

each other. The list that is compiled from these comparisons has three columns: one gene, 

another gene, and their correlation value. We take this table and interpret it in a way that allows 

us to form a graph from it. 

A graph is a manner of representing data that consists of two major elements: nodes and 

edges. A node represents a single piece of data, while an edge connects two nodes to represent a 
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relationship between the nodes. In our graph, the nodes will be the genes, and the edges will be 

that relationship we found in the last step. As a result of us setting a limit to the correlation value 

required to represent a relationship, only genes with a strong relationship will be represented in 

this graph. 

The purpose of organizing the data into a graph is to apply a method of analysis that 

gives us clues to how the graph is structured, which may allow us to understand the relationship 

between many genes. In this research, we derive from the graph structures called matrices, which 

are essentially tables, and find the eigenvalues of these matrices which tells us properties of this 

graph we constructed. Through this analysis and the properties we derive from the eigenvalues, 

we hope to understand the graph structure and eventually how relationships between genes result 

in cancer growth.  

 

Spectral Graph Theory 

Spectral Graph Theory (SGT) is a theory concerning graph analysis. It concerns the 

spectrum of graphs, which is “the multiset of eigenvalues, that is the set of eigenvalues repeated 

according to their multiplicity.” (Nica, 2018) Many different matrices related to graphs are able 

to produce interesting spectrums; however, in the context of this work, the prevalent aspects of 

SGT are the study and analysis of a graph through its Laplacian matrix and the eigenvalues and 

eigenvectors of that matrix.  

The Laplacian Matrix 

The formal definition of the Laplacian matrix of a graph given by Nica Bogdan in his 

publication A Brief Introduction to Spectral Graph Theory is  
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𝐿(𝑢, 𝑣) =  {
deg(𝑣)     𝑖𝑓 𝑢 = 𝑣
−1            𝑖𝑓 𝑢 ~ 𝑣
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

An important belief of SGT and one that is highly relevant to this paper is that the analysis of a 

graph’s Laplacian and its eigenvalues and eigenvectors can lead to an understanding of 

properties of the graph and thus the data that the graph was created from. 

Eigenvalues and Eigenvectors 

The definition of a spectrum of the graph, which SGT is greatly concerned with, derives 

solely from the existence of eigenvalues of a matrix representation of a graph. Eigenvalues in 

this context allow for an in-depth understanding of several graph properties, many of which 

would not be easy to find without the analysis of eigenvalues. Examples of which include the 

prominence of graph spectra in minimizing energies of Hamiltonian systems and the arising links 

in SGT and Riemannian geometry through analysis of spectrum. (F. Chung, 1985) 

The table below demonstrates some of the potential usage of graph spectra derived from 

Laplacian matrices. 

Table 1 Table of Laplacian Eigenvalue Relationships to Graph Properties 

Characteristic Meaning 

Multiplicity of eigenvalues of 0 Represents the number of connected 

components of the graph. Every Laplacian 

matrix of a graph will have at least one 

eigenvalue of zero. (Das, 2004) 

Second smallest eigenvalue (λ1) Represents the “algebraic connectivity” of the 

graph, which refers to how connected the 

graph is. This eigenvalue is bounded between 

zero and one. (Fiedler, 1989) 

λ1 is greater than 0 The graph of the Laplacian matrix is 

connected. (Fiedler, 1989) 

λ1 is equivalent to 1 The graph of the Laplacian matrix is 

complete. (Fiedler, 1989) 
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Lower bound on λ1 Implies an upper bound on the diameter of the 

graph. (F. R. K. Chung, 1995) 

An eigenvalue of 2 from a normalized 

Laplacian matrix 

The upper bound of any eigenvalue of a 

normalized Laplacian matrix of a graph is 

two. If any of a graph’s normalized 

Laplacian’s eigenvalues is two, then there is a 

connected component of said graph that is 

bipartite and nontrivial. (F. R. K. Chung, 

1995) 

The sum of all eigenvalues in the Laplacian 

spectrum is less than the number of vertices in 

the graph. 

The graph has no isolated vertices. (F. R. K. 

Chung, 1995) 

Sum of Laplacian eigenvalues Equal to the sum of the degrees of a graph. 

