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CHAPTER I 

INTRODUCTION 

Computer technology has drastically improved over the last decade. This fact is 

best illustrated by the introduction of the modern, graphical user interfaced, geographic 

information system (GIS). A GIS is defined by ESRI (2005): 

an arrangement of computer hardware, software, and geographic data that people 
interact with to integrate, analyze, and visualize the data; identify relationships, 
patterns, and trends; and find solutions to problems. The system is designed to 
capture, store, update, manipulate, analyze, and display the geographic 
information. A GIS is typically used to represent maps as data layers that can be 
studied and used to perform analyses. 

Geographic information systems are quickly becoming an important tool across multiple 

disciplines. Epidemiological research provides an excellent framework for the 

implementation of geo-spatial technologies.  Physicians and state health officials are 

interested in new and more efficient ways to monitor current diseases and predict future 

outbreaks. This is where GIS can help. 

This study attempts to predict mosquito habitat suitability and/or potential risk of 

West Nile virus for the entire state of Mississippi (Figure 1) by testing the usefulness of 

environmental variables in a predictive modeling scenario.  The project relates mosquito 

habitat to general public risk in Mississippi from West Nile virus and specifically to 

natural resource managers and users of recreational facilities. Human case data for 2002 
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are used as the basis for modeling risk and human cases recorded in 2003 are used to 

validate the model results. 

Previous studies that were designed to assess vectored disease risk, Malaria and 

Lyme disease for example, applied environmental variables in heuristically-based models 

(Glass et al., 1994; Beck et al., 1994; Nicholson and Mather, 1996). This heuristically-

based, “seat of the pants,” approach to modeling can be improved upon by thoroughly 

investigating each variable of interest in order to determine variable importance.  

For this study, determination of variable significance and variable weights were 

investigated by two approaches: a process of argument and consensus building among 

‘experts’ of diverse backgrounds and education, and a deterministic algorithmic approach 

with variable weights assigned through probability-based statistics (t-tests) followed by 

logistic regression. 

Pertinent information about West Nile virus, mosquito biology, and previous 

modeling efforts are included as background information below.  Methods used to 

develop the deterministic algorithmic models are discussed in the following chapter. 

Visual analysis of the spatial distribution of West Nile virus occurrences along with 

model output and predicted risk are also presented. 
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CHAPTER II 

BACKGROUND INFORMATION AND LITERATURE REVIEW 

This chapter examines background information and published or existing studies 

that use geographic information systems (GIS) to model biological systems for disease 

risk prediction. Focus is directed towards understanding how GIS has been used in 

epidemiological studies as well as the biology of mosquitoes and the West Nile virus. 

Disease and mosquito biology, GIS and biological systems, and the use of GIS in past 

and present modeling efforts to combat the virus are reviewed. 

Disease Biology 

West Nile virus, a member of the family Flaviviridae (genus Flavivirus), was first 

isolated in the West Nile district of Uganda in 1937 (Petersen and Roehrig, 2001; 

Guharoy et al., 2004; Chowers et al., 2001).  It was identified from the blood of a febrile 

woman whose only known symptom was fever. 

Sixty-two years later in 1999, the first U.S. case of West Nile virus was reported 

in New York City (Gea-Banaclocche et al., 2004; Peterson and Marfin, 2002; Guharoy et 

al., 2004; Petersen and Roehrig, 2001). “Within the past five years, West Nile virus has 

emerged as an important human, avian, and equine disease in the United States” 

(Guharoy et al., 2004, p.1235). The virus has spread rapidly, resulting in numerous 

human cases and several deaths. Every state, excluding Alaska and Hawaii, has reported 
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an occurrence of West Nile virus. “In 2002, there were 4156 human cases with 284 

deaths. In 2003, there were more than 9000 human cases and 220 deaths” (Gea-

Banaclocche et al., 2004). In 2004, there were 2470 human cases and 88 deaths (CDC, 

2005). These numbers indicate trends that lead to speculation. For example, it seems 

that in 2002, when the virus was first introduced, accurate diagnosis was difficult.  

Further, by 2003 the threat of the disease was known; as a result, everyone that showed 

symptoms resembling those of West Nile virus was probably diagnosed as having West 

Nile virus. Therefore, deaths decreased as a result of this inclusive diagnosis. Also, due 

to media attention, the general public began to take action by avoiding exposure to the 

most opportune times and places for mosquito contact. Finally, by 2004 it seems that 

doctors had become more efficient and accurate at diagnosing West Nile virus which 

helped decrease human deaths (Centers for Disease Control and Prevention, 2003). 

Virology 

The West Nile virus is a small, single-stranded RNA virus of the family 

Flaviviridae and genus Flavivirus and a member of the Japanese encepha litis virus 

antigenic complex (Guharoy et al., 2004; Petersen and Marfin, 2002; Gea-Banaclocche et 

al., 2004; Marra et al., 2004). The virus can be divided genetically into two lineages. 

