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This document describes the design of a supersonic and a subsonic test section for a 

high enthalpy wind tunnel. A streamline is tracked through a supersonic test section 

using the method of characteristics.  The specifics of the design program and the design 

techniques are illustrated for the supersonic section.  The section of the paper dealing 

with the subsonic nozzle has a greatly diverse nature. This section details the inlet and 

exhaust restrictions and construction elements for the entire low speed system.  The 

system is currently being set up for testing with the subsonic section, and the supersonic 

will eventually follow.    
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CHAPTER I 

INTRODUCTION 

A high enthalpy wind tunnel, as shown in Figure 1.1, is being constructed at Raspet 

Flight Research Laboratory to support research on air breathing hypersonic propulsion 

problems.  The purpose of this wind tunnel is to provide flow conditions for the exit of 

ramjet and scramjet combustion chambers.  In addition, it will aid in the investigation of 

flow diagnostic methods and internal wall materials.  This facility requires subsonic and 

supersonic test sections. The purpose of this project is to design these test sections. 

The design of the supersonic section is based on the method of characteristics for 

planar flow. Huntington (1951) is proof that this method has been used for many years, 

and many computer programs exist for its application such as in Zucrow & Hoffman 

(1976). In the present use, one aspect is somewhat different from previous applications 

and a new program is needed.  The program language is also different than those used in 

1 



  

 

 

 

 

2   
the past. Furthermore, certain internal flow details are obtained in a unique way.  For 

these reasons, the development of the method of characteristics program is a major 

element of the present work.   

The flow requirements are more lax, so the subsonic section design is based largely on 

empirical guidelines.  Concerns with the flow uniformity, design Mach number, and a 

few other issues are less critical than usual.  In addition, more elaborate design 

procedures are not appropriate because the overall project needs a test section in a short 

time frame. 

This thesis begins with a discussion on the supersonic section design.  This account 

will focus on the details of the actual design program.  Concrete design methods and 

individual program details will be explained. 

This subsonic discussion has a much different character than the supersonic.  It 

addresses actual construction details as well as design methods, since this test section is 

the first one to be built. 



      

 

 
 

 

 
 

 
 

 

      

CHAPTER II 

SUPERSONIC TEST SECTION DESIGN 

The design of the nozzle for this supersonic test section uses the shape of a tracked 

streamline applying the method of characteristics.  First, the fundamentals of the method 

of characteristics are outlined.  Then, specifics concerning the design approach and the 

program are discussed.   

Method of Characteristics Solution 

The basic terminology and equations for the method of characteristics, as used here, 

are given in the following sections. The reader is referred to one of the many good texts 

available, such as Hodge and Koenig (1995), Thompson (1972), and Liepmann and 

Roshko (1957), for a discussion of the underlying theory and derivation of these 

relations. This analysis does not involve free surfaces or shocks, and therefore there are 

no unit processes for them. 

Fluid Mechanic Relations 

The key fluid mechanic relations are results of the conservation of mass, momentum, 

and energy. Information is brought by Mach waves from the boundaries into the flow. 

As shown in Equation (2.1), along any given positive Mach wave, C+, the difference 

between the flow angle and the Prandtl-Meyer angle is a constant.  Similarly, Equation 

(2.2) demonstrates that along any given negative Mach wave, C−, the sum of the flow 

3 
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4    
angle and the Prandtl-Meyer angle is a constant.  These two equations are known as the 

Riemann invariants.   

K+ = θ − ν = constant               (2.1)  

K− = θ + ν = constant                (2.2)  

This solution can be stated in a more efficient form as shown below. 

K± = constant on C ±                (2.3)  

The four characteristic regions – uniform, simple−, simple+, and nonsimple – are 

illustrated in Figure 2.1. Unit processes are a series of fundamental computational 

processes that execute the method of characteristics in all of the above named regions. 

The C+ and C− characteristics intersect in the flow as shown in Figure 2.2.  If all of the 



     

  

  

  

  

 
 
 

 The contact of characteristics with a wall is shown in Figure 2.3.  Figure 2.3a 

represents the reflection of a C− characteristic from a lower wall. Similarly, the reflection 

 

5 
flow properties at points a and b are known, then the following equations apply for the 

field points. 

1 − +θ = (K + K )                 (2.4)  c c c2 

ν = 1 (K − − K + )                 (2.5)  c c c2 

The Mach number at point c can be found from the Prandtl-Meyer relation once ν is 

known. The static-to-stagnation ratios at point c are calculated using the isentropic 

relations. Finally, if the upstream stagnation conditions are known, the local static 

properties are easily found due to the flow being homentropic.  To calculate the angle of 

the reflected characteristic, θ ± µ for Cr ±, the Mach angle, µ must be found using the 

following formula. 

−  1  µ = sin 1                    (2.6)  
 M  

a 

b 

+C

-C 

c 

Figure 2.2 Characteristics Intersection 



     

     

   

      

 

 

  

  

 

 

6 
of a C+ characteristic from an upper wall is shown in Figure 2.3b.  Assuming the wall 

shape and Riemann invariants on each incident characteristic are known, the flow angle is 

equal to the wall angle since the flow at the wall is tangent to the wall.  At the lower and 

upper walls, respectively, the Riemann invariants on the incident characteristic obey the 

following relationships. 

K− = K− = θ + ν                (2.7)  i w w w 

K + = K + = θ + ν                (2.8)  i w w w 

Manipulation of these relationships allows us to find ν at the wall, given in the following 

equations. 

ν = K − − θ                 (2.9)  w i w 

ν = θ − K +                  (2.10)  w w i 

Once νw is known, the reflected Riemann invariants are given in Equations (2.11) and 

(2.12) in the most useful form.   

K + = 2θ − K −                 (2.11)  r w i 

K − = 2θ − K +                 (2.12)  r w i 
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Geometry of the Flow 

The key to finding the coordinates involves the simple geometry of the flow.  The 

slopes of the C+ and C− at any point are 

dy 
= tan(θ + µ)                 (2.13)  

dx 

dy 
= tan(θ − µ)                 (2.14)  

dx 

Assuming straight-line segments between grid points as illustrated in Figure 2.4, the 

slopes for the two characteristics are determined from the average slope at the endpoints,  

 1  s = tan ((θ − µ) + (θ − µ) )            (2.15)  ac a c
 2  

 1  s = tan ((θ + µ) + (θ + µ) )            (2.16)  bc b c
 2  
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Given that the slopes and the location of points a and b are known, the equations for the y 

and x coordinates at point c are as follows. 

y c = y a + s ac (x c − x a )                (2.17)   

y a − y b + s
x bc x b − sac x a

c =               (2.18)   
s bc − sac 

This method is applicable anywhere away from a boundary.         

 A similar process is used to find the wall points using the intersection of the wall and 

the incident characteristic. The wall shape can be expressed as 

y w = y w (x)                      (2.19)   



     

  

  

   

 

 

 

 
 

 
 
 
 

 

9 
The incident characteristics are approximated as straight-line segments.  The equations of 

the lower wall and a known incident characteristic, Ci 
−, that passes through a known point 

a are given in Eq. (2.20a) and (2.20b). 

y = y (x )                  (2.20a)  w w w 

y w = ya + saw (x w − x a )  (2.20b) 

The equations of the upper wall and a known incident characteristic, Ci
+, that passes 

through a known point b are given in Eq. (2.21a) and (2.10b). 

yw = y w (x w )                  (2.21a)  

y = y + s (x − x )  (2.21b)w b bw w b 

These equations are used to find the coordinates of the intersections.  This completes the  

solution for the flow properties and the location of the interior and wall points. 