(K. CH. DAS) 

 

RNA Sequencing Data 

RNA sequencing data, or RNA-Seq for short is a method of genome data cataloging that 

enables researchers who desire the means to analyze genetic information great breadths of 

information to analyze. This is allowed through the usage of next-generation sequencing 

techniques that give researchers information on billions of individual bases (Chu & Corey, 

2012). RNA-Seq represents a great advancement in gene expression transcription from the 

previous method of microarrays which were by comparison less cost and time effective than the 

next-generation sequencing techniques used to produce RNA-Seq data. RNA-Seq data also 

provides the benefit of being “particularly attractive for the quantitative analysis of transcript 

expression levels” (Marguerat & Bähler, 2010), allowing for thorough analysis and study of the 

gene expressions of the subject collected from. Particular advantages of RNA-Seq data that have 

been utilized in this research is its ability to generate expression data for every base genome and 

the data representation’s ease of mRNA analysis.  
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Gene Co-Expression Networks  

Gene co-expression networks (GCN) are a method of organizing gene expression data in 

a manner that elicits the understanding of the relationship between different genes. This is done 

through the construction of an undirected graph with each node corresponding to a gene, and 

edges between these nodes whenever a relationship exists among them. Analysis of a structure 

created through this manner allows for the studying of what genes often appear together and 

which ones do not, giving researchers the ability to determine how relationships between genes 

elicit certain developmental characteristics that may be brought about by these co-expressions. 

For the details of this research, the Pearson correlation coefficient formula was used to compute 

the co-expressions between gene pairs.  

There are many terms relating to graph theory and using graph theory to analyze 

biological networks that apply to GCNs. These terms will be relevant throughout future portions 

of this paper. The sparsity and density of a graph does not have a concrete definition. For this 

paper, a sparse graph is one where the number of edges is close to the lowest number of edges it 

could have, and a dense one having a number of edges close to the maximum number of edges it 

could have.  The diameter of a graph is represented as 𝐷 =  max
𝑖,𝑗

𝛿𝑚𝑖𝑛 (𝑖, 𝑗), otherwise known as 

the “longest shortest path of the graph.”  The “clustering coefficient” of a graph tells the graph’s 

tendency to divide into clusters. A network is scale-free if it’s degree distribution exhibits a 

power law distribution (Pavlopoulos et al., 2011). 
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Data Used 

The data used in this research is mRNA gene expression data received from the RNA-Seq 

data collection methods discussed in the earlier section. This data has been provided in an open-

access model from The Cancer Genome Atlas, or TCGA (Tomczak et al., 2015). TCGA is a 

government funded joint effort between the National Cancer Institute and National Human 

Genome Research Institute which provides publicly accessible genomic data of cancer patients.  

 

Approach 

Efforts in this research project are made to uncover the potential uses of Spectral Graph 

Theory in analyzing gene expression networks. In order to accomplish this, RNA-Seq mRNA 

transcription data collected from TCGA is processed and organized into gene expression network 

graphs, with nodes representing each mRNA gene expression, edges representing their 

relationships and edge weights representing the Pearson correlation values derived between each 

gene. 

The main pilot of these research efforts is NetworkX, a Python package that allows for 

the extensive code analysis of graphs (Hagberg et al., 2008). Through NetworkX, the gene 

correlation data is processed and transformed into a gene co-expression network in the fashion 

mentioned in the prior section. After which, NetworkX’s function to derive a Laplacian matrix 

from a graph will be used and its eigenvalues and eigenvectors extracted through the utilization 

of SciPy - a broad-covering science and math package for Python (Virtanen et al., 2020).  
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Literature 

A Brief Introduction to Spectral Graph Theory by Bogdan Nica gives a great overview of 

the concepts integral to SGT. From this beginner resource, I established a solid foundation of 

understanding for the subject of this research. Many of the equations used in the Spectral Graph 

Theory section of this introduction were sourced from this book. Spectral Graph Theory by Fan 

Chung provides a more comprehensive coverage of SGT, where it can be applied and its usages 

and is considered to be the book for those who are interested in using SGT.  