Although two genetic lineages of West Nile virus have been identified, only members of 

lineage 1 have been associated with clinical human encephalitis in the United States 

(Petersen and Roehrig, 2001; Petersen and Marfin, 2002; Guharoy et al., 2004). “The 

West Nile virus responsible for the 1999 outbreak in New York City was a lineage 1 
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virus that circulated in Israel from 1997-2000, suggesting viral importation into North 

America from the Middle East” (Petersen and Marfin, 2002, p. 174). However, the 

means of its introduction will likely remain unknown (Petersen and Roehrig, 2001). 

Ecology and Transmission 

West Nile virus is maintained in an enzootic cycle involving several species of 

mosquitoes and birds before infecting humans (Guharoy et al., 2004). However; humans 

are considered dead-end hosts, insufficient to support the life cycle of the virus because 

of low-grade, transient viremia. (Gea-Banaclocche et al., 2004).  Humans might not be 

hosts, but can become infected with the virus when bitten by an infected mosquito. West 

Nile virus infection is transmitted from birds to humans through the bite of mosquitoes 

(Guharoy et al., 2003). Mosquitoes become infected with West Nile virus when they 

feed on an infected host, usually a bird. Within about two weeks of becoming infected, a 

mosquito can transmit the virus in its saliva (Guharoy et al., 2004).  There is some 

evidence that suggests warmer temperatures may shorten the 14 day cycle (Epstein, 2000, 

2001; Dye, 2000; Monath and Tsai, 1987). During subsequent feedings, the mosquito 

injects this virus- laden saliva with each bite (Gea-Banaclocche et al., 2004).  “Although 

Culex pipiens, Culex restuans, and Culex quinquefasciatus are probably the most 

important maintenance vectors in the eastern United States, it is unknown which species 

are most responsible for transmission to humans” (Petersen and Marfin, 2002, p. 174).  
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Regardless of which species are most responsible, the sick and elderly are at the 

highest risk of getting West Nile virus (Chowers et al., 2000; Petersen and Marfin, 2002; 

Gea-Banaclocche, 2004). 

Mosquito Biology 

Mosquito species such as the Aedes aegypti and C. quinquefasciatus are among 

those responsible for the transmission of most vector-borne diseases (Githeko et al., 

2000). In addition, Culex salinarius, C. restuans, and C. pipiens have also been involved 

in the spread of vector-borne diseases (Epstein, 2001).  There are numerous species of 

mosquitoes in Mississippi; however, only a few of them have been proven in the 

literature to be important arbovirus vectors (Table 1). According to Goddard (2002), 

some of the most important are A. aegypti, Aedes albopictus, Ochlerotatus sollicitans, 

Ochlerotatus triseriatus, C. quinquefasciatus, and Psorophora columbiae. The Yellow 

Fever Mosquito (A. aegypti) is found in shaded artificial containers (Gubler, 1989). 

Goddard (2002) adds that they have a flight range of 100-300 feet and usually bite during 

the morning or late afternoon. The Asian Tiger Mosquito (A. albopictus) has a life cycle 

similar to that of A. aegypti. They are most often found in tire piles.  Their flight range is 

less than a ¼ mile. The Salt Marsh Mosquito (O. sollicitans) is a fierce biter, similar to 

A. albopictus. They rest on vegetation and have a flight range between 5 and 10 miles. 

The Tree Hole Mosquito (O. triseriatus) is another fierce biter.  It has a short flight range 

and has the potential to carry forms of encephalitis. The Southern House Mosquito (C. 

quinquefasciatus) feeds on birds and humans and has an extremely short flight range. It 
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is the major vector of St. Louis Encephalitis (Goddard, 2002).  It is also involved with the 

West Nile virus in urban environments (Epstein, 2001). The Dark Rice Field Mosquito 

(P. columbiae) is a fierce biter that has a flight range of at least 10 miles. It is the major 

vector of several equine encephalitis cases (Goddard, 2002).  What is concerning is that 

these mosquitoes may remain active throughout the year in southern states (Marfin et al., 

2001). On the basis of these studies, the following conclusions may be drawn: a) 

competent mosquito vector species are found in urban and rural environments, b) flight 

ranges vary greatly from feet to miles and, c) competent mosquito vector species may be 

active year round. 
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Breeding and Climate 

According to Martens et al. (1997), breeding and egg laying, as well as mosquito 

longevity, are greatly influenced by temperature and precipitation. These influences will 

be discussed in the following sections. Reproduction rates are fairly inconsistent between 

the different species; they can be as short as a few days (A. aegypti) or as long as a few 

months (A. albopictus and O. triseriatus). Climate plays a major role in the time it takes 

for completion. The ability of vectors to breed and reproduce depends on whether they 

encounter motionless or rapidly moving water (Martens et al., 1997). 