MOC Nozzle Design Program 

The method of characteristics described above is implemented for a minimum length 

nozzle and a streamline is traced in this program for a specific geometry.  The centerline 

is treated as a lower wall with the wall angle being zero.  The nozzle wall is treated as an 

upper wall with a shape that allows for no reflected waves.  The ratio of specific heats, 

the gas constant, the exit Mach number, the number of characteristics, and the x and y 

coordinates of the origin of the centered expansion must be known for the execution of 

this program.   



     
 

 

 

  

  

 
 
 

 

 

10 
Indexing Points and Characteristics 

The given number of C− characteristics that meet the centerline and reflect to the 

upper wall represent the initial expansion. The intersections of the characteristics with 

the centerline, upper wall, and each other are each given an index.  The best way to 

demonstrate how the centerline (cp) and wall points (wp) are indexed is through the 

following equations and pictures.  Figure 2.5 illustrates how all of the points are indexed. 

The first intersection of the first wave and centerline is assigned the first index.  The first 

subroutine, nd, uses the following equations to form an array, cw, which contains the 

indices of the centerline and upper wall. 

wp = b + [nc − (iw −1)]               (2.22)  

cp = e +1                   (2.23)  

5 
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Figure 2.5 Index Identification 
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The output, wpt, of the next loop, wave, is an array of the C− passing through each 

index. The intersections of the characteristics and their reflections are numbered using a 

scheme involving feeding points. Two other indices feed each index, such as points a 

and b, as shown in Figure 2.2. In this program, as depicted in Figure 2.6, fa and fb 

denote the feeding points a and b, respectively, that feed point c. Two simple recursion 

relations listed below establish each set of feeding points and are implemented in the 

loops feed_a and feed_b, whose outputs are fa and fb, respectively. 

fa = c − [nc − (iw − 2)]               (2.24)  

fb = c −1                   (2.25)  



     
 

 

 

 

 
  

 

 

 

 

12 
Flow Properties 

After all of the points have been indexed, the initial values for θ and ν are defined 

using the Prandtl-Meyer relations. A scheme, which starts at the beginning, b, continuing 

to the end, e, of each wave is used in conjunction with Eq. (2.2) to find the negative 

Riemann invariants for all of the points in the subroutine Km_ns, whose output is Kmd. 

Similarly, Kpd, whose output is Kpd, calculates the positive Riemann invariants for all of 

the points that relates to Eq. (2.1). 

Once the Riemann invariants are identified, θ and ν are found separately for the 

centerline, interior, and wall points. In the centerline loop, θ for the centerline is set to 

zero and ν is K− according to Eq. (2.7) in the output cl. Using a method like the one used 

for Km_ns and Kpd, Equations (2.4) and (2.5) are implemented in the interior subroutine 

with the output, nt. The values for θ and ν at the wall are found in previous subroutines 

and calculations. The wall loop, whose output is wll, places all of these values together 

in one string. Using the Prandtl-Meyer function, the Mach number is found 

corresponding to the identified values of ν. Then, Eq. (2.6) is applied to find the angle µ. 

Finally, all values of θ and µ are put into one array for easier access. 

Defining Coordinates for Indices 

The slopes of the characteristics for each box are found as the average slope at the 

feeding points. The slopes are indexed according to which index they stem from.  In the 

slope_ac subroutine, Eq. (2.15) is used to find the slope from point a to point c at all 

points with the output, sac. The slopes on the initial characteristic are defined first. 

Next, a scheme that marches through the interior points and centerline points is executed. 



     

 

 

    
 

 

 

 

13 
Finally, the slopes for the wall points are identified.  Similarly, the slope from point b to 

point c is determined from Eq. (2.16) in the loop slope_bc with the output, sbc. For this 

loop, all of the slopes for the interior and wall points are defined using one scheme. 

Since there are no points below the centerline for this geometry, sbc is set to zero for the 

centerline points. 

Now that the slopes have been defined at all points, the x and y coordinates are 

established. The first point on the first characteristic is labeled in the crd1 subroutine. 

Then in the same subroutine, the coordinates for the first characteristic are defined 

separately using Eq. (2.17) and (2.18) so they will all be output in one array, xyi. In the 

next loop, coord, the centerline coordinates are found using Eq. (2.20b) with yw set to 

zero. The remaining coordinates for the interior and wall points are output in an array, 

xy, with the centerline coordinates using a scheme that marches through each 

characteristic separately applying Eq. (2.17) and (2.18).  The table in Appendix A 

displays the flow properties and coordinates at all of the nodes in the characteristic mesh 

with 7 characteristics for a design exit Mach number of 3.  

Grid Trace 

Once the x and y coordinates for each index are identified, the subroutine, plot, must 

trace the characteristics for building the grid for a plot.  To set up the grid for easier 

plotting in Mathcad, the trace is one curve that goes through all of the points. Some 

overlapping occurs. For example, in Figure 2.7, the trace begins at point 1 and goes back 

along the first characteristic to point 15 then along the upper wall to point 5, and down 

the reflected characteristic to 4, 3, 2, and 1. It then moves forward along the centerline to 
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Figure 2.7 Grid Trace 
 
 

 

 

14 
point 6 and upstream along the second wave to 2 and 15, downstream along the upper 

wall to 5 and 9, down the second reflected wave to 8, 7, and 6, forward to 10, upstream to 

7, 3, and 15, downstream to 5, 9, and 12, down to 11 and 10, forward to 13, upstream to 

11, 8, 4, and 15, downstream to 5, 9, 12, and 14, and finally down to 13.  The output of 

this subroutine, plt, is a single array of the indices in the order in which they are traced. 

The corner coordinate is identified, index 15 in Figure 2.7, and a set of equations assigns 

the coordinates to the trace. 

Initial Value Line 

The method of characteristics requires an initial value line for starting.  The preceding 

implementation of the method of characteristics assumes that the initial value line is a 

vertical straight line on which M = 1, that is the sonic line.  This line was chosen after 



 
 

93.8° 

C+ 

C− 

Figure 2.8 Sauer’s Method Vs. Vertical Line 

     
 

 

15 
examination of the properties of the more complex initial value line that arises from 

Sauer’s method (Sauer (1947)).  Sauer’s method is based on a solution to the small 

disturbance transonic potential flow equation. The net result is a closed form expression 

for the curve, at the throat, on which the vertical velocity is zero.  This curve serves at the 

initial value line. 

Applying this analysis to the present geometry yields the situation shown in Figure 

2.8. Sauer’s initial value line is a nearly vertical, nearly straight curve on which the 

Mach number varies from 1 at the top to 1.027 at the bottom.  If Sauer’s line is used, a set 

of C± waves emanating from it must be introduced into the characteristic network, which 

complicates the analysis.  Because the initial value line from Sauer’s method is closely 

approximated by a sonic line that is straight and vertical, the latter is used here for the 

initial value line. The complexity of the initial C± wave system is thus avoided. 

