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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

 An important part of multiscale modeling, which investigates a material at 

multiple length scales, is determining mechanisms of failure at the nano-length 

scale via atomistic simulations such as methods like molecular dynamics (MD).  

An example of the use of multiscale modeling is the development of ductile, 

lightweight alloys to replace heavier metals and to lower CO2 emissions.  The 

use of ductile, lightweight structural alloys such as magnesium is becoming 

increasingly popular in a variety of industries, with the automobile industry 

aggressively pursuing their use in components formerly composed of heavier 

steel or aluminum.  Modeling the mechanical behavior of lightweight alloys is 

challenging due to (i) the complex behavior of the material and (ii) the 

complication of relating information between multiple length scales. 

  One of the challenges is linking discrete MD information to continuum 

information.  The difficulty lies in that the discrete quantities (i.e. velocity, 

position, and force) is different from the continuum quantity (stress and strain).  

For example, the most commonly used measure of deformation is strain, which 

takes on a different meaning at the nanoscale.  In a continuum body, strain is a 
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function of the motion.  In particular, the function defines strain as the gradient of 

the displacement.  In a discretized body, this definition directly correlates to the 

change in distance between two atoms, which is empty space.  However, even 

with these complications to overcome, using the continuum framework for a 

discretized body can be beneficial for visualization purposes and for linking the 

atomic scale with the macroscale.  For example, Gullett et al. (2008) used a 

kinematic algorithm for computing the deformation gradient and strain tensors 

from the total atomic motion.  This is significant because strain tensors are the 

first step to understanding the full nature of plastic deformation at an atomistic 

level. 

 

!
!

Figure 1.1 Two GBTP junctions where a (a) micro void formed and (b) micro 
void did not nucleate in a specimen strained to 15% true strain. The 
tensile axis is vertical with respect to the images (Querin et al., 
2007). 
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 One phenomena that is not well understood, examined by Querin et al. 

(2007), involves a grain boundary triple point (GBTP) junction, referred to here as 

a triple junction (TJ) in AA6022, an aluminum alloy.  Querin observed a micro 

void at the TJ for some orientations while other orientations did not exhibit a 

micro void, as shown in Figure 1.1.  Because nucleation of voids is one of the 

primary contributors to material behavior, the void nucleation mechanisms need 

to be better understood to enhance bulk properties of materials. 

 

1.2 Research Objectives 

 The overall goal of this research is to determine a method for calculating 

the plastic spin at the atomistic level for the purpose of multiscale-based 

constitutive modeling. 

 The pursuit of this goal is made possible with two distinctive objectives of 

research connected by constitutive modeling.  The first objective is (i) to quantify 

void nucleation in molecular dynamic simulations of TJ using a discrete 

mathematical framework.  Void nucleation is a central part of determining 

material damage and plays an important role in failure models.  The second 

objective is (ii) to explore the possibility of calculating quantities integral to 

continuum-based failure models, such as the plastic spin.  The plastic spin is an 

important measure used in constitutive modeling due to its ability to capture the 

evolution of texture and deformation-induced anisotropy (Horstemeyer, 1995). 
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1.3 Thesis Organization 

 The thesis begins with an introduction to and explanation of the research 

problem.  Chapter 2 introduces the advancement of research at the nanoscale, 

discusses the fundamentals of molecular dynamics simulations, and introduces 

the kinematics of continuum-based motion.  In addition, previous research of the 

plastic spin and plans for measuring the plastic spin at the nanoscale are 

discussed in Chapter 2.  In Chapter 3, EAMpost, an MD post-processing program 

which uses a discrete gradient operator to calculate strains and other continuum 

metrics at the nanoscale, is introduced and validated.  Chapter 4 examines the 

molecular dynamic study of void nucleation in aluminum triple junctions.  Chapter 

5 introduces crystal plasticity and examines a crystal plasticity study of void 

nucleation in aluminum triple junctions and their comparison with the MD results 

in Chapter 4.  Finally, conclusions and future work are discussed in Chapter 6. 
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CHAPTER II 

BACKGROUND 

 