Gubler (1989) states that A. aegypti lay single eggs on the inside of containers at 

or above the water line. There has been a huge increase in the amount of these artificial 

containers that make ideal larval habitats for this mosquito. Under good conditions, 

larval development is completed in 6 to 10 days. The pupal stage lasts about two days 

(Goddard, 2002). “The life cycle can be completed within 10 days under good conditions 

or extend to three or more weeks under poor conditions” (Goddard, 2002, p. 35). A. 

albopictus has a similar life cycle as A. aegypti. Tire piles are the best place for A. 

albopictus, which like to breed in water filled containers (Hawley, 1991).  O. sollicitans 

breeds in flooded salt marshes. However, breeding may occur in marsh areas not covered 

by water. Eggs that have remained dry for two weeks will hatch within minutes when 

flooded. Their life cycle can be completed in about 7 to 10 days during warm weather 

(Goddard, 2002). Ochlerotatus taeniorhynchus breeds in salt marshes or freshwater 

pools near those marshes. Breeding lasts from late spring until October. C. 

quinquefasciatus, like the majority of the Culex species, breed in organic waters.  Eggs 
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are laid on floating rafts of 50 to 400, which hatch within one or two days in warm 

temperatures. During cooler weather, several weeks may be required for complete 

development (Goddard, 2002). P. columbiae breeds in temporary freshwater pools and 

ditches and is very abundant in rice fields. Many broods are produced from April to 

October. Eggs are laid on flood-prone areas of low vegetation.  At an average 

temperature of 26º C, larval stages can be completed in 5 days.  The pupal stage lasts 1 to 

2 days. “Areas that dry up and are reflooded every few days can produce a hatch with 

each flooding” (Goddard, 2002, p. 51). On the basis of these studies, the following 

conclusions may be drawn in regards to the modeling effort:  a) breeding and egg laying 

are greatly influenced by temperature and precipitation and b) drought followed by 

precipitation increases the risk of mosquitoes. 

Feeding and Climate 

“Mosquitoes fall into four groups based on their feeding patterns. These are 

species that feed (i) primarily on mammals, (ii) primarily on birds, (iii) primarily on cold 

blooded vertebrates, and (iv) on a wide variety of hosts” (Edman and Taylor, 1968, p. 

67). Edman and Taylor (1968) go on to say that mammal host feeding occurs in early 

summer, reaches a maximum between July and October, and is followed by a shift to 

avian host feeding, which dominates winter and spring. Day and Curtis (1989) agree that 

there is a seasonal feeding shift to mammals during the summer and autumn months. 

“A combination of many factors results in successful host location and 

engorgement by mosquitoes. Host abundance is a key factor. Once found, non-defensive 
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or incapacitated hosts are more easily fed on than defensive species” (Day and Curtis, 

1989, p. 32). Host abundance may be a factor but the importance of vector abundance is 

an ongoing question. Conflicting reports of vector abundance and virus transmission 

appear in the literature (Day and Curtis, 1989). It can be concluded from these studies 

that host location and abundance are important to the modeling process. 

Temperature Thresholds 

Temperature plays an important role in the life cycle of mosquitoes and in the 

replication and transmission of diseases. Mosquitoes are critically dependent on climate 

for their survival and development. Climate circumscribes the distributions of mosquito 

borne diseases, while weather affects the timing and intensity of outbreaks (Githeko et 

al., 2000; Epstein et al., 1998). According to Patz et al. (1998) and Karl et al. (1995), 

minimum temperatures are now increasing at a disproportionate rate compared to average 

and maximum temperatures. This allows climate-sensitive vector-borne diseases to move 

into regions previously free of disease (Patz et al., 1998). 

“The greatest effect of climate change on transmission is observed at the extremes 

of the range of temperatures at which transmission occurs; 14-18º C at the lower end and 

about 35-40º C at the upper end” (Githeko et al., 2000, p. 1136).  Warmer temperatures 

speed the development of the parasites in mosquitoes, raising the odds of disease 

transmission (Epstein, 2000, 2001; Dye, 2000; Monath and Tsai, 1987). Cooler 

temperatures slow reproduction rates and disease replication; extreme cold weather kills 

adult mosquitoes, over-wintering eggs, and larvae (Githeko, 2000; Epstein 2000; Patz et 
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al., 1998). There is a threshold temperature above which death is inevitable and a 

minimum temperature below which the mosquito cannot become active. Thresho ld 

temperatures for Psorophora vivax and Psorophora falciparum range between 14.5-15º C 

and 16-19º C.  The optimal temperature for Anopheles survival lies between 20-25º C.  

Aedes are less responsive to ambient temperatures than Anopheles because they live 

mainly indoors (Martens et al., 1997). On the basis of these studies, the following 

conclusion may be drawn. Temperature influences mosquito abundance. This is 

important to the modeling process because according to Purvis (1993), temperature is one 

of the most important criteria that influence potential evaporation.  Precipitation minus 

evaporation (P-E) is a variable used in the predictive models. 

