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in the state description. Searching the large graphs required in model checking requires

an effcient algorithm. This dissertation explores several methods to improve an external-

memory search algorithm for model checking problems. A tool implementing these meth-

ods is built on top of the Murphi model checker. One improvement is a state cache for

immediate detection leveraging the properties of state locality. A novel type of locality, in-

tralayer locality is explained and shown to exist in a variety of search spaces. Another im-

provement, partial delayed duplicate detection, exploits interlayer locality to reduce search

times. An automatic partitioning function is described that allows hash-based delayed

duplicate detection to be used without domain knowledge of the state space. A phased

delayed duplicate detection algorithm combining features of hash-based delayed duplicate



detection and sorting-based delayed duplicate detection is explained and compared to the

other methods.
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CHAPTER 1

INTRODUCTION

This dissertation describes an external-memory breadth-frst graph search algorithm

that can be applied to model checking. The fundamental algorithm, breadth-frst graph

search has many applications, but this dissertation focuses on model checking for several

reasons. First, model checking typically requires exhaustive searching of very large graphs.

Second, implementation of a search algorithm in a model checker requires development of

an automatic and domain-independent approach to graph search because the model checker

accepts different models as input. This model-checking application allows the search algo-

rithm to be tested on graphs of different sizes and properties. Third, the problem of model

checking has considerable scientifc and commercial importance.

Model checking is a methodology for verifying that propertyX is satisfed, or modeled,

by transition system M . The transition system is often a protocol such as for wireless

communication or an embedded hardware device. A violation of the property creates an

error in the protocol that needs to be detected and corrected. For example, in a wireless

protocol, an error could mean the irrecoverable loss of a packet. It is advantageous to use

model checking to fnd certain errors during the design phase that are diffcult to detect

through testing and simulation, particularly to fnd errors that occur after long or unusual
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sequences of events. Unlike simulation and testing, model checking can also guarantee the

absence of an error. Model checking has proven to be an effective and practical tool widely

used to test and verify safety-critical systems.

The external-memory breadth-frst search algorithm described in this dissertation is im-

plemented in Mur° [15, 16], a well-known model checker that takes the specifcation of a

model and a property as input and verifes that the model satisfes the property by exhaus-

tively searching the state-space graph representing all possible behaviors of the model. The

original Mur° model checker includes an implementation of an internal-memory breadth-

frst search algorithm that is limited in the size of models it can verify by the size of RAM.

It also includes implementation of a primitive, ineffcient external-memory breadth-frst

search developed more than ffteen years ago [16]. Many improved methods for external-

memory graph search have been developed over the past few years, and they provide a

starting point for the implementation described in this dissertation.

Breadth-frst graph search is a memory-intensive algorithm, since all nodes of the graph

typically need to be stored in memory in order to detect duplicate nodes. On a typical

desktop computer, a breadth-frst search algorithm can fll RAM within minutes. For large

graphs, an external-memory search algorithm is needed to store visited nodes of the graph

on disk. The largest models tested for this dissertation require more than two hundred

gigabytes of disk storage and days of computer time to search the entire graph.

Over the past few years, developers have shown great interest in building external-

memory graph-search algorithms, not only for model checking but in the felds of artif-

cial intelligence search algorithms, high-performance computing, and even computational

2



group theory. One goal of this dissertation is to show that new techniques for scalable

external-memory graph search developed in the artifcial intelligence search community

can be applied to model checking. In addition, this dissertation describes several original

techniques for improving the effciency of external-memory graph search.

1.1 Organization

The dissertation is organized as follows. Chapter 2 describes relevant background

information about the relationship between model checking and graph search. Chapter

3 describes improvements of a breadth-frst search algorithm for external-memory model

checking that uses a sorting-based approach to duplicate detection, including use of a state

cache in the form of a hash table in RAM that stores frequently accessed states that would

otherwise be stored on disk. It also describes a more effcient method for merging sorted

fles and explains an approach to partial checking of the set of closed nodes on disk that

leverages the storage of closed nodes in breadth-frst layers. Chapter 4 describes a novel ap-

proach to automatic partitioning that allows hash-based delayed duplicate detection (DDD)

to be implemented in a model checker. Chapter 4 also introduces phased delayed duplicate

detection, which combines some aspects of sorting-based and hash-based DDD. Chapter 5

concludes the dissertation, summarizes the contributions of this work, and proposed future

work.