Vertical Sonic Line 

Sauer's Method 



     
 

 

 

 

16 
Start of Streamline 

Streamline tracking begins at a point (xp, yp), shown in Figure 2.9, which is very 

slightly downstream of the boundary between the simple minus and nonsimple regions. 

The streamline that passes through this point is followed both upstream to x = 0 and 

downstream to the end of the nozzle. The index of the characteristic on which the 

streamline begins is denoted ncs. For this program, a point with the coordinates, xp and 

yp is chosen to be just past an index point on the wave on which the streamline begins. 

Once that point is chosen, the att subroutine marches backwards across each wave to 

connect in the simple minus region until the first C− is reached. The streamline path in 

the short region upstream of the C− is approximated by a circular arc, which is a common 

practice in nozzle design (Zucrow and Hoffman (1976)). Here the radius and origin of 

the circular arc are chosen so that the arc slope is zero at x = 0 and matches the streamline 

slope at the first wave. The output, xys, is an array with the x and y coordinates of the 

points the streamline crosses on each wave.  The att2 loop defines the circular arc that is 

used for the shape of the streamline.  The output, xyt, is an array of the x and y 

coordinates of the points on the arc. Finally, xyw is an array that combines xys and xyt. 

The program then returns to xp, yp and marches downstream through the nonsimple 

region. This process requires determination at each step of the grid box in which the 

leading point of the streamline lies.  A number of subroutines are used to index the boxes, 

identify the current box, and then advance the streamline.  The streamline eventually 

leaves the nonsimple region and a scheme similar to att follows it through the simple plus 

region. 
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Figure 2.9 Separation of Streamline 

Box Identification 

For boxes to be indexed, Eq. (2.26) calculates the total number of boxes.  

nb=0.5⋅nc2 +0.5⋅nc−1                (2.26)  

Figure 2.10 demonstrates the box indexing system.  The subroutine, tribox, identifies the 

boxes along the centerline in an array of the indices, tri. This set of three-sided boxes is 

defined so that the streamline never encounters them.  Similarly, the loop, wbox, 

identifies the boxes along the upper wall in an array of the indices, wbox. A loop, box, is 

set up using the feeding points to define the corner indices of every box. 
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Figure 2.10 Box Indexing 

The next step in tracking the streamline is to define a point based upon the box that 

encases it. As shown in Figure 2.9, this must be done in order to know which 

characteristic region the streamline is in and which formulas apply.  First, the sides of 

each box are extended. The output, tan_b, of the loop, tanα, is an array of the tangents of 

the extended sides of the box. This is shown in Figure 2.11, where α is the 

counterclockwise angle from the x-axis to the tangents.  A unit outward normal vector is 

drawn from the corners of each box by rotating this angle counterclockwise 90º as shown 

in Figure 2.12. The loop, tann, outputs the tangents of vectors drawn normal to the box 

in an array, tan_n. Also, the x and y coordinates for the corners of each box in the 

subroutines xcrnr and ycrnr, respectively. The subroutines, nx and ny, output arrays, xn 
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Figure 2.11 Extended Sides of Box 

     

 

19 
and xy, respectively, contains the x and y coordinates for the tips of each normal drawn 

from the corners of each box.   

Next, vectors are drawn from the specified point normal to each of the sides or 

extended sides. Finally, the sum of the dot products of each of the matching vectors is 

found in the subroutine, Dot, and used to identify the box that encases the point.  This 

subroutine allows for every box to be checked for the new point.  If any of the dot 

products are negative, the point is outside the box, as shown in Figure 2.13.  If all of the 

dot products are positive, the point is inside the box, as shown in Figure 2.14.  The output 

of this subroutine, dot, is the box that encases any given point. 
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Figure 2.14 Point Inside Box 

     

 

  
 

    

 
 
 

 

21 

3 
+ 2 

+ 

φ4 
− 

φ5 
− 

− 

C

y=
a +

bx
 

y = c + dx
 

φ 

φ 

φ 

+φ

A 

B 

D

1 

6 

C 

D 

Figure 2.15 Intersection of Extended Boxes 



     
 

 

 

+ + K − KK = K + B 
+ 

C 
+ 

⋅ (φ − φ )C 2 1φ3 − φ1 

K− − K− 
− − C DK = K + ⋅ (φ5 − φ4 )D φ6 − φ4 

 

 

  

  

  

  

  

 

22 
Nonsimple and Simple Plus Regions 

Once the box for the first point is identified, an interpolation scheme is needed to find 

θ. If the sides of each box are extended far enough, they intersect as shown in Figure 

2.15. The output of the subroutine, Int, contains the x and y coordinates for these 

intersections in a 2x2 matrix.  The next subroutine, phi, finds the angles of the extended 

local characteristics and the ray from the point to the intersection of the extended 

characteristics. Once these angles are determined, θ is found using the linear 

interpolation (2.27) – (2.30). If the box that encases the point is a wall box, Eq. (2.29) is 

used to find θ and Eq. (2.30) if not. 

            (2.27)  

            (2.28)  

1 + + −θ = ⋅ (K K )                 (2.29)  
2 

θD − θAθ = θ + ⋅ (φ − φ )              (2.30)  A 2 3φ1 − φ3 

Finally, phi increments to the new point as follows    

x = x + ∆x                (2.31)  new current 

y = y + tan(θ) ⋅ ∆x              (2.32)  new current 

where ∆x is a specified, fixed increment in x given by 

∆x = constant ⋅ xy1,npt−1               (2.33)  

where xy1,npt−1 is the x value at the last grid point on the centerline. 
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The output, bxy, is an array that contains the box that encases each point, the x and y 

coordinates, and θ for each remaining point on the streamline.   

Figure 2.16a. shows a nozzle designed for air with an exit Mach number of 3 using 

fifteen initial characteristics at the throat.  The origin of the centered expansion is at (0,1), 

and the streamline begins on the sixth characteristic.  This figure also illustrates the 

tracked streamline for the possible design of the shape of the upper wall of the nozzle.  

Figure 2.17 is a magnification of Figure 2.16 so that changes in the streamline through 

the different regions are more obvious. 

Figure 2.18 is a plot of Mach number, M, as a function of position along the 

streamline, s.  It begins on the first characteristic. The Mach number between 0 and the 

first characteristic could have been calculated using the same method as the simple− 

region. There is a definite change in slope when the streamline passes from the simple− 

region into the nonsimple region and from the nonsimple into the simple+. The first 

change in slope is due to the larger change in step size from the simple− to the nonsimple 

region. The second more pronounced jump is mostly due to the discontinuity associated 

with characteristics. Both Anderson (2003) and Hodge and Koenig (1995) observe that 

flow properties can be irregular as characteristic directions. The nearly vertical line 

segment shown in the second transition is the connection between the last point in the 

nonsimple region and the first point in the simple+ region. Because there is a miniscule 

jump in the points, the plot compensates with a straight-line segment.        
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Indexing System 

Within this program, the indexing system played a major role in the output of most of 

the subroutines. In Mathcad, each subroutine outputs arrays that can be used within 

other loops for calling or indexing purposes.  For example, in the following interior point 

subroutine, cw is an array that has already been established containing the indexes of the 

centerline and upper wall. The variable ip is set up to run from just above the centerline 

to just below the upper wall of each wave. The indexes fa and fb denote feeding points 

that have already been defined in prior subroutines.  Double indexes are used to help 

identify the Riemann invariants that are manipulated in equations to find θ and ν and 

output them into one array for all of the interior points.  For example, Kmd in the first faip 

execution of the built in loop is the K− value for the above feeding point for the first point 

above the centerline on the second characteristic.  All of the arrays in this program are 

indexed in a certain way for this purpose.   