Precipitation Thresholds 

“In addition to the direct influence of temperature on the biology of vectors and 

parasites, changing precipitation patterns can also have short and long term effects on 

vector habitats” (Githeko et al., 2000, p. 1137). High amounts of precipitation result in a 

greater potential to increase the number of breeding sites. A lack of precipitation is also 

important. Multi-month drought in spring and early summer was found to be associated 

with recent severe urban outbreaks of West Nile virus in the United States (Epstein, 

2001). Monath and Tsai (1987) agree that outbreaks have been associated with drought.  

The combination of drought and rainfall is probably the key to outbreaks. Rains followed 

by drought seem to be the correct combination for these outbreaks. Excessive rainfall in 

January and February, in combination with drought in July, most often precedes 
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outbreaks (Githeko et al., 2000). Day and Curtis (1989) found similar results. A wet July 

results in high mosquito abundance in August. 

Humidity is an often-overlooked factor in the life cycle of mosquitoes and in the 

replication and transmission of diseases.  “Rainfall raises the relative humidity 

particularly following dry periods, and relative humidity strongly influences mosquito 

flight and subsequent host-seeking behavior” (Day and Curtis, 1989, p. 36).  The most 

adverse extremes of humidity can completely prevent mosquito host-searching flights.  

More in-depth research on the effects of humidity needs to be completed before a full 

understanding can be acquired (Day and Curtis, 1989). It can be concluded from these 

studies that the combination of drought and precipitation are important to mosquito 

habitat suitability and therefore are important to the modeling process. 

GIS and Vector-Borne Diseases 

Modeling the biology and transmission characteristics of vector-borne diseases is 

complex (Skidmore, 2002). Parsimonious models should maximize predictions without 

model over-parameterization.  Existing GIS-based models are reviewed below for Lyme 

disease and Malaria, both of which are vector-borne diseases. 

Lyme Disease 

Lyme disease is a tick-transmitted bacterial infection that affects humans and 

domestic animals. Several studies on Lyme disease have demonstrated the ability to 

generate risk models using GIS. Glass et al. (1995) used a geographic information 

system to identify and locate residential environmental risk factors for Lyme disease.  
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They found that eleven of their fifty-three variables were associated with an increased 

risk of getting Lyme disease. After these significant variables were discovered, they 

generated a risk model that combined the geographic information system with logistic 

regression analysis (Glass et. al., 1995). It was concluded that “combining a geographic 

information system with epidemiologic methods could be used to rapidly identify risk 

factors of zoonotic disease over large areas” (Glass et. al., 1995, p. 944). 

Similar to Glass et al., Nicholson and Mather (1996) also used GIS to identify factors that 

may regulate tick distributions and, thus, Lyme disease risk. Their findings were 

combined “to create a model that predicts Lyme disease transmission risk, thereby 

demonstrating the utility of incorporating geospatial modeling techniques in studying the 

epidemiology of Lyme disease” (Nicholson and Mather, 1996, p. 711). 

Malaria 

Malaria is a serious and sometimes fatal disease that is caused by a protozoan 

parasite which is transmitted by mosquitoes. Several studies on Malaria have 

demonstrated the ability to generate risk models using GIS. Beck et al. (1994) integrated 

remotely sensed data and GIS capabilities to identify villages with high vector-human 

contact risk. Their results indicated that villages with high Malaria vector-human contact 

risk can be identified using remote sensing and GIS technologies. 

Srivastava et al. (2001) also developed a model that predicts Malaria risk.  A 

predictive habitat model was developed for forest Malaria vector species using GIS and a 

Boolean operator to map areas where the species is likely to be found. Their results 
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indicate that “GIS-based distribution can pinpoint areas of occurrence of Anopheles dirus 

at the micro- level, where species-specific environmental- friendly control measures can be 

strengthened” (Srivastava et al., 2001, p. 1133). 

These studies suggest that GIS is a useful tool for modeling vector-borne diseases.  

In particular, Srivastava et al. (2001) points out that accurate delineation of favorable 

mosquito habitat is closely linked with disease risk. 

GIS and West Nile Virus 

Previous research on other vector-borne diseases, Lyme disease and Malaria, has 

demonstrated the ability to model risk of disease from these biological systems within a 

GIS. Review of current literature suggests that geographic information systems have 

primarily been used for monitoring and surveillance in combating West Nile virus.  Very 

few GIS modeling efforts for West Nile virus have been published. This lack of 

predictive risk modeling presents a unique opportunity for using GIS to combat West 

Nile virus. This research moves beyond descriptive modeling and combines intuitive and 

deductive modeling philosophies for the development of a dynamic risk model. 