3



CHAPTER 2

BACKGROUND

This background chapter provides an overview of model checking, the relationship

between model checking and graph search, and previous work on search algorithms for

external-memory model checking. Much of this information can be found in model check-

ing textbooks [12, 37]. This chapter also reviews the Mur° model checker [16] that serves

as a platform for implementing the search algorithms developed in this dissertation and

describes the models used as test cases. This information provides a starting point from

which to explain the signifcance of this dissertation. Additional relevant background that

provides context for specifc contributions will be reviewed in later chapters.

2.1 Model Checking

Model checking provides an automated approach to analysis and verifcation of re-

active systems that have a fnite state space or fnite-state abstractions. The term reactive

system refers to a system that maintains an ongoing interaction with its environment and

typically does not terminate, in contrast to a traditional program that produces an output

and terminates. Examples of reactive systems include process controllers, operating sys-

tems, and communication networks. In practice, model checking has been successfully

4



used to verify reactive systems including sequential circuit designs and communication

protocols.

A reactive system typically consists of several components operating in parallel and

communicating via messages (in the case of distributed systems) or shared variables (in

the case of concurrent systems). Concurrency makes reactive systems especially diffcult to

analyze and debug. For applications where errors are expensive or potentially catastrophic,

it is often cost effective to formally analyze the hardware or software components of a

reactive system in order to detect errors in the design phase before deployment.

Model checking and theorem proving are the two main approaches to formal verifca-

tion. Theorem proving involves showing that a system meets its specifcation by construct-

ing a proof based on axioms and inference rules in a deductive system, such as temporal

logic. Due to the complexity of mechanical theorem proving, however, theorem-proving

software is typically interactive and requires human expertise and help at many steps along

the way, and proof construction can take days or months to complete.

Where theorem proving is based on proof-theoretic reasoning, model checking adopts

model-theoretic reasoning as an approach to formal verifcation. A model checker takes

as input a fnite-state description of the analyzed system’s behavior and the specifcation

of one or more properties expected to hold for the system. (Specifcations are often writ-

ten as formulas in temporal logic, which is particularly useful for expressing concurrency

properties.) To show that a system meets its specifcation, a model checker shows that the

system is a model, in the semantic sense, of the temporal logic formulae. An advantage

of model checking over theorem proving is that it is much more easily automated, espe-
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cially for fnite-state concurrent systems. A model checker can determine whether a model

meets its specifcation simply by performing an exhaustive search of all execution paths

in the model. If the model does not meet the specifcation, the model checker produces

a counterexample execution trace that can be used to help discover why the specifcation

does not hold.

To understand model checking, one must understand how to model a reactive system

as a transition system, how to specify the properties the reactive system should satisfy,

and how to algorithmically check whether these properties are satisfed using reachability

analysis in a state-space graph. The following section reviews each of these aspects of

model checking in turn.

2.1.1 Transition Systems

A reactive system can be formally represented as a transition system, which is a tuple

M = (S, S0, R, AP, L) with the following components:

• S is a nonempty, fnite set of states (the state space);

• S0 ⊆ S is a nonempty subset of initial states;

• R ⊆ S × S is a transition relation;

• AP is a set of atomic propositions, i.e., Boolean expressions over variables, con-

stants, and predicate symbols; and

• L : S → 2AP is an interpretation, which is a function that maps each state in S to

the set of atomic propositions that are true in that state. (The notation 2AP represents

the powerset of AP .)

Intuitively, a transition system defnes the possible behaviors of a system. Starting from

an initial state, the system evolves by making a sequence of transitions from one state to
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another. When more than one transition can be made in a given state, the transition is

selected nondeterministically. If the set S0 contains more than one initial state, the initial

state is also selected nondeterministically. Given a total transition relation, the system is

nonterminating.

A transition system corresponds to a directed graph, where the nodes represent the sys-

tem states and the arcs represent possible transitions between states. As a result, a transition

system is sometimes called a state transition graph or, more precisely, a labeled state tran-

sition graph. It differs from a simple graph in that the nodes are labeled with propositions

that represent atomic properties that hold in the corresponding state. The interpretation

function is denoted L because it assigns these labels. The state transition graph is equal to

a fnite automaton, and because a node can have multiple outgoing edges that correspond to

multiple possible transitions from a state, it is a nondeterministic automaton. A transition

system can also sometimes be called a Kripke structure, after the logician Saul Kripke,

since properties of the system are expressed as formulae in temporal logic of which the

state transition system is to be a model, and temporal logics are traditionally interpreted in

terms of Kripke structures.