An overview of the process used to derive RNA Sequencing data from biological 

material come from the articles “RNA Sequencing: Platform Selection, Experimental Design, 

and Data Interpretation” written by Yongjun Chu and David Corey and Samuel Marguerat and 

Jurg Bahler’s “RNA-seq: from technology to biology”. Both articles also give insight into the 

advantages and disadvantages of gathering and analyzing RNA-Seq data. I found these works to 

be useful for learning about the way RNA-Seq data is extracted and reasons why it should be 

used for gene analysis. 

Practical usages of gene data analyzed through the lens of gene co-expression networks 

can be found in the following articles. “A Gene-Coexpression Network for Global Discovery of 

Conserved Genetic Modules” gives an overview of the usage of GCNs and tries to answer the 

problem of co-expression of unrelated genes by analyzing co-expressed genes across several 

different organisms.  
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METHODS AND RESULTS 

Making Gene Co-expression Networks 

In order to produce GCNs from the mRNA data gathered from The Cancer Genome 

Atlas, first the correlation value for gene was computed. This was done by first compiling the 

data from different patients into one table with columns representing each patient and rows 

representing each gene present in the patient RNA-Seq data. An R script was then used to 

compute correlation data for every gene against every other gene, producing a table with three 

columns: the first being a gene, the second being another gene, and the third being their 

correlation value.  

𝑟 =
∑(𝑥 − 𝑚𝑥)(𝑦 − 𝑚𝑦)

√∑(𝑥 − 𝑚𝑥 )2 (𝑦 − 𝑚𝑦)2 
 

The Pearson correlation coefficient formula used by R to compute correlation 

values.(Correlation Test Between Two Variables in R, n.d.) 

Through limiting the output of the R script, the table only contains compared genes with 

a Pearson correlation value greater than 0.75. NetworkX’s readedgelist function allowed for this 

table to be read and used as an edge list to construct a graph object, allowing us to create the 

gene co-expression network by reading the R script’s output and creating a weighted undirected 

graph with it. The weights of this graph are the correlation values in the third column of its input. 
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Deriving the Laplacian Matrix and its Eigenvalues and Eigenvectors 

NetworkX comes well equipped for spectral analysis and comes with a function that 

derives the Laplacian matrix of a graph. The required input is the graph itself, and its return 

value is a SciPy sparse matrix representing the Laplacian matrix of the given graph. This graph 

being native to the SciPy language can now have scientific and mathematical operation ran on it 

through the SciPy package. 

𝐿 = 𝐷 − 𝐴 

The formula used by NetworkX to construct a Laplacian matrix. L represents the 

Laplacian matrix of the graph, and D and A represent the degree matrix and adjacency 

matrix of the graph. Both D and A are square matrices with their rows and columns 

being the nodes of the graph. D gives the number of connected edges per node across its 

diagonal and A shows whether or not a node-pair has an edge (F. Chung et al., 2003).  

Within the SciPy package are numerous amounts of linear algebra functions. Some of 

which are compatible with sparse matrix objects of the package, one of which being the eigs 

function in its sparse.linalg package. The eig function takes the input of an ndarray object, sparse 

matrix or Linear Operator object and outputs two ndarray objects, the first of which being an 

array containing the input’s eigenvalues and the second being an array of more ndarray objects, 

each representing an eigenvector. In the eigenvector ndarray, each index of [:, i] represents the 

index [i] in the eigenvalue ndarray. 

𝐴𝑥𝑖 = 𝜆𝑖𝑣𝑖 
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The equation SciPy solves to find eigenvalues and vectors from the eigs function. A 

represents the input matrix, 𝜆i represents the ith eigenvalue and vi represents the ith 

eigenvector. 

After some analysis of the output of the SciPy package, it was determined that the 

eigenvalues did not output as desired, and therefore a function made available by the NetworkX 

package was used: laplacian_spectrum. This function produces a sorted list of eigenvalues for the 

supplied graph and was used to output the eigenvalues in place of the SciPy function.  

𝐿𝑣𝑖 = 𝑏 ∗ 𝜆𝑖𝑣𝑖 

𝑣𝑖
𝐻𝐿𝑣𝑖 = 𝜆𝑖 

𝑣𝑖
𝐻𝑏 = 1 

The eigenvalues computed by NetworkX’s laplacian_spectrum function must satisfy the 

above equivalencies where L is the Laplacian matrix of the graph, vi is the eigenvector of 

the ith eigenvalue, and b is positive semidefinite. 

