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An extant amount of studies has evaluated the impact of soil crop yield. However, only few studies 

examined the influence of soil yield variability (higher moments). This research evaluates the 

impact of soil on yield and examines whether corn yield variability (risk) changes with soil types. 

The study uses the data from the Mississippi Agricultural and Forestry Experiment Station annual 

corn variety trial from 2000-2018 and the PRISM climate group. The two-step Just-Pope 

(1978,1979) production function is employed. Pooled, random-effects, and fixed-effects models 

are estimated by OLS and FGLS for the mean equations. The dependent variables of the variance 

equations are the squared residuals estimated from the mean equations. The results from the study 

show that average corn yields were higher in loam soils than in clay soils. Also, loam soil was 

associated with a considerable magnitude of corn yield risk compared to clay soils. The study 

provides substantial proof of the impact of soil type in corn yield risk. As a results, the RMA of 

the USDA may integrate soil information in their rating technique to achieve higher accuracy of 

crop insurance premiums. 
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CHAPTER I 

INTRODUCTION 

This chapter presents the background of the study, the general problem statement, the 

rationale of the study, objective of the study, and the organization of the study. 

Background 

Crop yield variability is a major issue in agricultural production. Evidence from the 

National Agricultural Statistics Service (USDA-NASS) reveals significant variations in corn yield 

for the United States and the state of Mississippi. Figures 1.1 and 1.2 respectively show the 

deviations in corn yield for the United States and Mississippi from 1970 – 2019. These figures 

provide visual evidence of the variations in corn yield for the United States and Mississippi. It 

shows the significant variations in corn yield across the various years. From figure 1, it is seen that 

corn yield increased by 18.5 bushels per acre in 1980 from the previous year for the entire U.S. 

However, for the same period, corn yields reduced by 24 bushel/acre for the state of Mississippi. 

Again, corn yield reduced by 35 bushels/acre in 2013 for the entire country while it increased by 

11 bushels/acre for Mississippi in the same year. This provides evidence to suggest that variations 

in state corn yields may not necessarily be proportional in magnitude and direction to variations in 

national corn yields. As a result, understanding which factors influence corn yield is important for 

both producers and policy makers. 

Several factors contribute to year-to-year variations in crop yield. However, annual 

variation in weather has been cited as a major determinant of the fluctuations in crop yield. Such 
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variations in climatic conditions could lead to changes in crop production patterns since different 

crops respond differently to variations in climatic conditions (Adams et al.,1998; Isik & Devadoss, 

2006), and affect crop yield variability in a significant way. Substantial concentration has been 

committed to analyzing the effect of climate change on agricultural production (Bryant et al., 2001; 

Isik & Devadoss, 2006; Lewandroski and Schimmelpfennig,1999; MacCarthy et al., 2001; Polsky 

and Easterling,2001). Ray et al.(2015) assert that about a third of the global variations in yield can 

be explained by climate variability, and elucidates the spatial patterns in the relationship between 

crop yield fluctuations and climate variations, calling attention to where fluctuations in yield are 

explained by alterations in temperature, precipitation, and their interaction. Studies by Houghton 

et al., (1996) and Schimmelpfennig and Yohe (1999) have also revealed that greenhouse gases 

such as carbon dioxide (CO2) stimulate changes in climatic conditions such as temperature, 

precipitation, and soil moisture. In general, weather, whether in averages or events has been widely 

studied as an important influencing factor in crop yield (Powell & Reinhard, 2015). 

Problem Statement 

Given the crop production process, however, soil is known to be a basic input.  It serves as 

a major form of support and source of nutrient for plant growth and impacts plant development in 

a complex way. The role of soil in crop production has been widely recognized in both agronomy 

and agricultural economics research. Enormous agronomic studies have revealed the importance 

of soil properties such as soil quality, soil texture, organic matter content among others to crop 

growth and yield (see Cox et al. 2010; Majchrzak et al 2001; Kravchenko & Bullock, 1998 ; Vieira 

& Gonzalez, 2003; Corwin et al. 2003 etc). The approach in agronomy research has been to 

determine soil types and soil properties that affect crop yield. The most common approach is by 

comparing the mean yield of the study crop on separate soil types with different properties and 
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investigating which soil properties account for the differences in these mean yields. Using this 

method, a study by Cox et al., (2010) reveals that clay content is a major factor that affects soybean 

yield, that areas with high clay content had higher soybean yield and vice versa. Again, variations 

in yield are determined through the coefficient of determination or the correlation coefficient 

between the selected soil properties and crop yield. By this approach, soil physical properties such 

as organic matter content, texture, and bulk density were found to impact wheat yield variation 

Majchrzak et al. (2001). In agricultural economics, most studies on the impact of soil have 

emphasized on soil’s impact on the mean yield with few exceptions. The common approach to 

estimating yield risk is the Just and Pope (1978,1979) production function (e.g. Carew et al. 2016). 

Some studies have estimated the effect of soil on yield risk by a different approach (see Woodard 

2016). However, most of the extant literature has focused on soils’ impact on the mean yield. 

Although the results of these studies are significant, an analysis of how soil affects corn yield risk 

has not been extensively researched. 

Therefore, the aim of this study is to quantify the impact of soil, irrigation, trend, 

temperature, and precipitation to corn yield risk. This research employs data on soil type, trend, 

rainfall corn yield, and irrigation obtained from the Mississippi Agricultural and Forestry 

Experiment Station (MAFES) annual corn variety trials, and temperature data derived from the 

Parameter Elevation Regressions on Independent Slope Models (PRISM) climate data. The 

research follows the model specification in the Tack et al. (2012) moments model and employs a 

Just and Pope (1978, 1979) framework to examine the impact of these input variables on corn 

yield. This study contributes to the growing body of literature on yield modeling by determining 

the impact of soil type, rainfall, irrigation, and time on the mean and variance of corn yield.  
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Rationale of the Study 

The major motivation behind this research is the need for accurate estimation of crop yield 

risk. Variations in yield exposes farmers to a variety of risks which includes yield uncertainty. The 

need to manage, if not eliminate these risks led to the ratification of the Federal Crop Insurance 

Act of 1980.  The program enables farmers to address crop yield / revenue losses on their farms 

through its provision of various risk management tools. The Risk Management Agency (RMA) of 

the United States Department of Agriculture administers and subsidizes contracts, while the 

contracts are sold through private insurance companies (Barnett 2005). The creation of the FCIP 

has made yield and variations in yield a pivotal part of both farm-level decision making and policy 

formulation.  

For the successful performance of the crop insurance program the determination of 

premium rate must reflect accurate risk assessment. In this regard, the rating methodology should 

capture all risk-related factors. However, the current RMA rating procedure does not include soil 

information. This is to a large extent due to the lack of research providing evidence of the need to 

incorporate soil information into the rating procedure. To be able to incorporate soil information 

into the rating procedure, basic research is necessary to provide evidence of the effect of soil on 

yield risk through accurate estimation of crop yield risk conditioned on high-resolution soil, 

weather, and other locational variables. The few relevant works towards this direction are the 

works of Woodard (2016) and Woodard and Veteramo Chiu (2017).   

Undoubtedly, the inclusion of soil information in the crop insurance premium rating is 

dependent on the accurate estimation of crop yield risk that is conditioned on high-resolution data. 

The need to capture soil information in the rating procedure follows from the flaws of the current 

rating system which depends on the measures of average historical yield and does not account for 



 

5 

the fields insured. Again, certain assumptions made by RMA have contributed to the inefficiencies 

of the rating methodology. These flaws and inefficiencies have led to some criticisms of the rating 

system. For instance, Goodwin (1994) criticizes the assumption of a constant relationship between 

mean yield and yield variability made by RMA and questions the determination of premiums based 

only on mean yields. Given this and other criticisms (Babcock et al.,2004; Skees and Reed 1986; 

and Coble et al. 2010), the need to improve the rating procedure has become a necessity. Inaccurate 

premiums lead to adverse selection (where high-risk producers are undercharged relative to low-

risk producers) and thwarts RMA’s effort to achieve actuarial fairness. 

Among the improvement strategies suggested, Coble et al. (2010) recommend the use of 

risk-related weather, soil, and other locational variables in the rating procedure. In this regard, 

RMA proposes basic research to achieve a more accurate estimation of crop risk by incorporating 

soil, weather, and other precision agricultural data as a first step. Second, by building on the first 

step RMA hopes to develop more accurate individual crop insurance premiums by accounting for 

soils and more exact field locations. 