Transition systems serve as simple, low-level representations with none of the seman-

tic complications of high-level programming languages. But, of course, constructs such

as branches, loops, and even procedure calls can be modeled within a transition system

using explicit control variables. In practice, reactive systems are usually described in a

higher-level modeling language specifc to a model checker, which, in the case of Mur°,

is a pseudo-programming language described in Section 2.2. Even though the model is
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described in a pseudo-programming language, the operational semantics of the modeling

language are defned in terms of transition systems. Note that the transition system that

corresponds to the model’s description in such a language typically has a size exponential

to the length of the description.

2.1.2 Temporal Properties

The interpretation L in a fnite-state transition system defnes local properties of states.

Often one is also interested in global properties of the transitional behavior. For example,

one might be examining reachability properties, such as, “Can we reach from an initial

state, a state where the atomic proposition P holds?” These more complicated global

properties are called temporal properties, where a temporal property is defned semanti-

cally as a set of behaviors (infnite sequences of states) that represent those executions of

the system that satisfy the property. In this defnition, note that a behavior is understood to

be a sequence of states, and a temporal property is a predicate on behaviors.

Temporal logics are logical formalisms designed to express such properties. Several

variants of propositional temporal logic have been used to express temporal properties -

including linear temporal logic and branching time temporal logic - and different model

checking tools have been developed to support different variants of temporal logic. In

this dissertation, details of different temporal logics and how they can be used to express

temporal properties are avoided in favor of a high-level summary of different types of

temporal properties.
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Safety and liveness properties are the most important temporal properties, and although

this dissertation focuses on safety properties, both will be briefy discussed. A safety prop-

erty is defned as a property in which some error state never occurs. Deadlock is an im-

portant example of an error state in protocols, especially mutual exclusion protocols, and

refers to a protocol that reaches a situation with no possible egress. Protocols often share

resources, and mutual exclusion protocols attempt to avoid deadlock in accessing those

shared resources.

In a famous example of mutual exclusion, dining philosophers sit at a table eating or

thinking deep thoughts. To commence eating, a philosopher must pick up frst one fork and

then another. When fnished eating, the philosopher replaces the forks one at a time as well.

To make this a mutual exclusion example, there must be too few forks for all philosophers

to dine at the same time, so the philosophers could reach a deadlock condition. If all

philosophers have one fork and desire a second fork, and there is no provision for one

philosopher preempting another philosopher’s right to the fork, the situation is deadlocked.

There is no possibility to reach another state, so an error condition has been reached.

Model checking can be used to determine whether a system is deadlock free, as well

as to check other safety properties. Other examples of error states that can be checked as

safety properties include buffer overfow or fle corruption. (Note that if a reactive system

fails to satisfy a safety property, a fnite execution trace reveals this fact.)

Where a safety property can be described as a property for which “something bad never

happens,” a liveness property can be described as a property for which “something good

eventually happens.” For example, momentarily being unable to send a token because of
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network conficts is fne, as long as the token can eventually be sent. If the token can never

be sent, that is a liveness error. Other examples of liveness properties include livelock and

message denial.

The dining philosophers can provide an example of livelock as well. If the philoso-

phers arrive at a point where they each hold a single fork and no other forks are available,

each can place his or her fork back on the table - a reasonable way to avoid the deadlock

described previously. Let us consider just two philosophers, both holding one fork in the

previous deadlock state. Our new rule causes both philosophers to put down the forks they

have. Now there are two free forks. The philosophers each pick one up, and we reach

the previous error state of no available forks, so the philosophers again replace their forks.

This process can repeat indefnitely; as defned, the rule will not prevent this cycle. A

cycle where neither philosopher ever eats is livelock, but remember, a liveness property

is defned as “something good eventually happens.” In this case, the philosophers being

able to eat is good, but we have found an infnite path where neither philosopher ever eats,

violating the liveness property.

A later section of this dissertation will demonstrate that checking liveness properties is

more complex than checking safety properties, partially because, if a system fails to satisfy

a liveness property, the counterexample found by a model checker does not take the form

of a simple execution trace.