Table 2 TCGA Projects from which Data was Processed 

Proje

ct ID 

Project Name Primary Site 

Analyzed 

Sample 

Size 

Reference 

TCG

A-

KIRC 

Kidney Renal 

Clear Cell 

Carcinoma 

 Kidneys  20 https://portal.gdc.cancer.gov/projects/

TCGA-KIRC 

TCG

A-

LUA

D 

Colon 

Adenocarcino

ma 

 Colon 

 Rectosigm

oid 

Junction 

20 https://portal.gdc.cancer.gov/projects/

TCGA-COAD  

TCG

A-

COA

D 

Lung 

Adenocarcino

ma 

 Bronchus 

 Lung 

20 https://portal.gdc.cancer.gov/projects/

TCGA-LUAD  

TCG

A-

LUSC 

Lung 

Squamous 
 Bronchus 

 Lung 

20 https://portal.gdc.cancer.gov/projects/

TCGA-LUSC  

https://portal.gdc.cancer.gov/projects/TCGA-KIRC
https://portal.gdc.cancer.gov/projects/TCGA-KIRC
https://portal.gdc.cancer.gov/projects/TCGA-COAD
https://portal.gdc.cancer.gov/projects/TCGA-COAD
https://portal.gdc.cancer.gov/projects/TCGA-LUAD
https://portal.gdc.cancer.gov/projects/TCGA-LUAD
https://portal.gdc.cancer.gov/projects/TCGA-LUSC
https://portal.gdc.cancer.gov/projects/TCGA-LUSC
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Cell 

Carcinoma 

TCG

A-

THC

A 

Thyroid 

Carcinoma 
 Thyroid 

Gland 

20 https://portal.gdc.cancer.gov/projects/

TCGA-THCA  

 

 From each project, a set of twenty patients’ RNA-Seq data represented by fragments per 

kilobase million (FPKM) files were collected.  

Analysis of Data 

Table 3 Results of Calculations 

Dataset λ1 Degree of Zero 

Eigenvalues 

Number of Node Pairs with 

a Pearson Correlation 

Coefficient > 0.75 

TCGA-KIRC 0.144396908844 9 22,775,833 

TCGA-LUAD 0.0388956653568 7 784,859 

TCGA-COAD 0.236749027287 4 93,020,861 

TCGA-LUSC 0.118303780644 7 16,692,745 

TCGA-THCA 0.167892899534 14 33,186,621 

 

In the above table, λ1 represents the second smallest eigenvalue, with 

𝜆0 < 𝜆1 < 𝜆2 < ⋯ < 𝜆𝑛 

 The TCGA-LUAD dataset had the smallest output in terms of nodes with a Pearson 

correlation value greater than 0.75. Conversely, the TCGA-COAD had the largest collection of 

nodes with a Pearson correlation value greater than 0.75 by far, with the file representing the 

correlation values nearing five gigabytes, and the next greatest runner up reaching ~1.7 

gigabytes. 

 It is interesting to note that the size of λ1 directly correlates with the number of node pairs 

with significant Pearson correlation coefficients (greater than 0.75). This follows logical 

https://portal.gdc.cancer.gov/projects/TCGA-THCA
https://portal.gdc.cancer.gov/projects/TCGA-THCA
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assumptions as the greater the number of node pairs implies the greater connectivity of the graph, 

meaning a higher algebraic connectivity (represented by λ1). 

 Another interesting fact is that of the datasets, the two with the lowest algebraic 

connectivity are those that originate from the same area of interest. TCGA-LUAD and TCGA-

LUSC are projects aimed at the analysis of the gene data of patients with bronchus and lung 

related cancer growth. 

 The degree of zero eigenvalues directly equates to the number of connected-components 

that a graph contains. For instance, TCGA-KIRC’s GCN representation contains nine connected 

components within its graph. In comparing the degree of zero eigenvectors to other data gathered 

in this research, there seems to be no distinguishable correlation between the number of 

connected components and the number of node pairs with significant Pearson correlation 

coefficients. 
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Visual Representation of Graph 

Figure 1. Visualization of TCGA-LUAD Gene Co-Expression Network 

 

 

The above graph was generated using the OpenOrd algorithm provided by the Gephi 

program. As can be seen, there are several large clusters where nodes (genes) are gathered and 

many empty areas where the nodes of the graph are more sparsely distributed. These clusters are 
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strongly connected components of the graph, and it can be assumed that the algebraic 

connectivity of each of these components would be greater than the average across the graph.   