Much of the current literature on crop yield estimations fail to account for soil type as an 

input in the crop production process. Ultimately, ignoring soil type could lead to inaccurate crop 

yield risk estimation. Studies by Woodard (20016) and Woodard & Veteramo-Chiu (2017) have 

revealed that using soil information in the pricing of premiums improves the rating procedure. This 

research does not directly model crop insurance premium rates but achieves the first step by 

estimating accurate crop yield risk which is conditioned on high-resolution soil, weather, and other 

precision agricultural data proposed by RMA. Essentially, the empirical findings of this research 

have practical policy applications in crop insurance premium rating.  
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Objective of the Study 

The major objective of this research is to empirically test whether yield risk differs by soil. 

This would be achieved by using data from the Mississippi Agricultural and Forestry Experiment 

Station (MAFES) annual corn variety trials from 2000-2018. The variety trials program evaluates 

the performance of commercially available varieties of corn and other crops throughout the state 

of Mississippi. The trials are conducted in about three to eight different locations across different 

counties for each year. A different soil type is associated with each location. The soil types are 

organized into two groups: loam and clay using their names. An advantage of using the trial data 

is that it provides a corn yield record of a site-specific soil type. This is in sharp contrast with 

county-level data where the soil data is aggregated to the county level. The trials also report the 

monthly rainfall, soil ph., and irrigation of the various locations. The study then employs the Just 

and Pope (1978, 1979) production function to estimate the effect of soil on yield risk. The yield 

risk is measured as the square of the residuals obtained from the mean equation. The results reveal 

a significant increase in yield risk in loam soils, although loam soil is found to have higher mean 

yields. This result is important because it demonstrates that soil matters for corn yield risk. As a 

result, RMA may integrate soil information into the assessment procedure to improve crop 

insurance premium accuracy. 

 

Organization of the Study 

The remainder of the research is organized as follows. The literature reviews are 

presented in chapter two, and chapter three presents and discusses the empirical models and the 

data. The empirical results and conclusions are presented in chapter four and five respectively 
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Figure 1.1 Departure from historical U.S corn trend yields: 1970-2019 

Source: USDA-NASS,URL: https://quickstats.nass.usda.gov/ 

 

 

https://quickstats.nass.usda.gov/
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Figure 1.2 Departure from historical Mississippi corn trend yields: 1970-2019 

Source: USDA-NASS,URL: https://quickstats.nass.usda.gov/  

 

https://quickstats.nass.usda.gov/
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CHAPTER II 

LITERATURE REVIEW 

Research on crop yield modeling vary by objective, approach, results, and conclusions. 

Studies on yield have evaluated the impact of weather variables on the mean and variability of 

crop yield while others have evaluated the impact of site-specific characteristics such as fertilizer 

and chemicals, crop varieties, acreage, and geographical distribution. Although these studies 

employ different approaches, their results provide evidence of the impact of these variables on 

crop yield. The literature review is structured into four parts. The first reviews the literature on the 

impact of weather on crop yield, followed by the impact of soil. The third part focuses on the 

influence of other factors while the last section focuses on modeling techniques on crop yield 

distribution. 

 Weather impact on yield 

The impacts of weather on the mean and variability of crop yield have been extensively 

studied. However, few of these studies have analyzed the impacts of  weather variables on the 

shape of the yield distribution (Tack, Harri, & Coble, 2012). The studies evaluating the impact of 

climate on yield have been accomplished in two main approaches. The first approach utilizes 

stochastic weather generators and agricultural crop models to simulate the effect of climate on 

yield (see Mearns et al., 1992 ; Bindi et al.,1996 and Wang, Wang, and Liu, 2011). By this 

approach, different crop models such as the WOFOST and CERES models have been used to 
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evaluate how temperature and precipitation under different climate scenarios affects the yields of 

different crops.   

For example, Mearns et al., (1992)  assess the response of yield to changes in the mean and 

inter-annual variability of temperature and precipitation by employing a series of sensitivity 

experiments with the CERES wheat model. The CERES wheat model predicts growth and yield 

in response to plant genetics, weather, soil, and management factors. The study reported that mean 

changes in temperature and precipitation impacted yields much more than changes in the 

variability of temperature and precipitation. Variations in climatic conditions tend to impact wheat 

crop failures and yield variability much more than they impact mean yield levels. Specifically, the 

study reports that alterations in the variability of precipitation had a slightly higher effect than 

change in the variability of temperature.  This suggests that the magnitude of the effects of 

temperature and precipitation on wheat yields varies, and changes in the variations of these weather 

variables would affect crops in significantly different ways. Nevertheless, the robustness of the 

study results are constrained not only by the limitations of the crop simulation models itself, but 

the manner of altering time series, range of the sensitivity analysis, the number of stations 

analyzed, and the use of only one crop model (Mearns et al.,1992). 

Again,  Bindi et al.(1996) evaluated the impact of climate on the mean and variability of 

grapevine yield. The study reported that changes in the variability of weather sequences did not 

have a significant impact on average grapevine yield but significantly affected variability of 

grapevine yield. However, the study concluded that the predicted effect of climate change on the 

mean and variability of yield depended on the factors such as crop model, grapevine variety, and 

the introduction of changes in the climate variability. 
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  Whistler et al. (1986) assert that crop models act as an aid for interpreting experimental 

results, acts as an agronomic research tool, or as agronomic grower tools. Boote et al.,(1996) 

proposes three fundamental uses of crop models: research knowledge synthesis, crop system 

decision management, and policy analysis. However, crop simulation models are just 

simplification of the natural processes. As a result, they might not be able to fully describe the 

functioning of the real natural system. This may lead to uncertainties in the results of crop 

simulation models. (Aggarwal, 1995; Bouman, 1994). 

The second approach that have been used to evaluate the impacts of weather variables on 

yields uses regression analysis (see McCarl, Villavicencio, & Wu, 2008; Tack, Barkley, and Nalley 

2015, Tack, Harri, and Coble 2012).  

Chen et al., (2004) examined the effects of weather on the mean and variability of corn, 

cotton, sorghum, soybean, and wheat by using state-level climate data. Two specifications; a linear 

production model and a Cobb-Douglas production model were used for the analysis. The study 

reports a significant negative effect of temperature on the average yield of corn, cotton, sorghum, 

and wheat irrespective of functional form but a significant positive effect on average soybean yield 

for the linear specification. Again, precipitation had a significant positive effect on the average 

yields of corn, cotton, and sorghum for both the linear and Cobb-Douglas specification, but a 

negative effect on the average yield of soybean and wheat for the linear specification and positive 

effect for the Cobb-Douglas specification. Results of the variance function also predicted a 

significant effect of climate on yield.  The effects of weather on the variability of corn, cotton and 

sorghum yield was independent of functional form. In those cases, a negative relationship was 

found between precipitation and the variability of corn and cotton yield, while a positive 

relationship was reported for sorghum yield. Higher temperatures decreased the variability in 
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cotton and sorghum yield, but increased the variability of corn yield. These results reveal that 

temperature and precipitation affect crop yield, but the magnitude and direction of the effects differ 

across crops. However, Chen, McCarl and Schimmelpfennig (2004) recognizes that a potential 

shortcoming of the use of the state-level climate data is that, certain agricultural regions within a 

state may observe different temperatures and precipitation than state averages which state-level 

data might fail to distinguish. 

 Isik & Devadoss (2006) examined the impact of weather on the mean, variance, and 

covariance of sugar beets, potato, wheat, and barley yield in Idaho. Their study used the maximum 

likelihood method to estimate a Just and Pope production function to analyze the effect of 

temperature and precipitation on yields of the study crops. Linear and quadratic functional 

specifications were used to represent the relationship between the mean crop yields and weather 

variables. For the variance function, only a linear functional form was considered. Isik & Devadoss 

(2006) found out that the sign and significance of the estimated temperature and precipitation 

coefficients on yield variability and  average yield differed by crop and by functional form. Again, 

they used the estimated production functions parameters and their elasticities to examine the effect 

of two long term climate change scenarios (Hadley 2025-2031 and Hadley 2090 -2099) for crop 

yield and crop yield variability. The results of the projected climate change reveal that the mean 

yield of most crops studied would improve moderately because of the predicted increase in 

temperature and precipitation levels. Wheat, barley, and sugar beets yield variance is projected to 

decrease but potato yield variance is expected to increase for the two climate scenarios. Isik & 

Devadoss (2006) assert that these results are pivotal for the apportionment of agricultural land 

among crops and crop production mix in the future. 
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  Schlenker & Roberts (2006) investigates the relationship between weather and yield using 

data for corn yields and daily weather data covering the eastern united states. Their study is pivotal 

in the yield modeling literature because it utilizes a detailed unique data set that warrants an 

adaptable functional form for the precise estimation of the non-linear effects of weather on yields. 

Their study found a non-linear relationship between temperature and corn yield with yield 

increasing with temperature for moderate temperature levels but decreasing significantly with 

temperature levels exceeding 30°C.  