West Nile Virus Surveillance 

The Centers for Disease Control and Prevention (CDC) has one of the most 

sophisticated West Nile virus surveillance systems in the country.  Known as ArboNet, 

the system helps states track West Nile and other mosquito-borne viruses (Centers for 

Disease Control and Prevention, 2003). Local and state public health departments share 

their data with the CDC, which provides real-time data on West Nile virus activity across 
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the nation. The CDC also works in conjunction with the United States Geological Survey 

(USGS) to produce county maps of the entire United States that show bird, human, 

mosquito, sentinel, and veterinary cases of West Nile virus (USGS, 2004). 

Pennsylvania also has a sophisticated surveillance program. The National 

Aeronautics and Space Administration (NASA) along with multiple state agencies have 

worked together to develop this West Nile virus surveillance system (Top Story GSFC, 

2002). “The PA West Nile Virus Surveillance System (PAWNVSS) provides up-to-date 

information on where infected mosquitoes, birds, and humans have been reported 

throughout the state” (Top Story GSFC, 2002, p. 1). The data collected are combined in 

a GIS and used to create a county map of Pennsylvania that indicates in which counties 

West Nile virus has been reported. Pennsylvania agencies are currently using the 

PAWNVSS system to make daily decisions on the best places and times to spray for 

mosquitoes (Steitz and Ramanujan, 2002). 

West Nile Virus Modeling 

A unique modeling approach found in the literature is the Dynamic Continuous-

Area Space-Time (DYCAST) model developed by a group at New York’s Hunter 

College. The DYCAST model was developed to identify and monitor high-risk areas for 

West Nile virus in New York City (Theophilides et al., 2003). “It successfully identified 

areas of high risk for human West Nile virus infection in areas where five of seven 

human cases resided, at least 13 days prior to the onset of illness” (Theophilides et al., 

2003, p. 843). The basis for this model is dead crow reports and a Knox Test for space-
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time interactions. Studies suggest that bird reports and the Knox test are biased. 

Kulldorff and Hjalmars (1999) state that the Knox test for space-time interaction is biased 

when there are geographical population shifts. Bird migration is definitely a 

geographical population shift. Also, Petersen and Roehrig (2001) state that although 

crows are by far the most identified species, this may reflect the lethality of infection in 

this species, rather than its importance as a reservoir host. 

The Chicago Department of Public Health also uses a GIS model to predict West 

Nile virus risk. The LinksPoint VectorWatch geographic risk modeling system aids in 

the prevention of West Nile virus by identifying areas within the city where disease 

activity is present (LinksPoint, 2003).  This model is based on the DYCAST model. 

The previous models relied on dead bird reports with little emphasis on 

environmental risk factors. According to the Ames Research Center (2003), a group of 

students working for NASA created a West Nile virus risk model based on mosquito 

habitat suitability for Monterey County, CA. The group correlated ground observations 

with satellite imagery to identify countywide mosquito habitat. This resulted in a model 

that shows the location of at-risk humans who are 55 and older and their proximity to 

West Nile virus-carrying mosquito habitat.  The group was also able to recommend 

additional mosquito surveillance in places where the county was not doing surveillance. 

Bird data as an indicator species may have drawbacks.  In Mississippi, some 

county health departments only test dead birds for West Nile virus until a positive WNV 

case is found, they do limited or no testing after that (Personal Communication, Sally 

Slavinski, 2004). The Environmental Risk Analysis Program (2002), from Cornell 



 
 

 

19 

University’s Department of Communication, adds that cumulative counts of WNV-

positive birds have ceased to be a useful indicator of WNV prevalence because reports of 

dead birds are handled differently in different places. Another obvious drawback to using 

bird cases for modeling is the necessity of a human being finding a dead bird and 

bringing it in for testing. Biases due to population density result in higher probability of 

bird detection in high population centers. 



 

 

 
 

 
 

 
 

 

 
 

 
  

 

 
 

 
  

CHAPTER III 

MATERIALS AND METHODS 

This research was supported by a grant from the National Institutes of Health. 

The grant was administered through East Carolina State University and the Southern 

Coastal Agromedicine Center. The study was designed to assess risk for West Nile virus 

infection for the entire state of Mississippi. 

Study Area 

Mosquito habitat suitability was treated as a surrogate for potential human risk for 

West Nile virus infection. Data were acquired from a variety of sources.  Some data were 

derived from other data sources through interpolative processes. When data were 

interpolated, the calculations were extended beyond the borders of Mississippi into 

Alabama, Tennessee, Arkansas, and Louisiana and then subset to the study area before 

analysis. 

Raster and Vector Variables (GIS Layers) 

GIS data are generally divided into two primary data structures, raster and vector.  

Vector data are stored as points, lines, and polygons while raster data are stored as a 

regular grid of cells. Continuous surface layers like elevation and its derivatives (slope, 

aspect) are usually stored as raster data and discrete data like soil type are usually stored 

as vector data. For GIS predictive modeling purposes, data are usually converted to the 
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Roads 

The roads layer was originally obtained from MARIS; however, the layer was not 

as up-to-date as desired.  The 2002 Census data roads layer was used in place of the data 

from MARIS. This vector layer was used as input to a GIS procedure for calculating 

road density. 