In some cases, it is important for liveness properties to satisfy fairness conditions, but

although this concept is important in model checking, it is not relevant to this dissertation.
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2.1.3 Reachability Analysis and Graph Search

A model checker decides whether transition system M is a model of a temporal logic

formula °, i.e., whether M satisfes °, abbreviated M |= °. If so, the transition system

satisfes the property specifed by the temporal logic formula.

This decision procedure can be performed by doing a reachability analysis, which in-

volves using a search algorithm to traverse the state-space graph of the transition system,

beginning from an initial state. As mentioned earlier, a temporal property is defned as a set

of behaviors (where a behavior is an infnite sequence of states) that represent those execu-

tions of the system that satisfy the property. A path in transition system M is a nonempty

sequence of states ˇ = (s0, s1, ...), such that s0 ∈ S0 and ∀i ≥ 0, (si, si+1) ∈ R. A state

t ∈ S is said to be reachable in M if there is a path in M from some initial state to t. The

reachable state space, the set of states reachable from an initial state, is a subset of the

state space and can only be determined by search.

The temporal properties checked by a model checker can be defned in terms of reach-

ability. Thus, by exploring the states of a transition system reachable from an initial state,

one can verify both safety properties and liveness properties.

Safety properties can be checked by traversing the reachable state space and showing

that an error state that represents a violation of the safety property can never be reached.

For example, in the graph of a transition system, deadlock corresponds to a node with

either no outgoing edges or with all outgoing edges pointing back to itself. Reachability

analysis can establish whether or not such a state exists in the state transition graph and is

reachable from an initial state. Reachability analysis can be performed using depth-frst,
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breadth-frst, or best-frst search, and all have been used in model checking. If the search

algorithm fnds an error state, it terminates and returns the path from an initial state to the

error state. The path (or execution trace) can be used to help diagnose the error. When a

best-frst search algorithm is used to traverse the state space, it employs a heuristic to guide

the search toward an error state; in this approach, error states can be viewed as goal states

for the search algorithm [21].

The state-space graph of the transition system is not given explicitly to the model

checker. Instead, it is defned implicitly by a set of transition rules and a nonempty set of

initial states. Given the transition rules, the model checker can generate the successor states

of any state. In model checking, the search algorithm does this on the fy, which means the

model checker generates the state-space graph in the course of traversing the graph. The

search algorithm begins with a queue that contains the start state. The algorithm removes

states from the queue in an order that depends on the search strategy (for example, depth-

frst, breadth-frst, or best-frst) and generates the successors of each state. In a graph, a

successor state could be a duplicate of a state that has already been generated, since the

same state can be reached by different paths in a graph. To detect duplicate states, the

search algorithm stores previously generated states. In standard, internal-memory search,

the algorithm stores previously generated states in a hash table and compares each newly

generated successor state to the set of previously generated states to determine if it is a

duplicate. A successor state is considered a candidate until it is proven to be unique, then

it is added to both the queue and the hash table. The process of checking for duplicate

states is called duplicate detection.
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This dissertation employs breadth-frst search to verify safety properties. Unlike depth-

frst search, breadth-frst search is better able to detect duplicate states when searching a

graph, an important advantage since this research focuses on how best to detect duplicate

states when a graph is so large the graph-traversal algorithm must use disk memory as well

as RAM. Other advantages of breadth-frst search include easier parallelization and simpler

algorithms for using disk memory, when compared to depth-frst search or best-frst search.

Breadth-frst search is also guaranteed to return the shortest counterexample.

Simple breadth-frst traversal of a state transition graph can verify safety properties,

but liveness properties usually require a more complex search strategy. A liveness property

specifes that something good eventually happens. Thus, it is not enough to check for a

single reachable state in an error condition. Instead, one must check for a cycle of states

that includes failure of the property.