 Again,  Schlenker & Roberts (2009)  analyze the effect of temperature on U.S corn, 

soybean, and cotton yields under climate change. They used three specifications to describe the 

relationship between temperature and yield growth. Although different specifications, each 

specification illustrated the same characteristics with yield having a positive correlation with 

temperature up to a critical temperature threshold and then reducing significantly. These critical 

threshold temperatures differed for each crop: 29°C for corn, 30°C for soybean, and 32°C for 

cotton. They also make yield predictions under four climate scenarios in the Hadley III climate 

model. Across these four scenarios, crops and model specifications results show modest declines 

in yield even though yields in certain counties are expected to rise. In general, Schlenker & Roberts 

(2009) assert that depending on climate scenario, U.S production is expected to decrease by 30 – 

82 % above threshold values for corn, soybean, and cotton indicating severe damage to U.S crop 

yields due to climate change. 

In response to the results of Schlenker & Roberts (2009), Meerburg et al., (2009) asserts 

that the projection that U.S productivity  (depending on the climate scenario) would decrease by 

30 – 82% above threshold values is rather a pessimistic view. Meerburg et al., (2009) state that, 

the progression, expansion, and use of new technologies and improved farm management practices  
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increases crop yield,  citing the work of Ewert et al.,(2005) that reported technology as the major 

factor of productivity change that overweighs the effect of climate change. They also state that at 

different developmental stages of plant growth, extreme temperatures have different impacts and 

may not always be detrimental to crop growth.  Meerburg et al.,(2009) argued that although the 

exposure to temperatures above the threshold values is higher than in the United States, the 

productivity of soybean, maize, and cotton increased in Brazil over the last decade. They argue 

that higher temperatures do not necessarily lead to lower yields and that existing technology and 

future advancement in technology coupled with new varieties, optimized farm management among 

other technological advancements can offset the negative effect of increased temperatures on yield. 

 Tack et al.,(2015) study the effect of warming temperature on wheat yield in the United 

States by using data from the Kansa weather library and the Kansa Performance Test with winter 

wheat varieties. The results from the study revealed that the impact of temperature on wheat yield 

varies across the September-May growing season. Yield loss was attributed to Freezing 

temperature in the fall and extreme heat in the spring. However, Increased rainfall in the spring 

was reported to offset the warming effect of temperature on yield. Tack et al., (2015) states that 

the forecasting performance and prediction of warming impacts from the study relies on the  

construction method for the measurement of temperature and exposure. 

 Tack et al., (2012)  use moment functions and maximum entropy methods to analyze the 

effect of agricultural outputs such as weather, management among others on cotton yields for 

Mississippi, Arkansas, and Texas. They use similar variables as used in Schlenker and Roberts 

(2006, 2009). Their study is pivotal to the literature because it provides a flexible approach to 

establish the relationship between weather and irrigation variables to moments of yield.  The 

results from the study revealed that the effect of temperature differed by state. For example, 
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medium temperature had a positive effect on all three modeled moments for the three states. 

However, this effect was significant only for the first two moments of cotton yields in Mississippi. 

This reveals that cotton yields in Mississippi respond differently to moderate temperatures: 

moderate temperatures increased cotton yields in Mississippi. Again, the effect of high temperature 

was negative and significant for all modeled moments of cotton yield in Mississippi and Texas but 

was significant only for the first two modeled moments in Arkansas. In addition to the above, 

precipitation was found to have positive significant effects while its quadratic term had a 

significant negative effect on all modeled moments of cotton yields in Texas. On the contrary, 

precipitation and its quadratic term had no significant effects on the modeled cotton yields in 

Mississippi. The results of Tack et al., (2012) is pivotal to literature because it demonstrates the 

effects of weather not on the mean and variance on yields only, but on the skewness too. 

Soil impact on yield 

Soil is composed of organic and mineral materials that exists on the surface of the earth 

and serve as a natural medium for plant growth (SSA,1936). It is a major requirement for plant 

and impacts crop yield significantly. Some studies have utilized a simple correlation analysis to 

determine the relationship between soil properties and crop yield. These studies produced results 

that differed from farm to farm and from year to year. Other studies have used multiple regression 

techniques to analyze the relationship between crop yield and soil properties. (e.g., Kravchenko 

and Bullock 2000; Hosseinifard et al., 2008). However, the extent of such studies has focused on 

the mean yield with few exceptions. Therefore, as an expansion to the literature, this study will 

evaluate the impact of soil on corn yield risk.  

Sopher and MacCracken (1973) analyzes the relationship between corn yields, soil 

properties, and management practices on South Atlantic coastal plain soils. The study employs a 
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standard regression correlation technique to determine the correlation between yields and soil and 

management variables. Clay content was found to have a negative correlation with yields while 

sand content was found to have a high positive correlation with corn yields. Other soil chemical 

properties such as extractable P was found to be highly correlated with corn yields. 

 Kravchenko and Bullock (2000) examine the correlation of topography and soil properties 

with corn and soybean yield. They aimed to find out how topography and soil properties could 

explain the variability in corn and soybean yields. Topography is known to affect yield by 

influencing the redistribution of soil particles, organic matter, and soil nutrients. This has been 

established by the works of Ovalles and Collins (1986), Pennock and de Jong (1990). Again, 

topography affects the amount of plant-available water which is an essential yield affecting factor 

(Afunyi et al., 1993; Daniels et al., 1987; Fiez et al., 1994). Results from the study showed that 

soil properties explained about 30% of the variations in yield. Organic matter had the highest 

influence on yield. Together, soil properties and topography explained about 40% of the variation 

in yield.  

Majchrzak et al., (2001) predict wheat yields based on Illinois soils by using a crop yield 

soil properties (CYSP) model that was developed from established wheat estimates and soil 

properties. They used both correlation and regression analysis to determine the relationship 

between 16 soil properties and wheat yields. Results from the study reveal that wheat yield was 

affected by percent silt, organic matter, and bulk density. Organic matter was found to have a high 

positive correlation with wheat yield while a negative significant relationship was reported 

between wheat yield and bulk density. The soil properties examined in the study explained about 

78% of wheat yield variations. 
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 Cox et al. (2010) examined the effects of soil properties and their influence on soybean 

yield using a soybean field on the Mississippi Research and Extension Black Belt Branch 

Experiment Station. Results from the study provide evidence of the effect of clay content on 

soybean yields. A positive relationship was found between clay content and soybean yield: areas 

higher clay content was associated with higher soybean. This was attributed to the high-water 

retention feature of clay that made water available during the dry periods of the growing season.  

In agricultural economics, a majority of studies on the impact of soil on yield have 

evaluated the impact of soil on the mean yield. Woodard and Verteramo-Chiu (2017)  build an 

empirical regression model using the SSURGO soil database and  county-level yield to evaluate 

the improvement in crop insurance premium accuracy after accounting for soil in the rating 

procedure. The results from the study reveal that soil properties such as root depth zone available 

water storage, soil organic carbon (SOC), and NCPPI have a significant impact on corn yield. 

 

Again, using high-resolution soil data from the SSURGO soil dataset and  farm-level yield 

data  from the Illinois Farm Business Management dataset, Woodard (2016) analyze the impacts 

of using soil information in crop insurance premium rating. Woodard (2016) employs regression 

models to determine the effects of soil on yield and yield risk. The results  revealed the significant 

positive effect of soil quality on corn yield. Areas with higher soil quality had higher corn yield 

and vice versa. For the yield risk measure, Woodard (2016) uses the standard deviation of yield. 

The results from the estimation reveal a negative impact of soil quality on yield risk.  Higher-

quality soils were found to have a statistically lower risk. This was consistent across all models. 

Again, the quadratic term of the soil variable was also statistically significant predicting a non-
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linear effect of soil quality on yield risk. These results are consistent with the results of Hurd (1994) 

which studies the impact of soil quality on cotton yield in California.  

Carew, Smith, and Grant (2016) study the factors that influence wheat yields and its 

variability in Manitoba, Canada. The study by Carew, Smith, and Grant (2016) examines the 

effects of soil quality, nitrogen fertilizers, insurance premium rates,  and time trends on the mean 

and variance of wheat yields. The Just and Pope (1978,1979) production function was eployed to 

determine the effects of these variables on the mean and variance of wheat yields. Soil quality was 

found to have a significant impact on mean wheat yields. This is consistent with the results of 

Woodard (2016) and Hurd (1994). The variance function estimates  reveal a significant negative 

effect of soil quality  on wheat yields.Higher quality soils had lower yield variance and vice versa.  