interior(nc , cw, Kmd, Kpd , fa, fb) := for iw ∈ 2.. nc − 1 

b ← cw  + 11 iw, 

e ← cw  − 12 iw, 

for ip ∈ b .. e 

 1  
, ← ⋅Kmd + Kpdθν 1 ip  

 2   (faip) (fbip) 
 1  

, ← ⋅Kmd − Kpdθν 2 ip   2  (faip) (fbip)  
θν 

In this next example, the corner indices of every box are identified.  The tri array was 

already defined as the indexes of the three-sided boxes. Above and below feeding points 

are used to define the corners of all of the boxes. However the three-sided boxes do not 
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have a below feeding point and only have 3 corners. Therefore, double indexing was 

applied again to identify the corners of the three-sided boxes within this loop.         

box := for i 1∈ .. nb  

box ← i nc+i 1, 

boxi 5  ← boxi 1, , 

box ← nc + i + 1i 4, 

box ← fai 3, ( boxi 4), 

box ← fbi 2, ( boxi 3, ) 
j ∈ 1.. ( )for rows tri 

box ← 0( tri j) , 1 

box ← 0( tri j) , 5 

box 



      

 

 
 
 

  

 

 

 

 

 

CHAPTER III 

SUBSONIC TEST SECTION DESIGN AND CONSTRUCTION 

The design for the nozzle for this subsonic test section is established mostly on 

experiential information.  Since flow conditions are not as important in this design, a 

highly structured design is not necessary. This discussion describes the bay 

requirements, assembly elements, and the specifications of the subsonic system.   

Low and high-speed flow systems have been designed for use with a flow heater. 

Each system is composed of a sudden expansion chamber, a test section and an exhaust 

duct. The low-speed system does not simulate a particular component in a scramjet, but 

provides, instead, flow in which to evaluate measurement techniques.  The high-speed 

system will provide a flow that qualitatively approximates the gas conditions exiting a 

scramjet combustion chamber.  Between the heater and each test section is a sudden 

expansion chamber that serves as a barrier to prevent the heated electrical currents from 

entering the test section. Following each test section is the exhaust duct, which transports 

the gas safely to the atmosphere.  The exhaust duct also provides indirect control of the 

flow conditions in the test section.  Figure 3.1 shows the flow heater and test section of 

the wind tunnel. 

28 
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Figure 3.1 Flow Heater and Test Section 

Inlet Conditions 

The conditions at the exit of the heater are the inlet conditions for the flow systems. 

The gas is assumed to be dry air as a mixture of perfect gases.  The pressure and 

temperature at the heater exit are assumed to be 5 atmospheres (absolute static)  

and 2800K, respectively. For these conditions, the code provided by Heiser and Pratt 

(1994) estimates the following gas values: 

 gas constant     290 (m/s)2/K 
  ratio of specific heats 1.22 
  sound speed     990 m/s 
  mole fractions: 

N2      0.77
 O2      0.19

    NO     0.03
    N and O, together 0.01 
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The gas flows through the 38 mm internal diameter heater at a design rate of 0.09 kg/s. 

Assuming uniform flow at the heater exit, then m& = ρAV = (p RT)AV  provides the 

heater exit velocity, which is 120 m/s.  The corresponding Mach number is 0.12. 

Construction Features 

Graphite is the principal material for the flow systems.  The graphite is 99.9% carbon 

with a maximum grain size of 0.76 mm.  Uncoated sapphire windows in the walls of the 

test section provide optical access. These windows are 50.8 mm in diameter, 3.15 mm 

thick and have a surface accuracy of 2 waves per 25.4 mm at 632.8 nm over 90% of their 

aperture. They will be film-cooled with air to keep them below their 2300K melting 

temperature.  Boron nitride and epoxy glass provide electrical and thermal insulation at 

critical locations. 

Thermocouples will monitor wall temperatures at key locations in the expansion 

chamber, test section and exhaust duct.  These thermocouples will be ungrounded to 

provide electrical isolation. They have a temperature limit of 1800K. 

Low Speed System Details 

A sketch of the expansion chamber, test section and exhaust transition of the low 

speed system appears below. 
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Figure 3.2 Low Speed System Sketch 

     

 

 
 

 

 

 

 

  

Expansion 

The expansion chamber (“expansion” because of geometry, not because of pressure) 

begins as a sudden expansion from the 38 mm diameter heater duct to an 89 mm diameter 

axisymmetric backward facing step.  A conical divergence with a final diameter of 

127mm immediately follows the backstep.  The divergence angle is 4°. 

The sudden expansion forms an axisymmetric backward facing step for the flow 

leaving the heater duct. The flow separates at this backstep, but will ultimately reattach 

to the duct walls if the downstream pressure is sufficiently high.  Experimental studies of 

subsonic flow past axisymmetric backsteps indicate that reattachment occurs 

approximately 8 step heights downstream for moderate expansion ratios.  (Drewry 

(1978); Yang and Yu (1983), Gould, et al.(1990)).  The step height chosen for this design 

is 25 mm.  Reattachment should thus occur about 200 mm downstream of the step if the 

large duct remains at the initial 89 mm diameter.  The 4° conical divergence provides a 

very gradual enlargement to the final 127 mm diameter, so that the actual reattachment 

distance will not be much different. 
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Recovery and Test Section 

A recovery section follows the expansion. This section allows the boundary layer to 

recover from the reattachment process.  The basis for the recovery length is the distance 

required for the turbulent shape factor H = δ* θ  and the Clauser shape factor 

2 H −1G =                 (3.1)  
Cf H 

to become effectively invariant with axial position.  Adams, Johnston and Eaton (1984) 

observe H and G to level off at 

X − xr ≈ 2                  (3.2)  
xr 

where X is the required distance downstream from the step and xr is the reattachment 

length. Bradshaw and Wong (1972) observe leveling of H and G for a planar double-

sided sudden expansion at 

X 
≈ 22                   (3.3)  

h 

where h is the step height. The former criterion gives X ≈ 24 h , while the latter gives 

X ≈ 22h . Figure 3.3 shows the reattachment process.  Using these values as guides, the 

test section windows are located 625 mm, 25 step heights, downstream of the backstep. 



 

h 

8h 
22h 

Figure 3.3 Reattachment 
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The test section is a short, constant diameter section fitted with the sapphire windows.  

The windows are recessed in the duct wall so that the flow passes over shallow cavities at 

the window locations. Relatively cold outside air will be blown into these cavities to cool 

the windows. 

Transition and Exhaust 

Following the test section is a transition section that brings the flow into the exhaust  

duct. The transition profile is a cubic curve based on guidelines from Szczeniowski  

(1943). 