 

Conclusions 

 Based on the data found above, there is some merit to the analysis of gene-co-

expression networks through the lens of Spectral Graph Theory. While the application above of 

understanding a GCN network’s connectedness through the analysis of its Laplacian matrix’s 

second-smallest eigenvalue only reveals one aspect of the graph and serves to compare the 

connectedness of different grpahs, there are several other aspects of a graph that can be 

determined from its Laplacian spectra as was shown in Table 1 from the earlier “Spectral Graph 

Theory” section. The usage of studies pertaining to graph analysis in Spectral Graph Theory to 

determine and approximate potentially difficult to find and complex graph properties are 

bountiful, and these same analyses are very likely applicable in the same way that the algebraic 

connectivity demonstrated by λ1 was. The potential for the usage of SGT in the analysis of GCNs 

may lead to a greater understanding of how genes interact in order to induce the growth of cancer 

cells. 

 

Future Work 

There are several broad-spanning conclusions that were made from this analysis that 

leads to questions regarding the effectiveness of spectral graph analysis in the examination of 

gene co-expression networks. A potential future endeavor would be to take a graph and split it 

down to its individual strongly-connected components, then finding the algebraic connectivity of 



 

15 

each in order to potentially understand the contribution that strongly-connected genes of a cluster 

may have to cancer growth. Another potential study to conduct is the relevancy of different 

Laplacian spectrum values to the analysis of GCNs, as the Laplacian spectrum values can give 

approximations of values that are difficult to accurately compute, and therefore have not been as 

thoroughly explored in GCN analysis.  

There is room to explore the direct relation of algebraic connectivity to cancer growth. A 

study can be conducted concerning the relationship of the second smallest eigenvalue and other 

spectral analysis values derived from gene data to other well-understood scientific studies of that 

data. From that analysis, a more solid understanding of the link between certain properties that 

can be ascertained from spectral graph analysis and real world effects of genes of cancer patients 

can be reached. 

Stemming from the derivation of the algebraic connectivity of graphs conducted in this 

analysis, one can question how effective the comparison of GCNs would be through the usage of 

SGT. Algebraic connectivity is not a concrete value and is more an approximation of other 

values relating to the connectivity of a graph. The potential usage of approximated values seem 

strongest in the comparison of graphs, where prior research of the genetic data used to generate 

said graphs can be compared and analyzed with those values to understand how SGT can play a 

part in more deeply understanding different GCNs and their origins. 

There are other aspects of graphs that may be useful in the analysis of GCNs and can 

relate to spectral graph analysis, such as the aforementioned diameter and girths of graphs. 

Computation of these values was not accomplishable due to time constraints within this research, 

but may give way to interesting results in terms of the relationships of those values to the genetic 

data that they derive from. 
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SCRIPTS UTILIZED IN THE PROCESSING AND CREATION OF DATA 
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consolidateGeneData.py 

 The following Python code was used to take separated FPKM files and combine 

them into a table with columns being patients and rows being genes. 

# The purpose of this code is to take the separated genetic files of the 

patients and consolidate them into a one-dimensional table. 

# Input: The folder containing all of the raw genetic data of the patients. 

# Output: A tab-delimited text file. X-axis will be patients, Y-axis will be 

genes, and data will be the quantity of the gene that each patient has. 

 

import os 

import argparse 

 

parser = argparse.ArgumentParser() 

parser.add_argument('-i', '--input', required=True, help="Input directory") 

parser.add_argument('-o', '--output', required=True, help="Output directory") 

args = parser.parse_args() 

 

## READ INPUT SECTION 

 

# Getting files through input of directory. 

readFilePath = args.input 

 

pathExists = os.path.isdir(readFilePath) 

while pathExists == False: 

    filePath = input("ERROR:File path entered does not exist. Please enter a 

valid file path.\n") 

    pathExists = os.path.isdir(readFilePath) 

 

geneFiles = os.listdir(readFilePath) 

os.chdir(readFilePath) 

# print(geneFiles) - debug print statement 

 