Streams 

Separate streams layers included Perennial and Intermittent streams. These vector 

layers were merged and used as input to a GIS procedure for calculating stream density. 

Population 

Census 2000 population data were summarized by zip code.  These 

summarizations formed the basis for creating a continuous surface for population density, 

which helped normalize the West Nile occurrence data. 

Normalized Difference Vegetation Index (NDVI) 

NDVI is a ratio of the red and near infrared wavelengths and is commonly used in 

vegetation analyses to estimate vegetative cover (Lillesand et al., 2004). The National 

Oceanic and Atmospheric Administration’s (NOAA) Moderate Resolution Imaging 

Spectroradiometer (MODIS) is a multi-spectral scanner that records several wavelengths 

including red and NIR. MODIS 14-day temporal composite data were used to calculate 

NDVI for use in this study. 
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Climatic Variables 

Studies indicate that precipitation and evaporation are important variables for 

modeling disease risk when mosquitoes are vectors. The majority of the mosquitoes that 

carry the West Nile virus breed in open, stagnant water bodies. As a result, water input 

into the system would highlight potential breeding areas.  However, precipitation alone 

does not give an accurate measurement of water input. Evaporation must be considered, 

since rainfall and evaporation yield estimates of the available water or “water balance.” 

Precipitation and pan evaporation data for Mississippi were obtained from weather 

stations throughout the state for the 2002-year. Data were also obtained from the stations 

that border Mississippi in Alabama, Tennessee, Arkansas, and Louisiana. There are more 

stations that record precipitation than evaporation.  However, because evaporation is 

more uniformly distributed across the landscape than precipitation, the lack of stations is 

less of a problem than if only a few stations recorded precipitation (Personal 

Communication, Christopher Bell, 2005). 
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Validation Data 

West Nile virus positive human and bird cases by zip code were obtained from the 

Mississippi Department of Health (MDOH) for 2002 and 2003. Zip codes are higher 

resolution than county boundaries, 404 polygons as opposed to 82 polygons. It also 

should be noted that the human cases are a laboratorial diagnosis not a clinical diagnosis. 

Since clinical cases can be mis-diagnosed, the laboratorial data are suitable for training 

and validating the models. These data included the date of occurrence, the zip code, and 

the city name. 

Data Preparation 

The overall modeling approach required that all data have the same cell-size and 

that all variable “states” or levels be standardized for risk suitability. The 10m-County 

Digital Elevation Models were downloaded in a compressed format.  All 82 counties 

were uncompressed and imported into the GIS software file format. The DEMs were 

reprojected from Mississippi State Transverse Mercator to USA Contiguous Albers Equal 

Area. Once projected, a mosaic was created from the individual county DEMs.  The 82 

counties were mosaiced into five groups due to GIS software processing and storage 

limitations. Each of the five mosaics were resampled to 30m and then combined 

(mosaiced) to form a statewide 30m DEM.  This grid contained data gaps at some of the 

common county boundaries. The procedure used to remove these gaps employed a 3x3 

focal mean filter. This filter looks at nine pixels within the roving window, averages 

them, and inserts that averaged value into the center pixel.  The filter acts as a smoothing 
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device to eliminate noise or in this case fill data gaps. The filtered DEM was merged 

with the original unfiltered DEM to create a seamless 30m DEM. The ‘merge’ routine 

fills the data gaps with the filtered grid values without changing all the values in the 

original grid. After the creation of the new 30m DEM, slope was derived, which was 

reclassified and divided into ten classes using the “Quantile” classification method. With 

the “Quantile” method, the range of possible values is divided into unequal-sized 

intervals so that the number of values is the same in each class. Classes at the extremes 

and middle have the same number of values. Because the intervals are generally wider at 

the extremes, this option is useful to highlight changes in the middle values of the 

distribution (ESRI, 2002). The lowest slope was given a rank of ten and the highest slope 

received a rank of one. 

Unlike the excellent condition of the new, 30m DEM, the permeability grid 

obtained from Pennsylvania State University at 1-km cell resolution depicted sharp 

boundaries at cell transitions. Generally, resampling would improve the poor resolution; 

however, resampling the permeability grid to 120m from 1km was just not feasible. Each 

1km grid cell would be broken down into eight, 120m cells. As a result, the permeability 

grid was converted to a point file. A spline interpolation was performed on the new 

permeability point file. This interpolation method estimates cell values using a 

mathematical function that minimizes overall surface curvature, resulting in a smooth 

surface that passes exactly through the input points (ESRI, 2002). This improved the 

overall quality of the permeability layer, which resulted in a smooth transition between 

permeability classes. The output layer was multiplied by a “mask grid” of the state 
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boundary shapefile. This “mask” confines the output to the extent of the state boundary. 