The exhaust duct needs to be approximately 4 m long in order to transport the hot gas 

safely to the outside. In addition to carrying the hot gas away from personnel and 

equipment, the exhaust duct can also provide flow control through frictional effects.  To 

illustrate, consider a duct that is 4 m long, 28 mm in diameter with a nominal friction 

factor of 0.02. Furthermore, assume that the gas enters the exhaust at the rate of 0.09 

kg/s with M = 0.24 and γ = 1.22. These flow conditions are consistent with the assumed 

heater exit conditions described above. The pressure required to drive this flow so that it 

exits into the atmosphere at a pressure nearly equal to atmospheric can be estimated using 
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Fanno flow analysis. From Hodge and Koenig (1995) this analysis indicates that 5 atm 

(abs static) pressure at the duct entrance will produce sonic flow at the duct exit with 1.1 

atm (abs static) pressure.  Thus, friction forces the duct inlet pressure to be high, which, 

in turn, requires the test section Mach number to be low, as desired. 

The present design uses 4 m of 25 mm diameter graphite tubing for the exhaust duct. 

This diameter is 10% less than the above example to allow for gradual ablation and 

erosion by the hot gas. 



      

 

 
 
 

 

 
 
 

  

CHAPTER IV 

CONCLUDING REMARKS 

The chief objectives for this work were accomplished.  Both supersonic and subsonic 

nozzles were designed for the wind tunnel currently being constructed. For the 

supersonic design, the method of characteristics program tracked the streamline for the 

shape of the upper wall of the nozzle. However, there are multiple areas that this 

program and analysis did not cover.  Even though the streamline tracked is like the edge 

of the boundary layer, boundary layers were not accounted for.  This analysis is only for 

planar flow, and it only covers diverging sections.  Future work should be extended to 

include axisymmetric flow and converging sections.  Finally, the initial value line used is 

vertical. Efforts could be extended to a better approximation using Sauer’s method.   

As far as the subsonic system is concerned, there were no elaborate design methods 

used for the subsonic section due to the short amount of time.  The key goals were to 

avoid flow separation regions and verify that the boundary layer would settle down and 

recover to a normal growth pattern.  These things were achieved.  The wind tunnel is 

nearing completion, and will soon be tested.  More complex design techniques could be 

used for another subsonic section, and the designed supersonic nozzle could be built and 

added to the current system.             

35 
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Table 1 Minimum-Length Nozzle With Uniform Exit Flow at M = 3 

Point K+ K− θ ν M µ x y 
a − − − − − − 0.000 1.000 
1 0.000 1.757 0.879 0.879 1.075 68.493 0.412 0.000 
2 0.000 9.757 4.879 4.879 1.252 53.017 0.584 0.348 
3 0.000 17.757 8.879 8.879 1.396 45.743 0.680 0.490 
4 0.000 25.757 12.879 12.879 1.533 40.717 0.758 0.599 
5 0.000 33.757 16.879 16.879 1.668 36.827 0.831 0.698 
6 0.000 41.757 20.879 20.879 1.805 33.636 0.902 0.796 
7 0.000 49.757 24.879 24.879 1.946 30.923 0.972 0.897 
8 0.000 49.757 24.879 24.879 1.946 30.923 1.522 1.706 
9 0.000 9.757 0.000 9.757 1.427 44.504 0.917 0.000 

10 -9.757 17.757 4.000 13.757 1.563 39.785 1.102 0.180 
11 -9.757 25.757 8.000 17.757 1.698 36.076 1.261 0.333 
12 -9.757 33.757 12.000 21.757 1.836 33.005 1.412 0.482 
13 -9.757 41.757 16.000 25.757 1.977 30.377 1.563 0.636 
14 -9.757 49.757 20.000 29.757 2.125 28.076 1.719 0.805 
15 -9.757 49.757 20.000 29.757 2.125 28.076 3.016 2.250 
16 -17.757 17.757 0.000 17.757 1.698 36.076 1.350 0.000 
17 -17.757 25.757 4.000 21.757 1.836 33.005 1.571 0.164 
18 -17.757 33.757 8.000 25.757 1.977 30.377 1.788 0.332 
19 -17.757 41.757 12.000 29.757 2.125 28.076 2.012 0.514 
20 -17.757 49.757 16.000 33.757 2.279 26.025 2.249 0.720 
21 -17.757 49.757 16.000 33.757 2.279 26.025 4.379 2.641 
22 -25.757 25.757 0.000 25.757 1.977 30.377 1.859 0.000 
23 -25.757 33.757 4.000 29.757 2.125 28.076 2.150 0.177 
24 -25.757 41.757 8.000 33.757 2.279 26.025 2.458 0.377 
25 -25.757 49.757 12.000 37.757 2.442 24.173 2.2794 0.613 
26 -25.757 49.757 12.000 37.757 2.442 24.173 6.054 2.996 
27 -33.757 33.757 0.000 33.757 2.279 26.025 2.528 0.000 
28 -33.757 41.757 4.000 37.757 2.442 24.173 2.939 0.211 
29 -33.757 49.757 8.000 41.757 2.615 22.480 3.4000 0.470 
30 -33.757 49.757 8.000 41.757 2.615 22.480 8.208 3.299 
31 -41.757 41.757 0.000 41.757 2.615 22.480 3.479 0.000 
32 -41.757 49.757 4.000 45.757 2.801 20.921 4.100 0.273 
33 -41.757 49.757 4.000 45.757 2.801 20.921 11.04 3.497 
34 -49.757 49.757 0.000 49.757 3 19.471 4.930 0.000 
35 -49.757 49.757 0.000 49.757 3 19.471 14.822 3.497 



      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

APPENDIX B 

MATHCAD NOZZLE DESIGN PROGRAM 
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γ := 1.4 R := 1716 Me := 3 nc := 15 x0:= 0 y0 := 1 

γ + 1  γ − 1 2  2PM( )x := ⋅atan ⋅ x − 1  − atan  x − 1
γ − 1  γ + 1  

( ) ( )

nd nc :=( )  nd1 1  ← 1 cw := ( )nd nc , 

for iw ∈ 1.. nc 

nd ← nd + [nc − (iw − 1)]2 iw, 1 iw, 

← + 1nd1 iw+ 1 ,, nd2 iw  

cw ← submatrix nd( , 1, 2, 1, nc) 

wave(nc , cw) := for ip ∈ 1.. wpt := wave(nc , cw)cw2 nc, 

iw ← 1 

while ip > cw2 iw, 

iw ← iw + 1 

wptip ← iw 

wpt 

a ip, iw) := ip − [nc − (iw − 2( )] 

feed_a(nc , cw, wpt) := for iw ∈ 2.. nc fa := feed_a(nc , cw, wpt) 

b ← cw1 iw, 

e ← cw  − 12 iw, 

for ip ∈ b .. e 

fa ← a(ip, wpt )ip ip 

fa 

feed_b (nc , cw) := for iw ∈ 1.. nc fb := feed_b (nc , cw) 

b ← cw  + 11 iw, 

e ← cw2 iw, 

for ip ∈ b .. e 

fbip ← ip − 1 

fb 
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npt := cw wall := npt + 1 iw := 2.. nc walliw := cw iw := 1.. nc , 1 2 iw−12 nc  , 

fa := wall := npt + 1(cw2 iw) iw faiw, 

floor(θ0_d)180 1
νe_d := ⋅PM(Me) θ0_d := νe_d θ1d1 := θ0_d − floor(θ0_d) ∆θ := 

π 2 nc − 1 

i := 2.. nc  θ1di := θ1di 1  + ∆θ θ1dnc := θ1dnc ν1d := θ1d Kmd := θ1d + ν1d Kpd := θ1d − ν1d− + 1 