# This section takes the files and creates dictionaries of them, key being 

gene, value being gene value. 

listOfDicts = [] 

for gfile in geneFiles: 

    dict = {} 

    with open(gfile) as f: 

        for line in f: 

            lineSplit =  line.split("\t") 

            lineSplit[1] = lineSplit[1].replace("\n", "") 

            dict[lineSplit[0]] = lineSplit[1] 

    listOfDicts.append(dict) 

 

# Getting a list of all genes that are present between files. 

listOfGenes = [x.keys() for x in listOfDicts] 

allGenes = list(set().union(*listOfGenes)) 

allGenes = list(dict.fromkeys(allGenes)) 

 

## WRITE OUTPUT SECTION 
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# Get the directory to output the gene table to. 

writeFilePath = args.output 

 

# Open the file to be written to. 

os.chdir(writeFilePath) 

writeFile = open("patientTable.txt", "w+") 

 

# Constructing the first line. 

# The first line will contain patient by number, so the first patient is p1, 

second is p2, and so forth. 

writeFile.write("name\t") 

lineString = "" 

for i in range(1,len(listOfDicts)): 

    lineString += "p" + str(i) + "\t" 

lineString += "p" + str(i + 1) + "\t" #need this tab to match with later gene 

tabs 

lineString += "\n" 

writeFile.write(lineString) 

 

# This code block writes each subsequent line past the first line. 

# Each line begins with the gene, then tab delimiters between the data for 

each patient in order. 

for gene in allGenes: 

    lineString = str(gene) 

    lineString += "\t" 

    for x in listOfDicts: 

        try: 

            lineString += x[gene] 

        except: 

            lineString += "NULL" 

        lineString += "\t" 

    lineString += "\n" 

    writeFile.write(lineString) 

writeFile.close() 
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computeCors.R 

The following code is an R script which takes the table generated by the previous 

section’s code and generates the edgelist with the Pearson correlation values acting as weights. 

This edgelist has columns of a gene, another gene, and their Pearson correlation value. 

rawData <- 

read.table("C:\\Users\\Persons\\Documents\\Research\\OrganizeResearch\\tarfil

es\\TCGA-LUAD\\patientTableLUAD.txt", header = TRUE, sep = "\t") 

formattedData <- rawData[,-1] 

rownames(formattedData) <- rawData[,1] 

transpose <- t(formattedData) 

 

totalGenes <- nrow(formattedData) 

 

filePath <- 

"C:\\Users\\Persons\\Documents\\Research\\OrganizeResearch\\testOutput\\RTabl

eLUAD.txt" 

file.create(filePath) 

outFile <- file(filePath, open = "wt") 

 

for (i in 1:totalGenes) 

{ 

  if(i+1 <= totalGenes){ 

    for (j in (i+1):totalGenes) 

    { 

      geneOne <- colnames(transpose)[i] 

      geneTwo <- colnames(transpose)[j] 

      corVal <- cor(transpose[,i], transpose[,j], use = "complete.obs") 

      if(!is.na(corVal) & corVal >= 0.75) { 

        lineString <- paste(geneOne, geneTwo, corVal, sep = "\t") 

        writeLines(c(lineString), outFile) 

      } 

    } 

  } 

} 

close(outFile) 
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buildLaplacian.py 

The Python script below takes the edgelist created in the computeCors.R R script and 

outputs the eigenvalues, second smallest eigenvalue’s eigenvector, and diameter of the graph. 

import argparse 

import os 

import sys 

 

import networkx as nx 

import numpy as np 

from scipy.sparse.linalg import eigs 

from math import isclose 

import time 

 

# Sets any NumPy or SciPy print operations to print without truncation. 

np.set_printoptions(threshold=sys.maxsize) 

 

 

def main(): 

    start_time = time.time() 

    try: 

        parser = argparse.ArgumentParser() 

    except: 

        print("ERROR: Argument parsing error.") 

        sys.exit(1) 

 

    parser.add_argument("-i", "--input", required=True, help="REQUIRED: The 

input file. Must be a weighted edge list.") 

    parser.add_argument("-e", "--eig_output", required=True, 

                        help="REQUIRED: The output location and name of the 

eigenvalue and eigenvector output file.") 