 

Other yield influencing factors 

Other variables such as time trend, irrigation, prices, insurance premium rate, fertilizers 

among others have also been found to have significant impacts on crop yields. The impact of time 

trend has been evaluated in yield modeling to mostly examine the impact of technology on crop 

yields. The impact of technology on yield has been modeled as either a deterministic or stochastic 

time trend that either accounts for heteroscedasticity adjustment. The possibility of shifts in the 

variance of yield distribution by time trend is made possible by accounting for heteroscedasticity 

and the impact of technological change goes beyond the first two moments of yield (Tolhurst & 

Ker, 2015). Tack et al.,(2012) report that technological change had a significant impact on the first 

moment of yield in Arkansas. Isik & Devadoss (2006) also report a positive relationship between 

trend and the mean and variance yield of the study crops.  
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 Nitrogen, potassium,sulfur fertilizers, and crop insurance premium rate have also been 

identified to have a significant impact on wheat yield variability (Carew, Smith, and Grant 2016). 

Specifically, yield risk was found to be higher in regions whre the crop insurance premium rates 

were high. This finding is consistent with the study by Carew and Smith (2006). Also a positive 

relationship was identified between nirogen levels what yeild variance. The study by McKenzie, 

and Grant (2003) corroborates this result. Irrigation has also been identified to have an impact on 

yield variability (Tack et al.,2012). 

 Tack et al., (2012) find a significant impact of irrigation on cotton yield in Mississippi, 

Arkansas, and Texas with the mean impacts varying by state: 0.39-0.52 bales per acre in Arkansas, 

0.23-0.54 bales per acre in Mississippi, and 0.13 – 0.78 in Texas. The significance of other 

conditioning variables in the study depended on the location and the equation in which they appear. 

In Mississippi and Arkansas, precipitation for dryland acreage had an insignificant impact on 

cotton yield. Precipitation for dryland acreage in Texas had a significant impact on all cotton yield 

moments. Precipitation for irrigated locations had a significant impact on cotton yield only for the 

first moment in Arkansas. 

While the studies evaluating the effects of climate, soil, and other conditioning variables 

outlined here are not exhaustive, most researchers have examined the impact of weather on yield 

and yield variability. Only few studies, however, have examined the impact of soil on yield 

variability. It is clear that the effects of weather on yield has been extensively studied. Although 

the extant studies vary in their approaches, results from these studies reveal a significant impact of 

weather on the mean and variability of yield. As a result, climate studies that do not examine the 

effect of weather on higher yield moments fail to capture risk management implication (Tack et 

al., 2012). Moreover, a majority of the studies that have examined the impact of soil on yield have 
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employed county-level soil data. The limitation of the county-level soil data is the diminished 

variability in soil measure. This has the potential to lead to underestimation of the impact of soil 

on yield. A unique feature of this study, as has been already highlighted in the introductory part is 

the use of experimental trials soil data that provides a precise representation of soil effect on and 

yield risk. 
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CHAPTER III 

EMPIRICAL METHODS 

This chapter presents the econometric model and framework employed for the research. 

The immediate section focuses on the analytical framework of crop yield modeling. The next 

section looks at the production function specification. The last section discusses the data sources, 

construction of the various variables used in the study, and the summary statistics of the data. 

Analytical Framework 

Some studies have resorted to the use of crop growth simulation models in predicting the 

impact of factors that affect crop yield and crop yield variability. The studies by Giorgi et al.(1998), 

Mearns et al. (1996), Mearns et al. (1992),  Wilks (1992), Barrow & Semenov(1995), Bindi et al. 

(1996), Peiris et al. (1996), Phillips et al.(1996), Riha et al. (1996), Semenov et al. (1996), among 

others have used this approach. Other studies have employed regression techniques to examine the 

impact of weather on yield. The works of Chen et al. (2004), Isik and Devadoss (2006), McCarl et 

al.(2008), Kim & Pang (2009), Barnwal & Kotani (2010), and Boubacar (2012) that focused on 

the impact of weather on yield variability have used regression analysis for their studies. The most 

characteristic feature of the regression-based approach is their use of the Just & Pope (1978,  1979) 

production function.  

 



 

22 

Production Function Specification 

The production function introduced by Just and Pope (1978,1979) is composed of a mean 

response function and a heteroscedastic error term: 

𝑦 = 𝑓(𝑥, 𝛼) + ℎ(𝑥, 𝛽)𝜀 (3.1) 

 

where 𝑦 denotes crop yield,   explanatory variables are indicated by 𝑥,  𝛼 and 𝛽 are parameters to 

be estimated. The mean response function which explains yield by the set of explanatory variables 

𝑥 is given as 𝑓(𝑥, 𝛼)  while ℎ(𝑥, 𝛽)𝜀 is the variance function. Just and Pope (1978,1979) employed 

both Feasible Generalized Least Squares (FGLS) and maximum likelihood estimation (MLE) to 

evaluate the effects of inputs on crop yield. The Just and Pope (1978,1979) production function is 

frequently estimated using the FGLS estimation approach. However, it has been demonstrated that 

using MLE to estimate the Just and Pope (1978,1979) production function provides unbiased and 

efficient estimates compared to the FGLS for small samples using Monte Carlo experiments (Saha 

et al.,1997). Due to data constraints, however, the study is unable to utilize the MLE approach for 

the estimations of the production functions. 

In this study, the Just and Pope (1978, 1979) specification of crop yield and production risk 

is employed and the model specification that follows the Tack et al. (2012) method of higher 

moments is estimated. The Tack et al. (2012) methods build on the procedures of Schlenker and 

Roberts (2006,2009) and Antle (1983,2010). Following the Tack et al. (2012) model, the empirical 

model of the mean equation for corn yield is  

𝑦𝑖𝑡 = 𝛼0 + 𝛼1𝑙𝑜𝑤𝑖𝑡 + 𝛼2𝑚𝑒𝑑𝑖𝑡 + 𝛼3ℎ𝑖𝑔ℎ𝑖𝑡 + 𝛼4𝑝𝑖𝑡 + 𝛼5𝑝2
𝑖𝑡

+ 𝛼6𝑖𝑟𝑟𝑖𝑡 + 𝛼7𝑖𝑟𝑟𝑖𝑡𝑝𝑖𝑡

+ 𝛼8𝑖𝑟𝑟𝑖𝑡𝑝𝑖𝑡
2 + 𝛼9𝑡 + 𝛼10𝐶 + 𝛼11𝑆𝑖𝑡 + 𝑒𝑖𝑡 

(3.2) 

where 𝑦𝑖𝑡   the dependent variable and represents the yield variable for station 𝑖 in time 𝑡 , 𝛼0 is the 

intercept term, 𝑙𝑜𝑤𝑖𝑡, 𝑚𝑒𝑑𝑖𝑡, ℎ𝑖𝑔ℎ𝑖𝑡 captures the growing degree days intensity of low, medium, 
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and high temperatures exposure respectively, 𝑝𝑖𝑡 and 𝑝2
𝑖𝑡

 captures the linear and quadratic effects 

of precipitation, and 𝐶 captures the impact of crops that were previously grown on the trial location 

in a rotation system. Dummy variables 𝑖𝑟𝑟𝑖𝑡 are represent irrigated (𝑖𝑟𝑟𝑖𝑡 = 1 ) and non-irrigated 

(𝑖𝑟𝑟𝑖𝑡 = 0 ) stations, and 𝑆𝑖𝑡 for the different soil types (‘Loam’ and ‘Clay’). The interactions of 

the precipitation variable with the irrigation dummy is added to capture the effects of precipitation 

across irrigated versus non-irrigated locations.   

Equation 3.3 gives the yield variance function: 

𝑒𝑖𝑡
^2 = 𝛽0 + 𝛽1𝑙𝑜𝑤𝑖𝑡 + 𝛽2𝑚𝑒𝑑𝑖𝑡 + 𝛽3ℎ𝑖𝑔ℎ𝑖𝑡 + 𝛽4𝑝𝑖𝑡 + 𝛽5𝑝2

𝑖𝑡
+ 𝛽6𝑖𝑟𝑟𝑖𝑡 + 𝛽7𝑖𝑟𝑟𝑖𝑡𝑝𝑖𝑡

+ 𝛽8𝑖𝑟𝑟𝑖𝑡𝑝𝑖𝑡
2 + 𝛽9𝑡 + 𝛽10𝐶 + 𝛽11𝑆𝑖𝑡 + 𝜀𝑖𝑡 

(3.3) 

 where 𝑒𝑖𝑡
^2 is the square of the fitted residual from equation (3.2) for station 𝑖 in period 𝑡, and all 

explanatory variables  retain their definitions in equation (3.2). The residual is the difference 

between the observed yield and the predicted mean yield from equation (3.2).  