one := θ1d1 one2 := ν1d11 

Km_ns(nc , cw, Kmd) := for iw ∈ 2.. nc Kmd := Km_ns(nc , cw, Kmd) 

b ← cw1 iw, 

e ← cw  − 12 iw, 

for ip ∈ b .. e 

f ← faip 

Kmd ← Kmdip f 

Kmd ← νe_d(cw2 iw), 

Kmd 

Kpd(nc , cw, fa, Kmd) := for iw ∈ 2.. nc Kpd := Kpd(nc , cw, fa, Kmd) 

c ← cw1 iw, 

f ← fa  c 

Kpd ← −Kmd c f 

b ← + 1cw1 iw, 

e ← cw2 iw, 

for ip ∈ b .. e 

Kpdip ← Kpdip−1 

Kpd 

centerline(nc , cw, Kmd, one) := θν1 1, ← one1 cl := centerline(nc , cw, Kmd, one) 

θν2 1, ← one2 

for iw ∈ 2.. nc 

c ← cw1 iw, 

θν1 iw  ← 0, 

θν 2 iw  ← Kmd, c 

θν 



interior nc( , cw, Kmd, Kpd , fa, fb) := for iw ∈ 2.. nc − 1 

b ← cw + 11 iw, 

e ← cw − 12 iw, 

for ip ∈ b .. e 

1 ← ⋅ Kmdθν 1 ip,   ( faip) 2  
+ Kpd (fbip) 

1 θν 2 ip, ←  ⋅Kmd faip ( ) 2  
− Kpd fbip 

( ) 
θν 

int := interior(nc , cw, Kmd, Kpd , fa, fb) 

wall nc( , cw, int , cl) := θν 1 1 ←, θ1dnc wll := wall nc( , cw, int , cl) 
θν2 1 ←, ν1dnc 

← clθν1 nc, 1 nc, 

← clθν2 nc, 2 nc, 

for iw ∈ 2.. nc − 1 

s ← − 1cw2 iw, 

← intθν1 iw, 1 s, 

θν 2 iw, ← int2 s, 

θν 
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npt := cw npt = 135 i := 1.. npt − 3 θdi := int νdi := int j := 1.. nc  , , 2 i,2 nc  1 i  

θd j := θ1dj νd j := ν1dj θd := cl νd := cl θd := wll νd := wll(cw1 j, ) 1 j, (cw1 j, ) 2 j, (cw2 j, ) 1 j, (cw2 j, ) 2 , j 

Given PM( )x − nu  0 Mnu(x, nu) := Find( )x 

1  π   1  180
j := 1.. npt x := ⋅(Me − 1) + 1 M := Mnu  x, ⋅νd j µd j := asin ⋅j 2  180  M π j  

π π π
ν j := ⋅νd j θ j := ⋅θd j µ j := ⋅µd j θµ1 j, := θ j θµ2 j, := µ j180 180 180 
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slope_ac (nc , cw, θµ  , fa) := for i 1∈ .. cw2 nc, 

θ i ← θµ1 i, 

µi ← θµ2 i, 

for i 1∈ .. nc  

sac i ← tan(θ i − µi) 
for i 2∈ .. nc  

b ← cw1 i, 

e ← − 1cw2 i, 

for j b∈ .. e 

sac j ← tan

 

1
2 

⋅


θ(faj) − µ(faj) + (θ j − µ j)


 

sac ← tanθ (cw2 1, )  (cw2 1, ) 
for i 2∈ .. nc  

j ← cw2 i, 

1 
sac j ← tan ⋅(θ j + θ j 1− ) 

2  
sac 

sac := slope_ac (nc , cw, θµ  , fa) 

slope_bc (nc , cw, θµ) := for i 1∈ .. nc  

b ← cw  + 11 i, 

e ← cw2 i, 

for j 1∈ .. cw2 nc, 

θ j ← θµ1 j, 

µ j ← θµ2 j, 

for j b∈ .. e 

sbc j ← tan 1 
⋅ + µ j 1  + θ j + )   (θ j 1− − ) ( µ j  2  

sbc 

sbc := slope_bc (nc , cw, θµ) 
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−1
crd1(nc , cw, sac , sbc ) := xy  ← xyi := crd1(nc , cw, sac , sbc )1 1, sac1 

← 0xy2 1, 

for i ∈ 1.. nc + 1 

xya ← x01 i, 

xya ← y02 i, 

for i ∈ 2.. nc + 1 

xa ← xyai 1 i, 

ya ← xyai 2 i, 

xbi ← xy1 i, −1 

ybi ← xy2 i, −1 

ya − yb + sbc ⋅xb − sac i⋅xai i i i i 
xc ←i sbc i − sac i 

yc ← ya + sac ⋅(xc − xa )i i i i i 

xy ← xc1 i, i 

xy ← yc2 i, i 

xy 
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coord(nc , cw, xyi, sac , sbc , fa) := for i 2∈ .. nc  

c ← cw1 i, 

f ← fa  c 

xa ← xyic 1 f, 

ya ← xyic 2 f, 

yac
xyi ← xa −1 c, c sac c 

xyi ← 02 c, 

b ← + 1cw1 i, 

e ← cw2 i, 

for j b∈ .. e 

f ← faj 

xa ← xyij 1 f, 

ya ← xyij 2 f, 

xb ← xyij 1 j, −1 

yb j ← xyi2 j, −1 

ya − yb + sbc ⋅xb − sac j⋅xaj j j j j
xc ←j sbc j − sac j 

yc ← ya + sac ⋅(xc − xa )j j j j j 

xyi ← xc1 j, j 

xyi ← yc2 j, j 

xyi 

xy := coord(nc , cw, xyi, sac , sbc , fa) 
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plot(nc , cw, fa) := 

crnr := npt + 1 

j := 1.. ( )rows plt 

ncs := 6 

att(θµ , xy) := xys1 , ncs 

xys ← yp2 , ncs 

for i ∈ ncs .. 2 

ss ← tan0.5⋅(θµ1 i, + θµ1 i, −1)   
xys − ss ⋅xys − 12 i, 1 i,

xys ←1 i, −1 sac − ssi 1− 

xys ← sac − ⋅xys + 12 i, −1 i 1  1 i, −1 

xys 

k ← 0 

for i 1∈ .. nc  

k ← k + 1 

plt ← cwk 1 i, 

for j 1∈ .. i 

k ← k + 1 

pltk ← fa(plt k 1− ) 
for j 1∈ .. i 

k ← k + 1 

plt ← cwk 2 j, 

for j ∈ 1.. nc + 1 − i 

k ← k + 1 

pltk ← pltk 1  − 1− 

plt 

xy := x0 xy := y01 , crnr 2 , crnr 

xplt := xy yplt := xyj 1 , plt j j 2 , plt j 

− 6 xp := xy + 10 yp := xy1 , ncs 2 , ncs 

← xp 

nt := 5 ntc := nt + ncs ntc = 11 

plt := plot(nc , cw, fa) 

xys := att(θµ , xy) 



att2(θµ , xys) := 
xys

)2 1 1,
R ← tan(θµ1 1  + 1⋅ xyt :=, 

tan(θµ1 1), 
xyw :