The permeability layer was divided into ten classes using the “Quantile” classification 

method. Finally, the lowest permeability was given a rank of ten, the highest 

permeability a rank of one. 

Normalized Difference Vegetation Index (NDVI) was derived from MODIS 

imagery at 250m-resolution.  Unlike the permeability layer, NDVI could feasibly be 

resampled to 120m. Each 250m grid cell would only be broken down into two, 120m 

cells. As a result, NDVI was resampled to 120m. This layer was also multiplied by the 

“mask grid.” The highest NDVI received a rank of ten and the lowest received a rank of 

one. 

Perennial and intermittent stream shapefiles from MARIS were merged using a 

GIS “merge” function. A stream density grid was then created using the “Kernel” 

density type with a 2500m-search radius.  With the kernel density calculation, the points 

or lines lying near the center of a raster cell's search area are weighted more heavily than 

those lying near the edge. The result is a smoother distribution of values (ESRI, 2002). 

The “mask grid” was applied to the output layer. The layer was then divided into ten 

classes using the “Quantile” classification method. The highest density received a rank 

of ten and the lowest stream density a rank of one. 

Recent road data were available as 2002 TIGER files from the Census Bureau. 

The primary and secondary road layers were merged using a GIS “merge” function.  This 

merged layer was handled the same way as the streams layer with the creation of a 
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West Nile virus positive human and bird cases by zip code were obtained from the 

MDOH in spreadsheet format.  Input errors such as a mis-keystroke during data entry, 

where the numbers in the zip codes for the same city were reversed, were corrected. 

Latitude and longitude for every zip code’s polygon centroid were acquired from the CD 

Light, LLC website: www.zipinfo.com/search/zipcode.htm and added to the spreadsheet.  

If the looked-up zip code did not match the city name in the MDOH spreadsheet, the zip 

code was maintained and the city corrected. For these “problem” records, the zip codes 

were checked with the United States Postal Service records.  After all errors were 

corrected and each zip code had its associated latitude, longitude, date, and number of 

occurrences attached to the spreadsheet, point files for 2002 and 2003 human and bird 

cases were created.  In order to remain consistent with P-E, occurrences were separated 

by summer and fall. Summer included the months of June, July, and August while the 

fall included the months of September, October, and November. In order to eliminate 

population bias, the data were normalized by population. Population for each zip code 

was obtained from the website, 

www.joshskidmore.com/?_page=projects&_subpage=zipcode_database and then added 

to the spreadsheet. The total number of human occurrences of West Nile virus was 

divided by the total population, which resulted in a normalized set of occurrence data. 











 
 

 

 
 

 Figure 6: Pattern of Normalized Case Occurrences vs. Road Density 
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Pattern of Normalized 2002 Summer Case Occurrences vs. 2002 Summer Precipitation 
Minus Evaporation (P-E) 

Figure 9 shows the normalized summer case occurrences compared with summer 

precipitation minus evaporation (P-E). Dark green tones indicate high values of P-E 

while lighter tones indicate lower values of P-E. It is difficult to determine if patterns 

exist. There are, however, clusters of occurrences within higher areas of P-E, suggesting 

that P-E may be an important variable in predicting mosquito habitat suitability and 

ultimately West Nile virus risk. This is intuitively appealing if one accepts the premise 

that as the amount of water increases the chances of mosquito habitat also increases. 

Pattern of Normalized 2002 Fall Case Occurrences vs. 2002 Fall Precipitation Minus 
Evaporation (P-E) 

Figure 10 shows the normalized fall case occurrences compared with fall P-E.  As 

with Figure 9, dark green tones indicate higher values of P-E and light tones indicate 

lower values of P-E.  The moisture regime here is more uniform than in the summer. 

Also, there are fewer occurrences in the fall. The occurrences that are present are located 

in areas of relatively high P-E, hinting to the fact that P-E may be an important variable 

in predicting mosquito habitat suitability. These results substantiate conclusions drawn 

by Githeko et al. (2000). 
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Pattern of Normalized 2003 Summer Case Occurrences vs. 2003 Summer Precipitation 
Minus Evaporation (P-E) 

Figure 11 shows the normalized summer case occurrences compared with summer 

P-E.  As with all of the other P-E figures, dark green tones indicate high values of P-E 

while lighter tones indicate lower values of P-E. Again, it is difficult to accurately 

determine if patterns exist; however, there seems to be clustering of larger diameter 

points in areas of higher values of P-E.  There are more occurrences within areas of 

relatively higher P-E than in areas of lower P-E.  

Pattern of Normalized 2003 Fall Case Occurrences vs. 2003 Fall Precipitation Minus 
Evaporation (P-E) 

Figure 12 shows the normalized fall case occurrences compared with fall P-E.  

For this figure, P-E values seem to be more evenly distributed across the state, less 

concentrations of high and low values in a single location.  Visually this figure, as 

opposed to the other P-E figures, displays the least correlation between high values of P-

E and West Nile virus occurrence. Points are located in both areas of high and low 

values of P-E.    

