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Figure 4.137   Surface Response Plots Obtained for the Normalized Viscosity (cP) of 

Mississippi State University (MS) Oak Bark Pyrolysis Oil as a Function of 
Shear Rate (s-1) and Anisole Concentration (wt.%)  

 
[*The above viscosity measurements were performed at 25 0C and storage 
times of a) 0 hr b) 96 hr and c) 192 hr for the MS oak bark oil stored at  
80 0C.] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.138   Contour Plots Obtained for the Normalized Viscosity (cP) of Mississippi 

State University (MS) Oak Bark Pyrolysis Oil as a Function of Shear Rate 
(s-1) and Anisole Concentration (wt.%)  

 
 [*The above viscosity measurements were performed at 25 0C and storage 

times of a) 0 hr b) 96 hr and c) 192 hr for the MS oak bark oil stored at  
 80 0C.] 
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Figure 4.139   Ball and Spoke Models Obtained for the Hydrogen Bonding of Anisole 

with a) Guaiacol and b) Syringol as Predicted by Spartan Wave Function©  
 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.140   Cost of Glycerol Addition to Pine Wood Pyrolysis Oil as a Function of its 

Concentration (wt.%) 
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Based on the results of this study it was determined that pyrolysis oil stability is 

enhanced through the addition of chemical additives. Of the 26 additives screened, it 

appears that anisole, glycerol, and the well documented methanol are most effective for 

pyrolysis oil stability. Specific conclusions for each of the four phases and trial runs of 

this study are provided below.   

1. Of the four feed stocks used in this study [pine wood (PW), pine bark (PB), oak 
wood (OW), and oak bark (OB)] the highest yield of pyrolysis oil was obtained 
for OW (62.9%) whereas the highest yield of bio-char was obtained for PB 
(43.2%). Unfortunately, of this total oil yields, the aqueous-rich fraction ranged 
from 37.6-52.0 % for OB (min.) and PB (max.) respectively 

2. Generally, the oil yields were independent of residence time and pyrolysis 
temperature. But this is attributed to the inadequate reactor control

3. The pyrolysis oil stream was separated effectively into aqueous-rich and organic-
rich fractions by using a multi-stage condenser

4. Significant weight losses in the form of non-condensable gases such as CO, CO2, 
CH4, and tars were observed

5. Refrigeration of pyrolysis oils at 4 0C was observed to slow the rate of increase of 
oil viscosity by minimizing the unstable polymeric reactions

6. Accelerated storage stability test conducted at 80 0C for a period of 192 hours was 
effective in distinguishing the stability performance of pyrolysis oils as a function 
of additive
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7.   Based on the results of this investigation rheology is an effective tool for 
predicting pyrolysis oil stability

8.   In general, most chemical additives evaluated in this study increased the pyrolysis 
oil stability with the noted exceptions of resorcinol, furfuryl alcohol, and 2-
furaldehyde

9.   In general, the low molecular weight additives favored greater stability of 
pyrolysis oils when compared to the high molecular weight additives

10.    Based on the results of this investigation pyrolysis oils can exhibit both 
Newtonian and non-Newtonian flow properties

11. The Herschel Bulkley and Power Law models can adequately model the 
rheological behavior of the pyrolysis oils. Anisole blended pyrolysis oil exhibited 
the lowest viscosity rate index (n) postulated due to its aromatic structure and 
plate-like movement of the oil sub-layers

12. The addition of chemical additives to the pyrolysis oils can significantly affect 
their viscosity properties

13. Among the 6 groups of chemical additives evaluated in this study, alcohols had 
the most significant effect on pyrolysis oil viscosity

14. Addition of anisole seems to mask the pungent odor of pyrolysis oils due to its 
strong perfumic anise odor

15. Among the 6 groups of chemical additives evaluated in this study, ethers had the 
most significant impact on pyrolysis oil water content

16. Based on the results obtained in this study phase-separation of pyrolysis oils was
not observed except when the oils were aged for prolonged storage periods 
accompanied by low additive concentrations