Traditional search for liveness properties includes two stages: one, to fnd error states,

and two, to search for a cycle that includes an error state. One way to do this is with nested

depth-frst search algorithm [14], which launches a secondary search at each detected er-

ror state. If the secondary search fnds a cycle that returns to the error state, a violation of

the liveness property has been found. Schuppan and Biere [70, 71] found a way to reduce

checking for liveness properties to checking for safety properties. The Schuppan and Biere

algorithm works by keeping track of two states for every state. The second state, which is

blank for the start state, represents an ancestor error state of the current state. This repre-

sentation reduces checking for liveness properties to simple graph traversal, without any

secondary search. When a state and its error ancestor match, a cycle containing the error
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state has been discovered. The Schuppan and Biere reduction allows breadth-frst search

to be used to check for liveness properties, whereas traditionally, checking for liveness

properties requires depth-frst search. Breadth-frst search lends itself much more easily

to duplicate detection than depth-frst search, so it is often more effcient. But storing a

double state for each state in the graph doubles the memory requirements of the search

algorithm. Moreover, states may have multiple error state ancestors, and each additional

ancestor creates an additional double state to search and store. Thus, Schuppan and Biere’s

algorithm can suffer from a dramatic increase in space requirements compared to simply

checking for safety properties.

The Mur° model checker used in this research only checks for safety properties. How-

ever, it could also be used to check for liveness properties if the reduction described by

Schuppan and Biere were implemented in the Mur° software. Because Schuppan and

Biere’s algorithm more than doubles the storage requirements of the search, the space scal-

ability provided by the algorithm presented in this dissertation would be especially helpful.

2.1.4 Purposes of Model Checking

Model checking is used to eliminate error conditions in a transition system. After a

transition system is designed, model checking would be used to fnd error states. As each

error state is found, the transition system would be redesigned to avoid the detected error.

The goal is to create a transition system without error states. This is an iterative process

where many models with error states are searched before a fnal model with no errors is

verifed.
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The purpose of a model checking tool is two fold. First, it should detect error states.

Second, it should verify that models are error free. The most useful model checking tools

can detect errors and verify models. As will be explained further in Section 2.2.5, models

with error states exhibit a different graph structure than models without error states. A

model checking tool should be tested on models with and without error states, to ensure

it works on both types of graphs. Tools that only work on models with errors (or only on

models without errors) are not as universal or as useful as tools that work on both kinds of

graphs.

2.1.5 State Explosion Problem

The combinatorial explosion of the reachable state space - even in moderately sized

applications - presents an important problem pervasive in all model-checking tools. The

exact size of the reachable state space is not known in advance, since it is a subset of the full

state space that can only be determined by search. The number of reachable states in the

graph tends to increase exponentially with the number of variables in the state description

- called the state-space explosion problem. Since all reachable states must be generated

and stored by the search algorithm, the problem of state-space explosion is the primary

limiting factor of model checking and a major research challenge.

One approach developed to combat state-space explosion, called symbolic model check-

ing [12], represents a transition system and a verifcation property as Boolean character-

istic functions using a data structure called a binary decision diagram (BDD). It searches

the reachable state space more effciently using this compact representation. However,
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symbolic model checking is not effective for all problems, including the protocol verif-

cation problems for which Mur° was specially developed. Mur° belongs to the class of

explicit-state model checkers. In contrast to symbolic model checkers, explicit-state model

checkers individually store each generated state; thus, limited memory is a more serious

concern, and the motivation for external-memory model checking is stronger.

A variety of other methods have been used to reduce the state-space explosion prob-

lem. Symmetry reduction removes sets of states that are nontrivial permutations of other

sets [12]. Partial order reduction exploits the commutativity property on state transitions

to reduce the number of states explored [12]. Abstraction removes some details from

the state’s representation, thus reducing the required state space [12]. Not all of these

techniques can be applied in every situation, though, and the problems model checking

attempts to address continue to grow.

2.2 Mur° Model Checker

The search algorithms developed in this dissertation research are implemented in the

Mur° model checker [15]. (Mur° is pronounced Murphy and is sometimes spelled Mur-

phi.) The Mur° model checker was developed at Stanford University in the 1990s [16]

as an academic tool, so the software is free to use and modify. In addition to its role in

academic research, it has been widely used in industry. Mur° was originally built to verify

the design for the Stanford DASH multiprocessor [56]. Since then, it has been used in the

analysis and verifcation of many fnite-state and concurrent protocols, especially multi-

processor cache coherence protocols, link-level protocols, and cryptographic and security-
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related protocols [24, 44, 55, 56, 62, 73, 69]. Indeed, it is often referred to as a protocol

verifcation tool.

The Mur° model checker consists of two components: (i) a language for describing

models and specifcations, and (ii) a compiler that uses lex and yacc to translate a model

and specifcation written in the Mur° description language into C++ code for a special-

purpose verifer that automatically checks, by explicit-state enumeration, if all reachable

states of the model satisfy the given specifcation. If not, Mur° generates a counterexample

in the form of an error trace that can be used for debugging.