 The advancement of areas of research such as medicine, electronics, and 

materials, where the size of products is decreasing to the nanoscale, has 

provided the scientific community with an array of new research endeavors.  The 

field of nanotechnology is a blend of engineering and science used to advance 

understanding and materials at length scales that are not visible to the human 

eye.  The increase in interest of the nanoscale is correlated with an increase in 

computational power and modeling techniques.  Liu et al. (2004) forsees the 

advancement research at the nanoscale can have huge implications on areas 

such as national defense and homeland security.  One of the most important 

traits of a present day researcher is to combine new knowledge with accepted 

understanding to advance the information in multiple fields.  Accordingly, 

nanotechnology and the advancement of modeling techniques is a great 

innovation, but it is limited while it stands alone.   

 

2.1 Nanoscale Hurdles 

 Studies at the nanoscale via atomistic simulations have a multitude of 

limitations, which include computing power, simulation time, and simulation size 
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(Buehler, 2004).  These limitations severely lessen the number of problems 

atomistics can be used to solve.  There are a couple of reasons computing power 

is a limiting factor for atomistic simulations.  We will see, in Section 2.2, there are 

many calculations needed to march a single atom through time.  As you increase 

the size of the simulation, the number of calculations made per time step 

increase.  Therefore, computing processors are needed to make the number of 

calculations and computer memory is needed to store the data from the 

calculations transmitted to the processors.  Another difficult coupled with 

computing power is storage space for the simulation data.  After the completion 

of the atomistic simulation, data (position, velocity, centrosymmetry parameter, 

etc.) is saved for each atom at specified time increments.  This data can 

consume large amounts of space depending on the size and duration of the 

simulation. 

 The other limiting factors of atomistic simulations are the size and duration 

of the simulation.  As shown in Figure 2.1, the range of molecular dynamics 

simulations encompasses lengths on the order of microns and time durations on 

the order of nanoseconds.   
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Figure 2.1 Schematic of various theories and the extents of atomistic 
simulations (Horstemeyer et al., 2001). 

 

 For example, simulations of 1 billion atoms would be considered extremely 

large for current atomistic simulations.  However, a system of 1 billion atoms of 

aluminum is a cube with sides of 0.4 microns (µm) (1x10-6 m) in length.  Couple 

the size of this simulation with 1 million time steps of 0.001 picoseconds (ps) 

(1x10-12 sec), and the simulation is 100x smaller than the diameter of a human 

hair (50 – 100 µm) and lasts for 1 ns, or the amount of time it take light to travel 1 

foot (1.017 ns).  However, specific physical phenomena can be studied and 

understood using atomistic simulations as long as these limitations are well 

understood and taken into account during the analysis process. 
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2.2 Molecular Dynamics 

 A dynamical system is defined as a system with the capability of motion in 

which quantities and dynamic variables have a value at specific instants of time 

(Logan, 2006).  They are governed by the laws of motion, which are functions of 

time, and satisfy initial conditions.  At the root of understanding dynamical 

systems is molecular dynamics, which utilizes Hamilton’s principle and the 

equations of motion.  Hamilton was able to define a dynamical system such that 

it could be understood over a defined range of time.  The dynamical system 

satisfies a set of differential equations, which are functions of time, and initial 

conditions.  Hamilton’s principle was elegant, yet powerful, and the results from it 

were not fully understood until more recent ventures with the onset of computer 

simulations. 

 

2.2.1 Background 

 Molecular dynamic simulations are used to study many-body interactions 

between atoms and/or molecules.  Initial studies with MD occurred in the 1960’s 

with researchers constructing physical experiments and analyzing elaborate 

systems composed of rubber balls attached with metal rods (Frenkel et al., 

2002).  As the use of computers became more widespread, researchers turned 

to simulations for understanding molecular interaction because of their ability to 

solve large systems of equations quickly. 