17. The pH of pyrolysis oils ranged from 2-3 independent of the additive group 
selected

18. Glycerol in excess of 5 wt.% showed superior flow and stabilizing properties 
among all the additives and concentrations tested

19. Pyrolysis oils exhibit gel type flow behavior based on the storage moduli (G’) and 
loss moduli (G”) tests conducted for evaluating structural stability

20. Based on the analysis of variance (ANOVA), 10 wt.% was observed to be the 
most optimal additive concentration in stabilizing the pyrolysis oils
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21. Pine wood pyrolysis oils are deemed to be the most stable pyrolysis oils during 
this study. In general, the wood derived oils showed greater storage stability than 
the bark derived oils

22. The artificial light used in this study did not have a significant impact on the 
oxidative stability of pyrolysis oils. Hence, the chemical and physical properties 
of the additive free pyrolysis oils were relatively unaffected by light

23. Even though all the additives (anisole, glycerol, and methanol) performed well,
their effect on the oil stability is dependent upon the feedstock, concentration, 
storage, and production conditions. Feedstock is concluded to be the single most 
important variable affecting the pyrolysis oil properties such as viscosity and 
water content

24. Acid value testing was observed to be more accurate than pH testing in measuring 
the acidic content of pyrolysis oils

25. Generally, both the mean viscosity and the mean water content of pyrolysis oils 
were observed to increase with increasing storage time

26. Aromatic additives in excess of 8 wt.% are beneficial in optimizing the stability of 
hardwood-derived oils. However, alcoholic additives in excess of 8 wt.% are 
beneficial in optimizing the stability of softwood-derived oils

27. The results of the filtration study indicated that reduction in particulate 
concentration increased pyrolysis oil stability. Consequently, filtration had the 
highest impact on the stability of bark derived oils because of their high solid 
content compared to the wood derived oils

Recommendations       

1. An improved reactor design is necessary to obtain precise control of vapor 
residence time and pyrolysis temperature to eventually maximize pyrolysis oil 
yields

2. Pretreatment of biomass prior to auger reactor pyrolysis is projected to increase 
the pyrolysis oil yields by enhancing the thermal breakdown of lignocellulosics 

3. Pyrolysis oils yields in the future need to be reported on a dry weight basis

4. Particulate removal from the pyrolysis process upstream can significantly increase 
the pyrolysis oil stability
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5. A full-scale storage stability study involving the use of glycerol as a pyrolysis oil 
stabilizer is highly recommended

6. Additive blending studies involving the use of multifunctional chemical additives 
will be useful in the increased understanding of storage stability of pyrolysis oils

7. Extensive testing of pyrolysis oils for their total acid value is predicted to be 
useful in better understanding of their storage stability behavior with time

8. A complete life-cycle analysis of the pyrolysis oil is highly recommended for its 
potential use as a bio-fuel   

9. Catalytic hydrodeoxygenation at the expense of high operating costs and lower oil 
yields is projected to increase the storage stability of pyrolysis oils by reducing 
the concentration of many volatile and odor causing compounds. Consequently, 
the pH of the pyrolysis oils can also be improved significantly

10. The thermal stability of pyrolysis oils based on the predetermined temperature of 
an onsite engine during its performance evaluation is essential in better 
understanding the complex changes of the oil chemical composition

11. Adsorption studies involving the use of bio-char for removing volatile organics  
and inorganic heavy metals need to be performed to isolate its potential industrial 
application
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                               APPENDIX A

This Appendix presents the results obtained from phase I or Mississippi State 

University (MSU) pyrolysis oil (bio-oil) production. Pyrolysis oils (16) were produced by 

varying the feedstock (pine wood-PW, pine bark-PB, oak wood-OW, and oak bark-OB), 

solid residence time (slow and fast), and pyrolysis temperature (400 and 450 0C). The 

daily yields (%) of unaccounted mass, bio-oil, char, and water as a function of feedstock 

and reactor condition is shown in Figures 1-15 for the 16 MSU pyrolysis oils. Further 

their average yields (%) of unaccounted mass, bio-oil, char, and water as a function of 