Although Figure 12 was less revealing than the other P-E figures, visualization of 

P-E variables suggests that a predominance of cases seem to fall into areas of higher 

relative moisture regimes. Visualization of the environmental variables suggests that 

patterns do exist but also raises more questions. 

Visual analyses are a time-honored way of viewing patterns and speculating on 

the underlying processes that control the patterns (O’Sullivan and Unwin, 2003). 
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Today’s GIS modeling capabilities can be combined with statistical analyses to help 

quantify these relationships and validate model outputs. The following sections present 

the results of the statistical analyses performed. 



 
 

 

 
 

 
 

Figure 11: Pattern of Normalized 2003 Summer Case Occurrences vs. 
                   2003 Summer Precipitation Minus Evaporation (P-E) 

50 



 
 

 

 
 

 
Figure 12: Pattern of Normalized 2003 Fall Case Occurrences vs. 2003 
                   Fall Precipitation Minus Evaporation (P-E) 
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Statistical Tests for Each Variable of Interest 

Data on West Nile virus infections are case occurrences summarized by zip code.  

The mean response for variables of West Nile virus occurrence versus variables of non-

occurrence is compared using a t-test at the 95% confidence level.  The two-tailed 

significance values were used for ranking variables.  This is discussed in detail later in 

this chapter. Linear regressions were developed for the variables that showed significant 

differences between zip codes of West Nile virus occurrence versus zip codes of non-

occurrence to determine the strength and direction of relationships between the 

significant variable and rate of occurrence. 

T-Test for Slope 

The t-test was performed to determine if there were significant differences 

between zip codes of occurrence and zip codes of non-occurrences fo r each variable.  

Table 2 shows the results of the t-test for slope weighted by case occurrence.  It should be 

noted that within the “Group Statistics” table, one (1) represents zip codes with 

occurrences while two (2) represents zip codes without occurrences; this will hold true 

for the remainder of the t-test results.  This test was performed with weighted 

occurrences. This means that if a zip code recorded more than one occurrence, the record 

was duplicated to match the number of occurrences within the t-test design.  As a result 

of the high significance value (P-value = 0.001), equal variances were not assumed and 

its associated two-tailed significance value was recorded for variable ranking.  It should 

be noted that the remaining t-tests were constructed with weighted occurrences. 
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As previously mentioned in this chapter, linear regressions were developed for the 

variables that showed significant differences between zip codes of West Nile virus 

occurrence versus zip codes of non-occurrence.  The goal of the regression procedure was 

to determine the strength and direction of relationships between the significant variable 

and rate of West Nile virus occurrence. Table 3 shows the results of the regression of 

case count on slope. An extremely weak linear relationship exists between case counts 

and slope (R2 = 0.011). However, this relationship will become important during the 

ranking and weighting of the variables. 

Table 3 
Regression of Case Counts on Slope 

Model Summary 

Model R R Square 
Adjusted 
R Square 

Std. Error of 
the Estimate 

1 .104a .011 -.004 1.66618 

T-Test for Soil Permeability 

Table 4 shows the results of the t-test for soil permeability.  As with the t-test for 

slope, one (1) represents zip codes with occurrences while two (2) represents zip codes 

without occurrences. Equal variances are assumed for zip codes of West Nile virus 

occurrence versus non-occurrence based on a non-significant P-value (0.136).  The test 

for equality of means resulted in a non-significant P-value (0.872).  A review of the 

means 3.8485 (occurrences) versus 3.8479 (non-occurrences) suggests that soil 
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permeability is not related to WNV occurrence. The associated two-tailed significance 

value is recorded for use later in variable rankings. 
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T-Test for Stream Density 

The results of the t-test for stream density are shown in Table 5.  Note the values 

for mean stream density, 1.1977 (occurrences) versus 1.1571 (non-occurrences).  As with 

the means of permeability, there is little difference between mean stream densities within 

zip codes of occurrences versus zip codes of non-occurrences.  A non-significant P-value 

(0.946) verifies this statement.  Equal variances are assumed and the associated two-

tailed significance value is recorded for use later in variable rankings. For these data, 

there is no evidence that a relationship exists between human occurrences and stream 

density. 

T-Test for Road Density 

Table 6 shows the results of the t-test for road density.  Equal variances for zip 

codes of West Nile virus occurrence versus non-occurrence is not assumed based on a 

significant P-value (0.000) for the test of equal variances.  The test for equality of means 

resulted in a significant P-value (0.000) leading to the assumption that road density is 

significantly different for zip codes of West Nile virus occurrence versus zip codes of 

non-occurrence.  A review of the means 2.4841 (occurrences) and 1.2198 (non-

occurrence) indicates that higher values of road density are related to WNV occurrence 

and increased risk. The associated two-tailed significance value is recorded for use later 

in variable rankings. 