 Steve Plimpton at Sandia National Laboratories created the molecular 

dynamics software used for this research, Large-scale Atomic/Molecular 



 9 

Massively Parallel Simulator (LAMMPS) (Plimpton, 1995).  Today, LAMMPS has 

become one of the more popular open-source molecular dynamics code used 

because of its’ ability to run on a plethora of operating systems and ease of 

customization.  Also, molecular dynamics has become a widely used method to 

analyze and understand large-scale atomic interactions.  Its further development 

is providing researchers with an opportunity to better understand complex 

material behavior.   

 

 

Figure 2.2 Process which MD simulations step through and determine atomic 
positions and velocities. 

 

 LAMMPS calculates the position and velocity of atoms through an explicit 

process known as the velocity Verlet algorithm (Swope et al., 1982; Verlet, 

1967), as shown in Figure 2.2.  The initial energy of the system is determined 

based on simulation characteristics such as the configuration of the atomic 

structure, boundary conditions of the simulations, and constraints such as 

temperature.  The kinetic energy is determined from the mass of the atoms and 

their initial velocities while the potential energy is determined from their positions 

and interaction potentials.  With these quantities, the total energy of the system 
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can be calculated.  Given the energy of the system, the forces applied to the 

atoms can be determined.  The forces on the atoms are defined as the derivative 

of the potential energy function.  Then, the forces are applied over a time, !t, 

from which new atomic positions and velocities are calculated. 

 

2.2.2 Velocity Verlet Algorithm 

 The velocity Verlet algorithm determines the velocity and position at time t 

+ !t given the initial position, x(t), and velocity, v(t).  The position of the atom at t 

+ !t is estimated as 

                     x t + !t( )=x t( ) + v t( )!t + 1
2 a t( ) !t( )2 , (2.1) 

and the mid-step velocity is estimated as 

  v t + 1
2 !t( )=v t( ) + 1

2 a t( )!t , (2.2) 

where the acceleration at time t is computed from 

                                           a t( )= F t( )
m

. (2.3) 

Given the updated atomic positions, the updated forces, F(t + !t), are found 

using an interatomic potential and an updated acceleration, a(t + !t), is 

calculated using the relationship in Equation 2.3.  The new velocity is found using 

the mid-step velocity and determined to be 

                    v t + !t( )=v t + 1
2 !t( ) + 1

2 a t + !t( )!t . (2.4) 

 The integration process is repeated for every time step with units of !t. 
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2.2.3 Embedded-Atom Method Potential 

 Molecular dynamic codes use interaction potential models to calculate the 

energy, force, and stress of a simulation.  One of the more commonly used 

potentials for metals or alloys is the embedded-atom method (EAM) potential.  

Developed by Daw and Baskes (1984), the EAM potential includes an 

embedding energy formulation proposed by Friedel (1952) and advanced by 

Stott and Zaremba (1980) and the pair interaction defined by Jones (1924a, 

1924b).  The pair interaction is a function of the distance between two atoms and 

provides a fast and accurate approximation for fully enclosed atoms.  However, 

with the introduction of boundaries or surfaces, the pairwise potential does not 

provide accurate energy calculation and is better supplanted by a many-body 

potential, which maintains the speed while providing the increased level of 

functionality (Gullett et al., 2004).  The EAM potential defines the energy for an 

atom as the sum of embedding energy and the pair potential energy.  The total 

energy, E, for the ith atom is defined as 

  E = Fi ! j rij( )
j" i
#

$

%&
'

()
+ 1

2
i
# *ij rij( )

j" i
# , (2.5) 

where the embedding energy, F, multiplied by the electron density, !, due to the 

neighboring jth atoms is summed with the potential energy term, ", due to the 

neighboring jth atoms. 
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2.2.4 Virial Stress 

 The virial stress tensor (Clausius, 1870; Maxwell, 1870), W, is defined 

from the energy calculations as 

   Wk
mn = 1

Vi
f mij ! r

n
ij

j" i

N

# , (2.6) 

where the total stress tensor is the summation (over N atoms) of the force vector, 

f, multiplied by the displacement vector, r, for each atom pair, ij, divided by the 

volume of the ith atom, V.  The global stress is the over the continuum is the 

volumetric average of the virial stress for each atom,  

  ! = 1
N Wk

k=1

N

" . (2.7) 

Even though the intended use of the virial stress was to relate bulk averages and 

the values of an arbitrary point and time have no physical meaning, the virial 

theorem provides the most consistent expression for relating forces and motion 

within an atomic system to a continuum stress. (J. A. Zimmerman et al., 2002). 