h ← xys2 1  + R2 
− (xys1 1, )2 

, 
nb :=xyt ← 01 1, 

xyt ← h R−2 1, 

x1 ← xys1 1, 

x1 − xyt1 1,
∆x ← 

nt − 1 

for k 2∈ .. nt  

xyt1 k  ← xyt1 k−1 + ∆x , , 

xyt2 k  ← − R2 
− (xyt1 k, )2 

+ h , 

xyt 

tribox nc :=( )  i ∈ 1.. nc − 2 tri := ( )for tribox nc 

k ← 11 

← ki + [nc − (i − 1)]ki 1+ 

k 

wbox nc :=( )  i ∈ 1.. nc − 2 wbox := ( )for wbox nc 

b ← nc1 

← bi + (nc − i)bi 1+ 

b 

box := for i 1∈ .. nb  

box ← i nc+i 1, 

boxi 5  ← boxi 1, , 

box ← nc + i + 1i 4, 

box ← fai 3, ( boxi 4), 

box ← fbi 2, ( boxi 3, ) 
j ∈ 1.. ( )for rows tri 

box ← 0( tri j) , 1 

box ← 0( tri j) , 5 

box 
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 att2(θµ , xys)

= augment(xyt, xys) 

2 0.5 nc + 0.5 nc − 1
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tann box, xy( ) := for j 1∈ .. nb  tan_n := tann box, xy( ) 

for i 1∈ .. 4 

box ← 2j i, if boxj i, 0 

box ← 1j 5, if boxj 5, 0 

∆x ← −xy1 boxj i, +1, xy1 boxj i, , 

∆y ← −xy2 boxj i, +1, xy2 boxj i, , 

αi ← atan2 ∆x ∆y( , ) 
αi ← 2⋅π + αi if αi < 0 

π 
n ← αi +i 2 

tan_n ← tan n( )j i, i

tan_n 

tanα box, xy( ) := for j 1∈ .. nb  tan_b := tanα box, xy( ) 

for i 1∈ .. 4 

box ← 2j i, if boxj i, 0 

box ← 1j 5, if boxj 5, 0 

∆x ← −xy1 boxj i, +1, xy1 boxj i, , 

∆y ← −xy2 boxj i, +1, xy2 boxj i, , 

αi ← atan2 ∆x ∆y( , ) 
αi ← 2⋅π + αi if αi < 0 

tan_ αj i, ← tan αi( )  
tan_ α 

xcrnr := for i 1∈ .. nb  

for j 1∈ .. 5 

box ← boxi j, i j, 

for m ∈ 1.. rows tri( )  

← npt + 1box trim( ) , 1 

box ← npt + 1( trim) , 5 

for k 1∈ .. 5 

xcrnri k ← , xy1 boxi k, , 

xcrnr 
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ycrnr := for i 1∈ .. nb  

for j 1∈ .. 5 

box ← boxi j, i j, 

m ∈ 1.. ( )for rows tri 

box trim 
← npt + 1( ) , 1 

box ← npt + 1( trim) , 5 

for k 1∈ .. 5 

ycrnri k  ← , xy2 , boxi k, 

ycrnr ← 0 if xy 1i k, 2 , boxi k, 

ycrnr 

nx(box, xy) := for j 1∈ .. nb  xn := nx(box, xy) 
for i 1∈ .. 4 

box ← 2 if box 0j i, j i, 

box ← 1 if box 0j 5, j 5, 

∆x ← −xy1 , boxj i, +1 
xy1 , boxj i, 

∆y ← −xy2 , boxj i, +1 
xy2 , boxj i, 

αi ← atan2(∆x, ∆y) 
αi ← 2⋅π + αi if αi < 0 

π 
n ← αi +j 2 

x ← xcrnr + ⋅ n0.1 cosj i, j i, ( )j 
x 



Dot(xp yp :=, ) for i 1∈ .. nb  

for j 1∈ .. 4 

2 2Lcn ← xn − xcrnr + yn − ycrnri j, ( i j, i j, ) ( i j, i j, ) 
yp − ycrnr + tan_b ⋅xcrnr − tan_n ⋅xpi j, i j, i j, i j,

xi ←i j, tan_b − tan_ni j, i j, 

yi ← yp + tan_n ⋅ xi − xpi j, i j, ( i j, ) 
2 2Lpi ← (xi − xp) + (yi − yp)i j, i j, i j, 

for j 1∈ .. 5 

xi − xp ⋅ xn − xcrnr + yi − yp ⋅ yn − ycrnr( i j, ) ( i j, i j, ) ( i j, ) ( i j, i j, )
dot ← if <j 5i j, Lpi ⋅Lcni j, i j, 

4 
dot ← dot otherwisei j, ∑ i j, 

j = 1 

inside ← i if dot 4i j, 

inside 
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ny(box, xy) := j 1.. nb  yn := (for ∈ ny box, xy) 

for i 1∈ .. 4 

box ← 2 if box 0j i, j i, 

box ← 1 if box 0j 5, j 5, 

∆x ← xy  − xy1 , boxj i, +1 1 , boxj i, 

∆y ← xy  − xy2 , boxj i, +1 2 , boxj i, 

αi ← atan2(∆x, ∆y) 
αi ← 2⋅π + αi if αi < 0 

π 
n j ← αi + 

2 

y ← ycrnr + ⋅ ( )0.1 sin nj i, j i, j 

y 

dot := Dot(xp yp, ) 
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Int(Dot) := A ← boxdot , 2 

B ← boxdot , 3 

C ← boxdot , 4 

D ← boxdot , 5 

−xy2 C  xy2 D, ,
b1 ← 

xy − xy1 C, 1 D, 

d1 ← 
xy2 B, − xy2 A, 

xy − xy1 B, 1 A, 

a1 ← xy2 C  − b1⋅xy1 C, , 

c ← xy − d1⋅xy1 2 B  1 B, , 

a − c1 1
xyint ←1 1, d − b1 1 

xyint2 1  ← a + b ⋅xyint, 1 1 1 1, 

xy − xy2 D, 2 A,
b ←2 xy − xy1 D, 1 A, 

xy − xy2 C, 2 B,
d ←2 xy − xy1 C, 1 B, 

a2 ← xy − b2⋅xy2 D, 1 D, 

c2 ← xy2 C  − d2⋅xy1 C, , 

a − c2 2
xyint ←1 2, d2 − b2 

xyint ← a + b ⋅xyint2 2, 2 2 1 2, 

xyint 
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phi(xp yp , Dot :=, , Int) xynew ← xp1 