Precipitation is likely to have a positive impact on mean corn yield, while its quadratic term 

is probable to have adverse effects on corn yield and corn yield variability. The interaction of 

irrigation and precipitation could have either a positive or negative impact on corn yield and its 

variability. A study by Tack et al. (2012) has reported similar effects of precipitation and the 

interaction of irrigation and precipitation on cotton yield moments in Mississippi. In general, one 

would expect the trend variable to have a positive effect indicating that advancement in technology 

has the potential to increase yield.  

Also, temperature exposure is likely to have a varying impact on corn yield. Moderate 

temperature exposure is projected to increase corn yield. In contrast, excessive temperature 

exposure is expected to harm corn yield, as observed in the study by Schlenker and Roberts 

(2006,2009). The impact of the previous crop on corn yield could be positive or negative.  One 

would expect corn yield to be higher where the soil is most favorable, drains well, and has a 
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suitable amount of organic matter. As a result, the soil type variable may have either a positive or 

negative effect on corn yield. 

Three panel models are used to estimate the mean equation: the pooled model, random-

effects, and fixed-effect models. The soil variable is not included in the fixed-effect model 

estimation because it is time-invariant. To determine the relationship between corn yield and 

weather and soil variables and to understand the factors influencing corn yield variability and 

reduce the occurrence of confounding, three models were estimated. Model 1 includes weather 

(temperature and precipitation), the quadratic term of the precipitation variable, irrigation, loam 

soil, trend, and previous crop variables. Model 2 includes the variables in Model 1 and the 

interaction of the irrigation and the precipitation variable, and the interaction of the irrigation and 

the quadratic term of the precipitation variable. The monthly effects average temperatures and 

precipitation of May, June, and July on corn yield are evaluated in Model 3. The study uses the 

natural log of the monthly rainfall. It also includes irrigation, loam soil, and previous crop 

variables.  

Data Descriptions and Sources 

Corn yield, soil, irrigation, and precipitation data are from the Mississippi Agricultural and 

Forestry Experiment Station (MAFES) annual corn variety trials from 2000-2018. This 

experimental trial program evaluates the performance of different available corn varieties 

throughout Mississippi. Three to eight different experimental stations or grower cooperator fields 

are used for the experimental trial each year. The variety trials provide the yields of around 40 to 

80 corn varieties for each location-year in addition to unbiased and comprehensive information to 

enable farmers to make important decisions about variety/hybrid selection and other management 
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practices (https://www.mafes.msstate.edu/variety-trials/). Fertilizer and herbicide application, 

planting date and harvest date and other field management practices change across years.  

Each location-year has a different soil type with its soil-ph. For some locations, the same 

soil type is used for each year. The sites are changed after a few years. For example, trial locations 

in Glendora, Shaw, and Swiftown appeared only once for the entire period of the trial. However, 

the trial site in Brooksville had a complete time series for the whole period of the test. The frequent 

changing of locations resulted in incomplete time series for most of the trial sites in the data. The 

locations and their respective counties, frequency, and years they appear in the trials, are presented 

in table 3.1. Figure 3.2 provides the counties of the various locations used in the variety trials.  

The trial results are reported in a portable digital file (pdf) format. The data tables are then 

extracted for each year and location using an online pdf converter.  After the extraction, the data 

tables are then aggregated into a single excel file for all the years. The excel file is then inputted 

into Stata, where the data is cleaned to remove duplicate entries among other discrepancies. The 

cleaned data had exactly 10,189 for the 16 locations. These observations are the individual yield 

record of the different varieties for the 16 areas of the trials. From 2010- 2018, two separate sites 

are reported for the Stoneville location. One of these sites had a Sharkey clay soil type, while the 

other had Dundee very fine sandy loam soil type. The variables used in the study are described 

below. 

Soil 

Soil is classified into three main categories based on the grain size distribution (United 

States Department of Agriculture, USD). This basis gives three main soil types: sand, silt, and 

clay. These three major soil types are further grouped into twelve (12) classes which is displayed 

https://www.mafes.msstate.edu/variety-trials/
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on the USDA soil classification triangle. One can identify a soil type based on the particle 

distribution depicted on the soil classification triangle.  

The trials provide the soil type and soil pH for the various locations every year. About 

thirty different soil types are reported for the entire period of the trials based on the different 

locations. The soil types are grouped into two using their respective names: Loam and clay (see 

Table 3.2 for details). The MAFES corn variety trials do not report other relevant soil 

characteristics that might have a significant impact on corn yield. Soil available water, organic 

matter content, soil organic carbon, clay content among other soil properties were not reported. 

Although these soil properties impact corn yields (Woodard 2016; Woodard and Veteramo-Chiu 

2017), the study is unable to evaluate the effects of such soil properties on corn yield due to their 

unavailability. 

Yield 

 The MAFES corn variety trial tests the genetic performance of over 60 corn 

varieties/hybrids each year. For a particular year, the same varieties/hybrids are tested in all 

locations. The changing of varieties each year made it impossible to evaluate the effects of such 

varieties/hybrids on corn yield. Also, because different varieties/hybrids are introduced each year, 

performing the estimation on the individual yield record of the varieties/hybrids was inappropriate. 

As a result, some transformations to the yield variable were necessary. The yield variable is the 

mean yield of all varieties in at a site for a year of the trials. This is done to minimize the effect of 

varieties on yield variability since the main aim of the experimental trials was to test the yield 

capacity of the different varieties/hybrids. The averaging process reduces the number of 

observations to a total of 136. 
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Weather 

Weather is a major factor that impacts corn yield variation. Temperature and precipitation 

are used to evaluate the impact of weather. The trials provide the monthly rainfall data for each 

location from planting time to harvest time. The monthly rainfall for each location-year is summed 

up to obtain the precipitation variable. For this study, precipitation is defined as the total amount 

of rainfall (in inches). The Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) database provides temperature data for the study. The locations in the trials are matched 

with their respective counties and temperature data is obtained using these counties. Growing 

degree days for the sites and years are computed using the temperature exposures. This study 

follows the Schlenker & Roberts (2006, 2009) temperature bounds for the computation of the 

growing degree days. Temperature exposure is measured by three variables: 𝑙𝑜𝑤𝑖𝑡 captures 

temperature exposure between 0°C and 8°C, 𝑚𝑒𝑑𝑖𝑡  captures temperature exposure between 8°C 

and 29°C, while ℎ𝑖𝑔ℎ𝑖𝑡  captures temperature exposure above 29°C. 

Descriptive Statistics of the Data 

 Table 3.3 presents the descriptive statistics of the data organized under clay and loam soils. 

The mean corn yield under clay soil was 172.9 bushels/acre with a minimum of 53.23 and a 

maximum of 263.3 bushels per acre. The standard deviation under the clay soil was 47.3 

bushels/acre. Under loam soil, the average corn yield was 175.8 bushels/acre with a minimum of 

67.25 bushels/acre and a maximum of 254.8 bushels/acre. The standard deviation under loam was 

51.15 bushels/ acre. There are not profound deviations between the average corn yields and the 

standard deviation under the two soil types. This is because the possible effect of factors such as 

weather, technology has not been taken into consideration. 

 



 

28 

Table 3.1  MAFES Corn Variety Trials Locations, Counties, and Years, 2000-2018 

County Field Frequency Year 

Bolivar Duke Morgan Farm 1 2000 

    

Coahoma Shelter Farm 1 2010 

 Henry Shelter Farm 4 2004,2006,2007,2009 

 Gale Gable Farm 2 2001-2002 

 David Caudel Farm 1 2003 

    

Desoto Hawks Farm 2 2000,2001 

 Clifton Farms 8 2007-2013, 2016 

 Tim Hudson Farm 3 2002 - 2004 

 Todd William Farm 2 2017 -2018 

    

Hinds MAFES Brown Loam 

Branch 

13 2001-2004, 2006-2008, 

2010-2013,2016-2017 

    

Leflore Adron Farms 3 2011, 2016, 2017 

 Murtaugh-Walker Farm 1 2000 

 Ricky Belk Farm 4 2012-2015 

    

Monroe Chris Ausborn Farm 17 2001-2004, 2006-2018 

    

Noxubee Bob Caldwell Jr.  Farms 4 2000-2003 

 Dorsey Unruh Farm 6 2013-2018 

 Harvey Miller Farm 2 2004,2005 

 MAFES Black Belt Branch 11 2008-2018 

 Stephen Johnson Farm 2 2009 - 2010 

    

Newton MAFES Coastal Plain 

Branch 

6 2000-2001,2003-

2004,2007,2012 

    

Sharkey C & B Farm 1 2014 

 Charlie Darden Farm 1 2012 

 Todd Heigle Farm 4 2015-2018 

 Darden Farm 1 2013 

    

Washington MAFES Delta Branch (clay 

soil) 