 

2.2.5 Centrosymmetry Parameter 

 Another important measure widely used in MD simulations of metals is the 

centrosymmetry parameter (Kelchner et al., 1998).  All metals have a repeating 

lattice structure and the centrosymmetry parameter measures the deviation from 

the lattice structure.  For face-center cubic (FCC) materials, the centrosymmetry 

parameter is expressed as 
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    Ci
FCC = ri, j + ri, j+6

2

j=1

6

! , (2.8) 

where the centrosymmetry parameter for the ith atom is the sum of the squares 

of pairs of opposite nearest neighbors, twelve atoms total and six pairs.  For an 

atom in a perfect FCC structure, the centrosymmetry value is equal to zero.  As 

the centrosymmetry value increases, so does the deformation of the lattice. 

 

2.3 Continuum Deformation Measures 

 The continuum description used throughout this text distinguishes the 

reference and current configuration.  A body is said to be in a reference 

configuration at time t=t0 and a point on the body is identified by a vector X=(X1, 

X2, X3).  As time passes and motion occurs, the body moves to a current 

configuration and a point on the body is identified by a new vector x=(x1, x2, x3).  

The reference and current configuration can be uniquely mapped by a time-

dependent motion function, known as ! and expressed as 

                                            x = ! X,t( ) . (2.9) 

The spatial gradient of the motion, known as the deformation gradient (Holzapfel, 

2000), is expressed as 

  F= !"
!X

=
!x
!X

. (2.10) 

The deformation gradient can be used to define the rotation and stretch effects 

about a point.  The displacement field in the reference configuration, expressed 

as  
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     U X, t( ) = x X, t( ) ! X , (2.11) 

is the difference between the original position, X, in the undeformed configuration 

and the new position, x, in the deformed configuration.  The displacement field 

can also be written in terms of the current configuration, which is expressed as 

    u x,t( )=x-X x,t( ) . (2.12) 

It can be shown that U(X,t) = u(x,t), but for brevity, we will just mention it is true.  

Therefore, the displacement fields can be written in terms of the reference or 

current configuration and they are equal.  Taking the time derivative of the 

material configuration displacement field yields  

  V(X,t)= !U(X,t)
! t

, (2.13) 

but by using the above statement of U(X,t) = u(x,t), then Equation 2.13 can be 

rewritten as 

  v(X,t)= !u(x,t)
! t

. (2.14) 

Defining the velocity gradient in the current configuration provides much more 

flexibility for subsequent derivations, as shown below.  The velocity gradient, L, 

is  

                       
 
L =

!v
!x

=
! !"(X, t)
!X

!X
!x

, (2.15) 

or simply expressed as 

     L= !FF-1 , (2.16) 
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where the velocity gradient is the product of the material time derivative of the 

deformation gradient with the deformation gradient.  The velocity gradient can be 

decomposed into a symmetric tensor, d, and an anti-symmetric tensor, w, and 

expressed as    

  L = d+w . (2.17) 

The symmetric tensor is commonly referred to as the stretch tensor, written as  

           d =
1
2
L + LT( ) , (2.18) 

and the anti-symmetric tensor is the spin tensor, expressed as 

          w =
1
2
L ! LT( ) . (2.19) 

 Calculations of strain are very important in engineering applications, 

because they can typically be used across length scales to describe the 

deformation of a body.  Two common strain measures (Ogden, 1984), the 

Lagrangian-Green (or material) strain, expressed as  

          E=
1
2
FTF-I( ) , (2.20) 

and the Eulerian (or spatial) strain, expressed as 

             e=
1
2
I-F-TF-1( ) . (2.21) 

 

2.4 Material Response Modeling 

 The mathematical description of continuum behavior is fundamentally 

nonlinear in both geometry and material properties.  For this reason, analytic 