reactor condition for all the runs (complete) is shown in Figures 16-29.
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Figure A.1   Reactor Yields of Mississippi State-Pine Wood-Low Temperature-Fast 
Residence (MS-PW-LT-FR) Bio-Oil
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Figure A.2   Reactor Yields of Mississippi State-Pine Wood-High Temperature-Fast 
Residence (MS-PW-HT-FR) Bio-Oil
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Figure A.3   Reactor Yields of Mississippi State-Pine Wood-Low Temperature-Slow 
Residence (MS-PW-LT-SR) Bio-Oil
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Figure A.4   Reactor Yields of Mississippi State-Pine Wood-High Temperature-Slow 
Residence (MS-PW-HT-SR) Bio-Oil
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Figure A.5   Reactor Yields of Mississippi State-Oak Wood-Low Temperature-Fast 
Residence (MS-OW-LT-FR) Bio-Oil
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Figure A.6   Reactor Yields of Mississippi State-Oak Wood-High Temperature-Fast 
Residence (MS-OW-HT-FR) Bio-Oil
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Figure A.7   Reactor Yields of Mississippi State-Oak Wood-Low Temperature-Slow 
Residence (MS-OW-LT-SR) Bio-Oil
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Figure A.8   Reactor Yields of Mississippi State-Pine Bark-Low Temperature-Fast 
Residence (MS-PB-LT-FR) Bio-Oil



368

0

5

10

15

20

25

30

35

40

1 2 3

Day of Production

%
 Y

ie
ld

Unaccounted Mass Bio-Oil Char Water

Figure A.9   Reactor Yields of Mississippi State-Pine Bark-High Temperature-Fast 
Residence (MS-PB-HT-FR) Bio-Oil
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Figure A.10   Reactor Yields of Mississippi State-Pine Bark-Low Temperature-Slow   
Residence (MS-PB-LT-SR) Bio-Oil
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Figure A.11   Reactor Yields of Mississippi State-Pine Bark-High Temperature-Slow 
Residence (MS-PB-HT-SR) Bio-Oil
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Figure A.12   Reactor Yields of Mississippi State-Oak Bark-Low Temperature-Fast 
Residence (MS-OB-LT-FR) Bio-Oil
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Figure A.13   Reactor Yields of Mississippi State-Oak Bark-High Temperature-Fast 
Residence (MS-OB-HT-FR) Bio-Oil
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Figure A.14   Reactor Yields of Mississippi State-Oak Bark-Low Temperature-Slow 
Residence (MS-OB-LT-SR) Bio-Oil
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Figure A.15   Reactor Yields of Mississippi State-Oak Bark-High Temperature-Slow 
Residence (MS-OB-HT-SR) Bio-Oil
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Figure A.16   Average Reactor Yields of Mississippi State-Pine Wood-Slow Residence 
(MS-PW-SR) Bio-Oils
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Figure A.17   Average Reactor Yields of Mississippi State-Pine Wood-Fast Residence 
(MS-PW-FR) Bio-Oils
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Figure A.18   Average Reactor Yields of Mississippi State-Pine Wood-Low Temperature 
(MS-PW-LT) Bio-Oils 
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Figure A.19 Average Reactor Yields of Mississippi State-Pine Wood-High Temperature 
(MS-PW-HT) Bio-Oils 
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Figure A.20 Average Reactor Yields of Mississippi State-Oak Wood-Fast Residence 
(MS-OW-FR) Bio-Oils
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Figure A.21   Average Reactor Yields of Mississippi State-Oak Wood-High Temperature 
(MS-OW-HT) Bio-Oils 
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Figure A.22   Average Reactor Yields of Mississippi State-Pine Bark-Slow Residence 
(MS-PB-SR) Bio-Oils
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Figure A.23   Average Reactor Yields of Mississippi State-Pine Bark-Fast Residence 
(MS-PB-FR) Bio-Oils
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Figure A.24   Average Reactor Yields of Mississippi State-Pine Bark-Low Temperature 
(MS-PB-LT) Bio-Oils 
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Figure A.25   Average Reactor Yields of Mississippi State-Pine Bark-High Temperature 
(MS-PB-HT) Bio-Oils 
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Figure A.26   Average Reactor Yields of Mississippi State-Oak Bark-Slow Residence 
(MS-OB-SR) Bio-Oils
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Figure A.27   Average Reactor Yields of Mississippi State-Oak Bark-Fast Residence 
(MS-OB-FR) Bio-Oils
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Figure A.28   Average Reactor Yields of Mississippi State-Oak Bark-Low Temperature 
(MS-OB-LT) Bio-Oils 
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Figure A.29   Average Reactor Yields of Mississippi State-Oak Bark-High Temperature 
(MS-OB-HT) Bio-Oils
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                                         APPENDIX B