16 2002-2004,2006-2018 

 MAFES Delta Branch (loam 

soil) 

9 2010-2018 

    

Yazoo Rob Coker Farm 9 2001-2004,2006-2010 

Source: MAFES Corn Variety Trials, 2000-2018 
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Table 3.2 Summary of Soil Group 

Source: MAFES Variety Trials: 2000-2018

 Loam  Clay 

Morganfield silt loam Brooksville clay 

Reidtown silt loam Brooksville silty clay 

Dundee very fine sandy loam Commerce silty clay 

Bosket very fine sandy loam Forestdale silty clay 

Commerce very fine sandy loam Vaiden silty clay 

Bosket and commerce very fine sandy loam Brooksville and Vaiden silty clay 

Prentis very fine sandy loam Mixture of Dundee silt loam and Tensas silty 

clay 

Loring silt loam Houston clay 

Calloway silt loam Sharkey clay 

Collins silt loam  

Dubbs and Dundee silt loam  

Mixture of Dundee and Dubbs loam  

Dundee and Forestdale silt loam  

Memphis Fayala silt loam  

Memphis silt loam  
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Table 3.3 Summary Statistics for MAFES Corn Variety Trials: 2000-2018 

Variables Mean Std. Dev Min Max 

Clay (n = 65)     

Yield (Bushels / acre) 172.9 47.30 53.23 263.3 

Low Temperature (degree days) 1,177 99.50 904.00 1,406 

Medium Temperature (degree days) 2,298 156.70 1,920 2,676 

High Temperature (degree days) 98.30 32.50 40.670 177.0 

May Precipitation (Inches) 3.632 2.526 0.020 11.05 

June Precipitation (Inches) 3.657 2.509 0.360 13.20 

July Precipitation (Inches) 3.480 2.386 0.240 12.45 

May Mean Temperature (°C) 22.23 1.380 19.70 26.70 

June Mean Temperature (°C) 26.12 1.066 23.90 29.20 

July Mean Temperature (°C) 27.44 1.099 25.00 29.40 

Irrigation (1= Yes, 0 = No) 0.446 0.501 0.00 1.00 

Precipitation (Inches) 18.18 8.183 3.310 40.80 

     

Loam (n = 71)     

Yield (Bushels / acre) 175.8 52.15 67.25 254.8 

Low Temperature (degree days) 1,212 97.33 974.8 1,497 

Medium Temperature (degree days) 2,370 160.9 1,896 2,782 

High Temperature (degree days) 107.6 34.28 43.45 204.1 

May Precipitation (Inches) 4.912 3.625 0.490 17.25 

June Precipitation (Inches) 3.595 2.874 0.020 12.45 

July Precipitation (Inches) 4.264 3.101 0.240 15.87 

May Mean Temperature (°C) 22.33 1.368 17.30 25.20 

June Mean Temperature (°C) 26.29 1.249 22.50 29.20 

July Mean Temperature (°C) 27.43 1.049 24.50 29.40 

Irrigation (1= Yes, 0 = No) 0.479 0.503 0.00 1.00 

Precipitation (Inches) 22.09 8.702 5.58 44.23 

Notes: Reported values for temperature and precipitation are from March through October growing 

season. 
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Figure 3.1 USDA Soil classification triangle. 

Source: USDA/NRCS 
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Figure 3.2 Trial Locations and their Counties: MAFES Variety Trials, 2000-2018 
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CHAPTER IV 

RESULTS AND DISCUSSION 

This chapter presents and discusses the empirical results of the research. The first 

subsection discusses the empirical results of the mean equations, and the results of the 

heteroscedasticity test. The second subsection focuses on the empirical results of the variance 

models. 

Mean Results 

The mean equations are estimated first by OLS for the pooled models and FGLS for the 

fixed-effects and random-effects models. The mean regression estimates are presented in tables 

4.1, 4.2, and 4.3. Tests for heteroscedasticity are conducted using the White’s test and the Breusch-

Pagan-Godfrey test. With a Breusch-Pagan / Cook-Weisberg test statistic of 7.66 (Prob < 0.0057), 

the hull hypothesis of homoscedasticity is rejected, and it is concluded that production risk exists 

for the inputs. The results of the heteroscedasticity tests are presented in Table 4.5. 

The results reveal the non-linear effects of temperature on corn yield. Corn yields are seen 

to be increasing moderately with growing degree days for temperature between 8-29°C, and 

reducing sharply for temperatures above 29°C.These effects are statistically significant and are 

consistent previous studies that have found similar non-linear effects of temperature on yields of 

corn (Schlenker & Roberts (2006,2009). And cotton (Tack et al.2012). June and July average 

temperature exposures to be harmful to corn yield as revealed by the pooled, random, and fixed-

effect models which is consistent with the results of Chen et al., (2004) 
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The impact of irrigation and time trend were found to be significant for the pooled and 

random effect models, regardless of the model specification. The impact was not significant for 

the fixed effect model. Trend was found to impact corn yield for the fixed effects model in Model 

3 but the magnitude of the impact was functional form dependent. The impact of precipitation on 

mean corn yield was positive. Higher precipitation resulted in higher corn yield. However, this 

effect was not statistically significant. The interactions of irrigation and precipitation, irrigation 

and quadratic term of the precipitation variable impacted corn yield for the pooled, random, and 

fixed-effect model but the impact was not significant. But in Model 2 for the fixed-effect model 

the impact of the quadratic term of the precipitation variable was significant. These results are 

consistent with the literature (See Tack et al.,2012; Isik & Devadoss 2006). 

The previous crop variable captured the effects of crops gown at the trial sites in a rotational 

system. It was categorized into three groups: cotton and soybean, corn, and other. The “other” 

category includes wheat/soybean double crop, canola, wheat and oats, grain sorghum, and peanuts. 

The base group for this variable is the previous crop (corn). The impact of this variable was 

dependent on the model and functional form. For the pooled model in Model 3, the impact of 

previous crop (Cotton and Soybean) was significant, but not for the other models and functional 

forms. The Previous crop (Other) had a significant impact only for the fixed-effect models in 

Models 1 and 2 and random-effects model of Model 1. 

  The impact of loam soil on corn yield was positive. This implies that corn yields tend to be 

higher in loam soil than in clay soil. This finding is consistent with the results of Liang & 

MacKenzie. (1994) and Ziadi et al. (2013). Specifically, the results of a study by Liang and 

Mackenzie (1994) revealed that corn grain yield was lower in a clay soil compared to a sandy soil 

while Ziadi et al., (2013) found corn yield to be higher in a sandy loam soil compared to clay and 
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clay loam soils in Quebec. In fact, a study by Samson et al., (2019) showed that corn yield were 

lower in silty clay soils compared to corn yields in sandy loam soils during warmer and wetter 

years. The reason for this may be high water holding capacity of clay that can negatively affect 

corn yields during wet periods (Cox et al. 2003). Conversely, corn yields have been found to be 

higher in clay soil than loam and sandy soils (Cambouris et al., 2016). However, the positive 

impact of soil on mean corn yield observed in this study is not statistically significant. 

Variance Results 

The squared residuals (e) from the three mean equations are used as dependent variables 

for the variance equations respectively. Because the location-specific effects have already been 

taken out from the idiosyncratic residuals, the variance equations are estimated all by the pooled 

data model.  

Majority of the variables in the variance equations did not have significant impacts on corn 

yield risk.  Temperature exposure impacted corn yield variance.  However, its magnitude and 

direction are model dependent.  For Model 1 and Model 2 (Tables 4.5,4.6) low-temperature 

exposure is seen to be positively increasing corn yield variance while high-temperature exposure 

had a negative impact on corn yield risk. Medium temperature exposure is found to have a negative 

relationship with corn yield variance for all three-panel models of Model 1 (Table 4.5) and the 

fixed effect model specification of Model 2 (Table 4.6). For the pooled and random-effects models 

in Model 2, the effect of medium temperature is positive.  However, the effects of the various 

temperature exposures are not significant. This contradicts with the findings of Tack et al., (2012) 

that find significant impact medium temperature exposure on the second moment of cotton yield 

in Mississippi, while high temperature exposures impacted all three moments of cotton yield in 

Mississippi. This is likely due to the small sample size and variation in temperature of this study. 
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Again, while the Tack et al., (2012) model estimates raw moments, this study’s variance equation 

is a central moment. 

Consistent with the results of Tack et al., (2012), precipitation and its quadratic term did 

not have a significant impact on corn yield variance. Also, trend and previous crop did not have 

any significant effect on yield risk (Tables 4.5, 4.6, and 4.7). May and July monthly average 

temperatures and monthly precipitation in May and June had impacted yield risk but these impacts 

were not significant (Tables 4.5,4.6, and 4.7).  