    parser.add_argument("-l", "--lap_output", required=False, 

                        help="OPTIONAL: The output location and name of the 

Laplacian Matrix output file.", 

                        default=None) 

    parser.add_argument("-a", "--adj_output", required=False, 

                        help="OPTIONAL: The output location and name of the 

adjacency matrix output file.", 

                        default=None) 

 

    try: 

        args = parser.parse_args() 

        user_input = args.input 

        eig_output = args.eig_output 

        laplacian_output = args.lap_output 

        adjacency_output = args.adj_output 

    except ValueError as e: 

        print("ERROR:" + str(e)) 

        sys.exit(1) 

 

    # Open consolidated gene file 

    fh = open(user_input, "rb") 
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    # Reads gene file as edgelist and creates graph from it 

    cor_graph = nx.read_edgelist(fh, nodetype=str, data=(("weight", float),)) 

    fh.close() 

 

    # Debug statement 

    # print(cor_graph) 

 

    # Optional output for the adjacency matrix 

    if adjacency_output is not None: 

        with open(adjacency_output, "w+") as adj: 

            adj_matrix = nx.linalg.graphmatrix.adjacency_matrix(cor_graph, 

nodelist=cor_graph.nodes(), weight=None) 

            adj_matrix_print = adj_matrix.todense().tolist() 

            adj.write(str(adj_matrix_print)) 

 

    # Creates scipy sparse matrix object that is the laplacian matrix of the 

graph 

    lap_matrix = nx.linalg.laplacianmatrix.laplacian_matrix(cor_graph, 

nodelist=cor_graph.nodes(), 

                                                            

weight=None).asfptype()  # , weight="weight") 

 

    # Optional output for the Laplacian matrix 

    if laplacian_output is not None: 

        with open(laplacian_output, "w+") as lap: 

            lap_matrix_print = lap_matrix.todense() 

            lap.write(str(lap_matrix_print)) 

 

    # Use NetworkX laplacian_spectrum function to get all Laplacian 

eigenvalues of the graph sorted in ascending order 

    eigenvalues = nx.laplacian_spectrum(cor_graph) 

 

    # Loop that finds the index of the second smallest eigenvalue 

    smallest_eig_ind = 0 

    for i in range(0, len(eigenvalues)-1): 

        if not isclose(eigenvalues[i], 0.0, abs_tol=1e-09): 

            smallest_eig_ind = i 

            break 

 

    # Use SciPy's sparse library to get the first two eigenvectors of the 

graph's Laplacian matrix 

    # smallest_eig_ind is one less than the number of eigenvectors to compute 

    # TODO: find a way to compute an eigenvector for a known eigenvalue so 

that this operation can take much less time 

    eigenvectors = [np.real(x) for x in eigs(lap_matrix, which='SM', 

k=(smallest_eig_ind+1))[1]] 

 

    # Use NetworkX to find the diameter of the graph 

    connected_components = [list(cc) for cc in 

nx.connected_components(cor_graph)] 

    diameter = 0 

    for node_list in connected_components: 

        temp_diameter = nx.diameter(cor_graph.subgraph(node_list)) 

        if temp_diameter > diameter: 
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            diameter = temp_diameter 

 

    # Write eigenvalues and vectors to new file 

    with open(eig_output, "w+") as eig: 

        eig.write("eigenvalues: ") 

        for i in range(len(eigenvalues) - 1): 

            write_string = str(eigenvalues[i]) + ", " 

            eig.write(write_string) 

        eig.write(str(eigenvalues[i + 1])) 

 

        eig.write(os.linesep) 

        eig.write("diameter of graph: {:.2f}".format(diameter)) 

 

        eig.write(os.linesep) 

        eig.write("eigenvector of second smallest 

eigenvalue({0:0.6f}):\n".format(eigenvalues[smallest_eig_ind])) 

        for i in range(len(eigenvectors) - 1): 

            write_string = str(eigenvectors[i][smallest_eig_ind]) + ", " 

            eig.write(write_string) 

        eig.write(str(eigenvectors[i + 1][smallest_eig_ind])) 

 

    print('It took {0:0.1f} seconds to run the program computing eigenvalues 

for .'.format(time.time() - start_time) + 

          user_input) 

 

 

if __name__ == "__main__": 

    main() 
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