This Appendix presents the results obtained from preliminary stability testing or 

trial runs of Mississippi State University (MSU) pyrolysis oils. These trial runs were 

conducted to evaluate the stability of frequently tested and refrigerated (4 0C) pyrolysis 

oils. The frequently tested pyrolysis oils underwent the temperature transition from 4 to 

25 0C and back. However, the refrigerated oils were constantly stored at 4 0C. Figures 1-4 

show the stability of frequently tested pine wood oils as a function of aging time based on 

their viscosity, water content, pH, and density respectively. The viscosity plot in Figure 1 

however reveals the stability performance of frequently tested pine wood oils in reference 

with the refrigerated pine wood oils. Figures 5-8 represent the viscosity of refrigerated 

and frequently tested pine wood and oak wood oils alternatively. 
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                               APPENDIX C

This Appendix presents the results obtained from the additive prescreening 

studies or Phase II. These studies were performed using pine wood pyrolysis oil (high 

temperature) of Mississippi State University (MSU). The overall objective of this phase 

was to select three best additives (out of 26) based on their stability performance. An 

additive concentration of 10 wt.% was utilized during this phase with the storage 

temperature being 80 0C. The viscosity of additive blended pyrolysis oils as a function of 

shear rate (s-1) and storage time (hr) is shown in Figures 1-23. The viscosity increase (%) 

of additive blended pyrolysis oils as a function shear rate (s-1) is shown Figures 24-44. 

The ‘initial and final’ storage times of ‘0 and 192 hr’ were utilized to compute the 

viscosity increase (%) in the above figures. It should be noted that the viscosity 

measurements in Figures 1-44 were performed at a temperature of 25 0C. The viscosity of 

additive blended pyrolysis oils as a function of storage time (hr) and storage temperature 

(0C) is shown in Figures 45-66. The viscosity of the pine wood pyrolysis oils in these 