 Average monthly temperature of June, irrigation, and precipitation in July were found to 

have clear effects on corn yield risk. The impact of irrigation on corn yield variance was negative 

for all three models, but this effect was significant only for the random and fixed-effects models 

in Model 1. A significant negative effect is seen for average temperature in June while a significant 

positive impact is seen for precipitation in July. (Tables 4.5,4.6, and 4.7). The interaction between 

irrigation and precipitation had no significant effect on corn yield variance which contradicts the 

findings Tack et al.(2012). 

Loam soil is seen to be impacting corn yield variance. As shown in Tables 4.5, 4.6, and 

4.7, loam soil is seen to have a positive significant impact on corn yield variance compared to clay 

soils. This finding is significant for the pooled, random-effects, and fixed-effects models residuals 

in Model 1 (Tables 4.5), random-effects model in Model 2 (Table 4.6), and for the pooled and 

random-effects model in Model 3 (Table 4.7).  Studies such as  Woodard, (2016)  and  Carew et 

al., (2016)  have both found evidence of the of soils impact on corn and wheat yield variability 

respectively. Thus, this result corroborates the effects of soil on yield risk as shown by previous 

studies.  

This implies that yield deviation from the average is higher in loam soils that it is for clay 
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soils making yield in loam soils relatively unstable than it is for clay soils. A comparison of the 

minimum and maximum yields between the two soils reveal that the minimum yield of loam soil 

is relatively higher than that of clay soil while the maximum yield is relatively higher for clay than 

loam soil. This provides evidence that soil type impacts corn yield variability. The results reveal 

that loam soil had higher yield relative clay soils. However, it is also associated with higher yield 

instability. The rating of clay and loam soils separately in crop insurance could be a direct policy 

implication. 
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Table 1.1 Just-Pope Mean Yield Estimates for MAFES Corn Variety Trials, 2000-2018 

(Model 1) 

Variable Pooled Model Random Effects Model Fixed Effects 

Model 

    

Low Temperature  0.009 -0.038 -0.051 

 (0.057) (0.056) (0.060) 

Medium Temperature   0.076** 0.087*** 0.081** 

 (0.034) (0.034) (0.037) 

High Temperature  -0.452*** -0.482*** -0.427*** 

 (0.120) (0.117) (0.123) 

Precipitation 0.318 1.207 1.594 

 (1.445) (1.434) (1.525) 

Precipitation Squared -0.029 -0.048 -0.053 

 (0.031) (0.030) (0.032) 

Irrigation 59.550*** 51.947*** 18.765 

 (6.496) (11.559) (26.324) 

Loam Soil  6.220 8.002  

 (6.479) (9.920)  

Trend 2.055*** 1.352** 0.897 

 (0.633) (0.651) (0.729) 

Previous Crop (Cotton & 

Soybean) 

9.957 10.150  10.970 

 (7.274) (7.417) (7.989) 

Previous Crop (Other) 18.901 25.675** 28.963** 

 (12.909) (12.831) (13.511) 

Constant -16.651 16.160 55.875 

 (49.894) (52.470) (58.654) 

    

Observations 134 134 134 

R-squared 0.56 0.55 0.42 

Notes: Values in parentheses are standard errors. *, **, *** denotes significance at the 10%, 5%, 

and 1% levels, respectively The base group for the soil type variable is clay, and that of the 

previous crop is corn. Weather variables are aggregated for the months, March – October. 

  



 

39 

Table 4.1 Just- Pope Mean Yield Estimates for MAFES Corn Variety Trials, 2000-2018 

(Model 2) 

Variables Pooled Model Random Effects Model Fixed Effects 

Model 

    

Low Temperature 0.016 0.012 -0.040 

 (0.057) (0.057) (0.060) 

Medium Temperature 0.066* 0.067** 0.068* 

 (0.034) (0.034) (0.038) 

High Temperature -0.433*** -0.438*** -0.412*** 

 (0.122) (0.122) (0.124) 

Precipitation 2.117 2.145 2.828 

 (2.004) (1.998) (2.006) 

Precipitation Squared -0.057 -0.058 -0.069* 

 (0.039) (0.039) (0.039) 

Irrigation 90.109*** 89.139*** 42.050 

 (32.940) (32.922) (43.179) 

Loam Soil  5.965 6.089  

 (6.574) (6.746)  

Trend 2.148*** 2.106*** 1.102 

 (0.637) (0.638) (0.739) 

Previous Crop (Cotton & 

Soybean) 

10.735 10.529 10.529 

 (7.273) (7.275) (8.000) 

Previous Crop (Other) 16.676 17.179 25.704* 

 (12.963) (12.947) (13.648) 

Irrigation*Precipitation -1.846 -1.760 -0.447 

 (3.354) (3.349) (3.444) 

Irrigation*Precipitation Squared 0.012 0.009 -0.023 

 (0.082) (0.082) (0.083) 

Constant -28.499 -25.341 51.513 

 (50.982) (50.982) (59.000) 

    

Observations 134 134 134 

R-squared 0.57 0.57 0.47 

Notes: Values in parentheses are standard errors. *, **, *** denotes significance at the 10%, 5%, 

and 1% levels, respectively. The base group for the soil type variable is clay, and that of the 

previous crop is corn. Weather variables are aggregated for the months, March – October.  
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Table 4.2 Just- Pope Mean Yield Estimates for MAFES Corn Variety Trials, 2000-2018 

(Model 3) 

 Variables Pooled Model Random Effects Model Fixed Effects 

Model 

    

May Mean Temperature 1.037 0.938 -0.491 

 (2.604) (2.530) (2.585) 

June Mean Temperature -8.369** -8.292** -7.656** 

 (3.532) (3.467) (3.543) 

July Mean Temperature -6.267* -6.224* -5.655* 

 (3.462) (3.321) (3.285) 

May Precipitation 0.072 0.166 0.786 

 (3.575) (3.488) (3.506) 

June Precipitation 6.509* 6.066 4.701 

 (3.858) (3.859) (4.372) 

July Precipitation -7.325* -6.508 -4.654 

 (4.316) (4.162) (4.280) 

Irrigation 66.065*** 62.964*** 28.925 

 (6.875) (9.386) (27.284) 

Loam Soil 9.554 7.438  

 (6.540) (8.538)  

Trend 2.859*** 2.507*** 1.573** 

 (0.667) (0.674) (0.758) 

Previous Crop (Cotton & 

Soybean) 

12.754* 10.266 7.153 

 (7.605) (7.671) (8.123) 

Previous Crop (Other) 4.677 7.269 11.666 

 (13.246) (13.232) (13.717) 

Constant 472.909*** 478.865*** 507.245*** 

 (106.381) (109.117) (117.550) 

    

Observations 134 134 134 

R-squared 0.54 0.54 0.160 

Notes: Values in parentheses are standard errors. *, **, *** denotes significance at the 10%, 5%, 

and 1% levels, respectively. The base group for the soil type variable is clay, and that of the 

previous crop is corn. Weather variables are aggregated for the months, March – October.  
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Table 4.3 Testing for Heteroscedasticity and Evidence of Production Risk 

 𝛘𝟐  Statistic Df. p Value 

White’s test:    

𝑒2 on Yhat 1.13 1 0.2896 

𝑒2 on Yhat2 1.30 1 0.2566 

    

Breusch-Pagan / Cook-Weisberg test 7.66 1 0.0056 
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Table 4.4 Just-Pope Variance Estimates for MAFES Corn Variety Trials, 2000-2018 (Model 

1) 

Variable Pooled Model Random Effects 

Model 

Fixed Effects 

Model 

    

Low Temperature 0.710 0.555 0.630 

 (2.862) (2.124) (1.939) 

Medium Temperature -0.301 -0.472 -0.768 

 (1.695) (1.258) (1.148) 

High Temperature -5.644 -4.358 -3.616 

 (6.074) (4.509) (4.115) 

Precipitation 8.519 8.214 6.759 

 (72.976) (54.175) (49.437) 

Precipitation Squared -0.590 -0.451 -0.375 

 (1.564) (1.161) (1.060) 

Irrigation -435.995 -479.503* -449.228** 

 (328.136) (243.598) (222.293) 

Loam Soil  550.596* 491.212** 406.447* 

 (327.263) (242.950) (221.702) 

Trend -16.790 -23.912 -28.198 

 (31.998) (23.754) (21.677) 

Previous Crop (Cotton & 

Soybean) 

413.971 176.924 83.595 

 (367.447) (272.781) (248.924) 

Previous Crop (Other) 574.121 641.434 720.298 

 (652.068) (484.075) (441.739) 

Constant 1,384.159 1,838.123 2,452.414 

 (2,520.259) (1,870.962) (1,707.332) 

    