xynew ← yp2 

for j ∈ 1.. 333 

DTj 1  ← Dot(xynew1 , xynew ), 2 

INT ← Int DT( j 1, ) 
A ← box DT j 1( , , 2) 
B ← box(DT j 1 , 3), 

C ← box DT j 1( , , 4) 
D ← box(DT j 1, , 5) 
∆xy1 1, ← xy1 C  − INT1 1, , 

∆xy2 1, ← xy2 C  − INT2 1, , 

∆xy1 2, ← xynew1 − INT1 1, 

∆xy2 2  ← xynew2 − INT2 1, , 

∆xy1 3, ← xy1 B  − INT1 1, , 

∆xy2 3, ← xy2 B  − INT2 1, , 

∆xy1 4, ← xy1 D  − INT1 2, , 

∆xy2 4, ← xy2 D  − INT2 2, , 

∆xy1 5  ← xynew1 − INT1 2, , 

∆xy2 5  ← xynew2 − INT2 2, , 

∆xy1 6, ← xy1 C  − INT1 2, , 

∆xy2 6, ← xy2 C  − INT2 2, , 

for i 1∈ .. 6 

phii ← atan2(∆xy1 i, , ∆xy2 i, ) 
phi ← 2⋅π + phi if phi < 0i i i 

wall ← 0 

for k ∈ 1.. nc − 1 

wall ← 1 if DTj 1  wboxk, 

Kpd − Kpd 
Kp ← KpdC + 

B C 
⋅(phi2 − phi1)phi − phi3 1 

KmdC − KmdD
Km ← Kmd + ⋅(phi − phi )D 5 4phi − phi6 4 

1 π
θ0 ← ⋅(Kp + Km)⋅ 
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Kmd − KmdC D
Km ← Kmd + ⋅(phi − phi )D 5 4phi6 − phi4 

1 π
θ0 ← ⋅(Kp + Km)⋅ 

2 180 

θµ1 D  − θµ1 A, ,
θ1 ← θµ1 A  + ⋅ phi − phi, phi − phi ( 2 3)

1 3 

θ ← θ0 if wall 0 

θ ← θ1 otherwise 

θµ2 D  − θµ2 A, ,
µ ← θµ2 A  + ⋅ phi − phi, phi1 − phi3 

( 2 3) 
1 π

ν ← ⋅(Km − Kp)⋅ 
2 180 

1
M ← 

sin( )µ 

∆xp ← 0.005 xy⋅ 1 , npt −1 

xynew ← xynew + ∆xp1 1 

DT ← xynewj 2, 1 

xynew ← xynew + tan( )θ ⋅∆xp2 2 

DT ← xynewj 3, 2 

180
DT ← θ⋅j 4, π 

DT ← Mj 5, 

180
DT ← phi ⋅j 6, 5 π 

180
DT ← phi ⋅j 7, 2 π 

DT ← νj 8, 

DT 

bxy := phi xp yp( , , Dot , Int) 
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bxy = 

1 2 3 4 5 6 7 8 

1 6 0.717 0.511 9.45 1.416 324.865 54.116 0.165 
2 6 0.742 0.515 9.803 1.421 325.97 53.787 0.176 

3 6 0.766 0.519 10.143 1.425 327.041 53.463 0.187 

4 6 0.791 0.524 10.47 1.43 328.077 53.144 0.198 

7 0.816 0.529 10.8 1.493 329.081 52.831 0.209 

6 7 0.84 0.533 11.133 1.498 330.055 52.523 0.22 

7 7 0.865 0.538 11.454 1.503 330.998 52.221 0.23 

8 7 0.89 0.544 11.763 1.507 331.913 51.923 0.24 

9 8 0.914 0.549 12.081 1.57 332.801 51.631 0.25 

8 0.939 0.554 12.392 1.574 333.663 51.344 0.26 

11 8 0.964 0.56 12.693 1.578 334.501 51.062 0.27 

12 8 0.988 0.565 12.984 1.583 335.314 50.785 0.28 

13 9 1.013 0.571 13.279 1.645 336.104 50.513 0.289 

14 9 1.038 0.577 13.57 1.649 336.873 50.246 0.298 

9 1.062 0.583 13.851 1.654 337.62 49.983 0.308 

16 9 1.087 0.59 14.123 1.658 338.348 49.725 0.316 

17 10 1.112 0.596 14.39 1.72 339.056 49.472 0.325 

18 10 1.136 0.602 14.661 1.724 339.745 49.223 0.334 

19 10 1.161 0.609 14.923 1.728 340.416 48.978 0.343 

10 1.186 0.616 15.178 1.732 341.071 48.738 0.351 

21 10 1.21 0.622 15.425 1.736 341.708 48.502 0.359 

22 25 1.235 0.629 15.688 1.8 342.33 48.27 0.368 

23 25 1.26 0.636 15.919 1.804 342.937 48.043 0.376 

24 25 1.284 0.644 16.144 1.808 343.528 47.819 0.384 

25 1.309 0.651 16.362 1.812 344.106 47.6 0.392 

26 25 1.334 0.658 16.575 1.816 344.669 47.384 0.4 

27 26 1.358 0.666 16.77 1.88 345.219 47.172 0.408 

28 26 1.383 0.673 16.98 1.884 345.755 46.964 0.415 

29 26 1.408 0.681 17.184 1.888 346.279 46.759 0.423 

26 1.432 0.688 17.382 1.892 346.791 46.558 0.43 

ii := 1.. rows(bxy) jj := 1.. ntc kk := 2.. 30 

xyd := bxy xyd := bxy xyd := 16.5 xyd := xyd1 1, rows( bxy 2 1  rows ) , 3 , , ,) , 2 , ( bxy 1 31  2 31  2 1  

xyd1 31  − xyd1 1, , xyd2 kk  := xyd2 1:= + , , 
, ,xyd1 kk  30 

xyd1 kk−1 
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Note: Not Sized to Scale 
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s(xyw bxy :=, ) s ← 01 1, 

s ← 02 1, 

for i ∈ 2.. ntc 

2 2 s ← s + (xyw − xyw ) + (xyw − xyw )1 i, 1 i, −1  1 i, 1 i, −1  2 i, 2 i, −1 

← − xyw1 is2 i, s1 i, , 

2 2 s ← s + (bxy − xyw ) + (bxy − xyw )1 , ntc+ 1 1 , ntc 1 2, 1 , ntc 1 3, 2 , ntc 

← − bxy1 2s2 , ntc+ 1 s1 , ntc+ 1 , 

for j ∈ 2.. rows(bxy) 

2 2 s ← s + bxy − bxy + bxy − bxy1 i, + j  1 i, + j−1 ( j 2, − , 2 j 3  j 1 , 3)j 1  ) ( , − 

s ← s − bxy2 i, + j  1 i, + j j 2, 

s 
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S := s(xyw bxy, ) 

m := ntc + 1.. rows(bxy) + ntc 

Given PM( )x − nu  0 Mnu(x, nu) := Find( )x 

1
k := 1.. rows(bxy) x := ⋅(Me − 1) + 1 MK := Mnu (x, bxy )k k 8,2 

0 1 2 3 4 5 6 7 8 9
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ii := nt + 1.. rows(bxy) + ntc 

cc := 1.. nt sm := nt + 1.. ntc ns := ntc .. ntc + rows(bxy) 

Given PM( )x − nu  0 Mnu(x, nu) := Find( )x 

π 1
i := 1.. ncs θ i := θµ1 i  Km := Kmd ⋅ ν i := Km − θ i x := ⋅(Me − 1) + 1 MN := Mnu (x, ν i), i i i i180 2 

M := 1 cc 

Ms (θµ , Kmd, MN) := for i 1∈ .. nt  MS := Ms (θµ , Kmd, MN)
M ← 1i 

for j ∈ 1.. ncs 

M ← MNi j  j+ 

for k ∈ 1.. rows(bxy) 

M ← MKi j+ + k k 

M 

 