figures corresponds to a shear rate of 100 s-1.  
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Figure C.1   Viscosity (cP) of Methyl Tertiary Butyl Ether Blended Pyrolysis Oil (10 
wt.%) Measured as a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.2   Viscosity (cP) of Methyl Ethyl Ketone Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.3   Viscosity (cP) of Ethanol Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.4   Viscosity (cP) of Decahydronapthalene Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.5   Viscosity (cP) of Acetone Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.6   Viscosity (cP) of Xylene Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.7   Viscosity (cP) of Tetrahydronapthalene Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.8   Viscosity (cP) of Methyl Formate Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.9   Viscosity (cP) of Isopropyl Ether Blended Pyrolysis Oil (10 wt.%) Measured 
as a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.10   Viscosity (cP) of Ethyl Ether Blended Pyrolysis Oil (10 wt.%) Measured as 
a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.11   Viscosity (cP) of Cyclopentanone Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.12   Viscosity (cP) of Acetaldehyde Blended Pyrolysis Oil (10 wt.%) Measured 
as a Function of Shear Rate (s-1) and Storage Time (hr) 
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Figure C.13   Viscosity (cP) of t-Butanol Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.14   Viscosity (cP) of Tetrahydrofuran Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.15   Viscosity (cP) of Methyl Acetate Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.16   Viscosity (cP) of Ethyl Acetate Blended Pyrolysis Oil (10 wt.%) Measured 
as a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.17   Viscosity (cP) of Cyclohexane Blended Pyrolysis Oil (10 wt.%) Measured 
as a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.18   Viscosity (cP) of 2-Propanol Blended Pyrolysis Oil (10 wt.%) Measured as 
a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.19   Viscosity (cP) of Resorcinol Blended Pyrolysis Oil (10 wt.%) Measured as 
a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.20   Viscosity (cP) of Polyethylene Glycol Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.21   Viscosity (cP) of Furfuryl Alcohol Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.22   Viscosity (cP) of Dimethyl Ether Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.23   Viscosity (cP) of 2-Furaldehyde Blended Pyrolysis Oil (10 wt.%) Measured 
as a Function of Shear Rate (s-1) and Storage Time (hr)
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Figure C.24   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Methyl tertiary Butyl Ether 
Blended Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.25   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Methyl Ethyl Ketone 
Blended Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.26   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Ethanol Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.27   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Decahydronapthalene 
Blended Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.28   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Acetone Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.29   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Xylene Blended
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.30   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Tetrahydronapthalene 
Blended Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.31   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Methyl Formate Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.32   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Isopropyl Ether Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.33   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Ethyl Ether Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.34   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Cyclopentanone Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.35   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Acetaldehyde Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.36   Percentage Increase in Viscosity (0 hr vs. 192 hr) of t-Butanol Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.37   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Tetrahydrofuran Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.38   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Methyl Acetate Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.39   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Ethyl Acetate Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.40   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Cyclohexane Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.41   Percentage Increase in Viscosity (0 hr vs. 192 hr) of 2-Propanol Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.42   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Polyethylene Glycol 
Blended Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.43   Percentage Increase in Viscosity (0 hr vs. 192 hr) of Dimethyl Ether Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.44   Percentage Increase in Viscosity (0 hr vs. 192 hr) of 2-Furaldehyde Blended 
Pyrolysis Oil (10 wt.%) Obtained as a Function of Shear Rate (s-1)
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Figure C.45   Viscosity (cP) of Methyl Tertiary Butyl Ether Blended Pyrolysis Oil (10 wt.%) 
Measured as a Function of Storage Time (hr) and Temperature (0C)
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Figure C.46   Viscosity (cP) of Methyl Ethyl Ketone Blended Pyrolysis Oil (10 wt.%) Measured 
as a Function of Storage Time (hr) and Temperature (0C)
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Figure C.47   Viscosity (cP) of Ethanol Blended Pyrolysis Oil (10 wt.%) Measured as a Function 
of Storage Time (hr) and Temperature (0C)
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Figure C.48   Viscosity (cP) of Decahydronapthalene Blended Pyrolysis Oil (10 wt.%) Measured 
as a Function of Storage Time (hr) and Temperature (0C)
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Figure C.49   Viscosity (cP) of Acetone Blended Pyrolysis Oil (10 wt.%) Measured as a Function 
of Storage Time (hr) and Temperature (0C)
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Figure C.50   Viscosity (cP) of Xylene Blended Pyrolysis Oil (10 wt.%) Measured as a Function 
of Storage Time (hr) and Temperature (0C)
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Figure C.51   Viscosity (cP) of Tetrahydronapthalene Blended Pyrolysis Oil (10 wt.%) Measured 
as a Function of Storage Time (hr) and Temperature (0C)
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Figure C.52   Viscosity (cP) of Methyl Formate Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure C.53   Viscosity (cP) of Isopropyl Ether Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure C.54   Viscosity (cP) of Ethyl Ether Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure C.55   Viscosity (cP) of Cyclopentanone Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure C.56   Viscosity (cP) of Acetaldehyde Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure C.57   Viscosity (cP) of t-Butanol Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure C.58   Viscosity (cP) of Tetrahydrofuran Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure C.59   Viscosity (cP) of Methyl Acetate Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure C.60   Viscosity (cP) of Ethyl Acetate Blended Pyrolysis Oil (10 wt.%) Measured as a 
Function of Storage Time (hr) and Temperature (0C)
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Figure E.17   Viscosity (cP) as a Function of Shear Rate (s-1) of Additive Blended 
                      (10 wt.%) Mississippi State University (MSU) Fresh Pine Wood Oil
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Figure E.18   Viscosity (cP) as a Function of Shear Rate (s-1) of Additive Blended (10 wt.%) 
Mississippi State University (MSU) Pine Wood Oil Aged to 192 hours