Observations 134 134 134 

R-squared 0.061 0.109 0.127 

Notes: Dependent variables are the squared residuals estimated from the mean yield equation of 

Model 1. Values in parentheses are standard errors. *, **, *** denotes significance at the 10%, 

5%, and 1% levels, respectively. The base group for the soil type variable is clay, and that of the 

previous crop is corn. Weather variables are aggregated for the months, March – October.  
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Table 4.5 Just-Pope Variance Estimates for MAFES Corn Variety Trials, 2000-2018 (Model 

2) 

Variable Pooled Model Random Effects 

Model 

Fixed Effects Model 

    

Low Temperature 0.014 0.014 0.578 

 (2.602) (2.532) (1.823) 

Medium Temperature 0.243 0.237 -0.728 

 (1.562) (1.520) (1.095) 

High Temperature -5.496 -5.470 -3.400 

 (5.617) (5.467) (3.936) 

Precipitation -70.570 -67.979 -21.915 

 (91.930) (89.465) (64.419) 

Precipitation Squared 0.723 0.695 0.234 

 (1.800) (1.752) (1.261) 

Irrigation -2,270.077 -2,194.173 -1,296.951 

 (1,511.363) (1,470.848) (1,059.074) 

Loam Soil  496.737 500.151* 320.604 

 (301.647) (293.560) (211.376) 

Trend -10.848 -11.217 -19.464 

 (29.236) (28.452) (20.487) 

Previous Crop (Cotton & 

Soybean) 

344.920 322.245 52.726 

 (333.705) (324.759) (233.841) 

Previous Crop (Other) 577.085 578.243 616.612 

 (594.782) (578.837) (416.788) 

Irrigation*Precipitation 121.316 115.411 70.019 

 (153.871) (149.746) (107.824) 

Irrigation*Precipitation 

Squared 

-1.326 -1.249 -1.332 

 (3.756) (3.655) (2.632) 

Constant 1,957.440 1,919.363 2,696.680 

 (2,339.219) (2,276.511) (1,639.187) 

    

Observations 134 134 134 

R-squared 0.09 0.09 0.14 

Notes: Dependent variables are the squared residuals estimated from the mean yield equation of 

Model 2. Values in parentheses are standard errors. *, **, *** denotes significance at the 10%, 

5%, and 1% levels, respectively. The base group for the soil type variable is clay, and that of the 

previous crop is corn. Weather variables are aggregated for the months, March – October.  
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Table 4.6 Just-Pope Variance Estimates for MAFES Corn Variety Trials, 2000-2018 (Model 

3) 

Variable Pooled Model Random Effects 

Model 

Fixed Effects Model 

    

May Mean Temperature -18.610 -38.818 -82.799 

 (127.171) (105.088) (93.104) 

June Mean Temperature -395.005** -351.069** -260.839** 

 (172.504) (142.550) (126.293) 

July Mean Temperature 192.318 187.528 160.497 

 (169.078) (139.719) (123.785) 

May Precipitation -234.099 -232.880 -176.829 

 (174.574) (144.260) (127.808) 

June Precipitation -17.289 -14.837 -3.793 

 (188.413) (155.696) (137.940) 

July Precipitation 321.829 320.968* 286.983* 

 (210.778) (174.177) (154.314) 

Irrigation -402.233 -425.525 -270.939 

 (335.754) (277.453) (245.811) 

Loam Soil  607.886* 453.370* 156.405 

 (319.410) (263.946) (233.845) 

Trend 8.206 -3.234 -17.842 

 (32.577) (26.920) (23.850) 

Previous Crop (Cotton & 

Soybean) 

322.689 193.158 -5.545 

 (371.429) (306.932) (271.929) 

Previous Crop (Other) -395.554 -209.610 72.659 

 (646.921) (534.587) (473.621) 

Constant 6,146.193 5,680.080 5,233.035 

 (5,195.498) (4,293.331) (3,803.705) 

    

Observations 134 134 134 

R-squared 0.14 0.17 0.15 

Notes: Dependent variables are the squared residuals estimated from the mean yield equation of 

Model 3. Values in parentheses are standard errors. *, **, *** denotes significance at the 10%, 

5%, and 1% levels, respectively. The base group for the soil type variable is clay, and that of the 

previous crop is corn. Weather variables are aggregated for the months, March – October.  
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CHAPTER V 

SUMMARY AND CONCLUSION 

This research examines the effects of soil on corn yield risk which have direct implication 

for the inclusion of soil information in crop insurance premium rating. It uses corn yield and soil 

type data from MAFES variety trials and temperature data from the PRISM climate group. This 

research contributes to the literature on yield modeling by analyzing the effects of soil type on 

corn yield and its variability. 

The modeling framework follows the Just–Pope (1978,1979) production risk specification, 

while the empirical model specification follows the higher moments models of Tack et al., (2012) 

with some modifications of including the soil type variable. Due to the limitation of degree of 

freedom, the various soil types across the trial locations are grouped into two major categories 

(clay and loam). A two-step procedure is conducted. In the first step the mean equations of yield 

are estimated by the random-effects model, fixed-effects model and pooled model for each of the 

three different functional forms. The dependent variables for the variance equations are the 

residuals from the estimated mean equations.  

The main findings are that loam soil had an insignificant positive impact on mean corn 

yield, but a significant positive effect on corn yield variance compared to clay soil. This implies 

higher corn yield variance associated with loam soils than with clay soils. In addition, the results 

reveal that corn yield increases with accumulation of heat at moderate temperatures and reduces 

significantly at higher temperature levels. Irrigation is also found to increase average corn yield 
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and reduce yield variance (though not statistically significant for Models 2 and 3). Total growing 

season precipitation does not have any significant impact. The average monthly temperatures in 

June and July is found to be reducing corn yields while average temperature in June is found to 

reduce corn yield variance. Precipitation in June also increases mean corn yield while precipitation 

in July is found to reduce mean corn yields and increase corn yield variance. This specifically 

implies that precipitation may not offset the negative effects of the temperatures in June and July.  

These results have direct policy implications for crop insurance premium rating. RMA’s 

aspiration to achieve higher accuracy of premium rates could be achieved by incorporating high-

resolution soil and weather variables in the rating procedure. The inclusion of such data in the 

rating procedure is dependent on research that demonstrates the effects of soil and weather 

variables on crop yield risk. However, few research projects have been conducted to examine the 

effects of soil type on corn yield risk. This research fills the gap in the literature and demonstrates 

the effects of soil type on corn yield risk. As loam and clay soils could be rated differently in crop 

insurance premium rating as a direct policy implication. 

This research is characterized by some major limitations. First, this research is unable to 

differentiate the effects of corn varieties on yield. This is because different varieties are introduced 

into the trials each year, which is a common issue for long term trials. As a result, there was no 

variety or group of varieties that appeared consecutively for the entire trial period. Although the 

study uses an aggregation procedure to limit the effects of variety on yield, such procedure may 

not be as efficient as directly controlling for the effects of variety on yield. 

Second, the research is unable to account for the effects of inputs as fertilizer and chemicals 

on corn yield. Fertilizers have been shown to have significant impact on yields and may influence 

corn yield variance. However, this study is unable to evaluate such effects due to the uniform rate 
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application of fertilizers and chemicals in each trial which made it impossible to include fertilizer 

as an explanatory variable in the regression model. 

In addition to the above, the failure to evaluate other soil properties such as organic matter 

content, soil available water, soil quality or productivity measures on corn yield risk poses a 

limitation to the intent of this study. This is also due to the unavailability of data to warrant such 

analysis. The MAFES corn variety trials do not report such information for the different locations. 

Such soil data could have been obtained if the exact coordinates of the trial fields were available, 

but such coordinates are also not provided. Such soil properties have been demonstrated to 

influence crop yield and an evaluation of their impacts on corn yield risk may provide insights for 

policy recommendations. 

Also, due to the unavailability of coordinates for the trial sites, temperature data obtained 

from the PRISM climate group was at the county level which might not necessarily be the same 

for the exact locations. But since the weather variation over space is generally slow, the deviation 

of PRISM prediction from the actual location-specific temperature may be minor  

Further, the study recognizes that the estimation procedure used for the analysis is not the 

best and poses a limitation to the results. As already mentioned in the empirical section, Saha et 

al. (1997) point out that the estimation of the Just and Pope (1978,1979) production function by 

maximum likelihood provides efficient and unbiased estimates compared to the feasible 

generalized least squares method. Due to data limitations and the small number of observations, 

however, the study is unavailable to employ the maximum likelihood estimation procedure for its 

analysis. 
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Despite these limitations, this study presents compelling evidence of the impact of soil type 

on corn yield risk. Future research is needed to address these limitations and to improve the 

estimation of soil effects. 
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