Mur° is able to detect deadlocks and to check invariants, which are Boolean expres-

sions that have to be true in every state of a system. These are specifed by the user in the

input language of Mur°. Additionally, Mur° offers error and assert statements to detect

design errors. However, it does not allow the expression of behavoirs directly in temporal

logic. In the following section, different aspects of Mur° will be considered in more detail.

2.2.1 High-Level Description Language

Mur° models are specifed in the Mur° language, which is relatively simple and simi-

lar to C code. Four components are specifed: variables in the state description, transitions

between states, start states, and error conditions.

Each variable has a unique name. To specify a variable, users must specify the possible

values that can be assigned to the variable. The data range can include enumerated sets,

and variables can be arrays and complex objects containing multiple other variables. Mur°

represents all variables internally as a single bit vector, called the state vector, with each
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variable mapped to portions of the bit vector. The frst variable specifed is placed furthest

left, and the last variable specifed is represented in the right-most bits. All other variables

appear in between in the order specifed. Each distinct combination of variable values is a

unique state.

State transitions have two components, and the frst is a Boolean formula on the state

variables. If the Boolean statement for rule r is true for the variable values of state s,

then rule r is a valid transition for state s. The second part of the transition appears in

C-like code that specifes changes to one or more state variables to generate a child state.

This code can include if statements and loops. Mur° also supports functions that can be

called by transitions, either in the Boolean formula or the C-like code. Transitions can be

clustered into rule sets that differ only by the elements of an array they act upon. Multiple

rules can be valid transitions for a single state, and when this happens in a reactive system,

one transition is chosen nondeterministically. When breadth frst search (BFS) is used, all

valid transitions are applied to each state. Models must have at least one transition, and

there is no maximum number of transitions.

Start states are specifed with C-like code that initializes the variables in the state space.

This code supports if statements and loops, and function calls can be made from start-state

specifcations. At least one start state must be included in every model, but multiple start

states can be specifed. In a reactive system, any start state is a valid entry point. When

BFS is applied, all start states are included in layer zero.

Error conditions are represented as a Boolean formula on the state variables called

invariants. Any combination of state variable values that makes the formula false represents
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an error state. Multiple error conditions can be included in a single model, and a single

error condition can be true in multiple states.

2.2.2 Dining Philosophers Example

We will now walk through an example Mur°model of dining philosophers split across

Figures 2.1, 2.2, 2.3, and 2.4. Figure 2.1 describes how variables are declared, Figure 2.2

covers state transitions, Figure 2.3 specifes start states, and the invariants in Figure 2.4

determine which states represent an error condition. This mutual exclusion algorithm for

dining philosophers was created as a simple example. It was designed to be readable,

demonstrate the more common uses of Mur°, and have both a safety and a liveness error.

1. Const

2. N: 5;

3.

4. Type

5. p: 0..(N-1); – number of philosophers/forks

6. f: 0..2; – maximum number of forks that can be held

7.

8. Var

9. forkTaken : Array [p] of boolean – list of the forks

10. eating: Array [p] of boolean; – philosopher’s state is eating or not

11. forksInHand: Array[p] of f; – number of forks current held by philosopher

Figure 2.1

Variables for Dining Philosophers in Mur° Language.

Figure 2.1 shows the variables in the model. This section of code is divided into con-

stants, types, and variables. First, we declare the constants: in this model, the only constant

19



is the number of philosophers. According to this model’s design, any number of philoso-

phers can be modeled by changing just this single constant - a common design methodol-

ogy in Mur° models. In this example, 5 philosophers are used. Next, we declare types,

which amount to data ranges and can be used as the number of elements in an array or the

possible data values of a variable. One of the data ranges in this model refers to the num-

ber of forks a philosopher can be holding: 0, 1, or 2. The other range is for the number of

philosophers. Smaller data ranges take less space to store, so it is worthwhile to specify the

minimal range that will represent the behavior expressed. Finally, we declare the variables

that will be tracked in this model: all variables are arrays over the range of p. There are

some built-in data types; for example, the built-in Boolean data type is used in this model.

Additionally, you can use custom data ranges that are defned in the types section, as we

use for the forksInHand variable. All variables are globally visible within the state. The

remaining portions of the model act on the variables described here.

For the rule declarations in Figure 2.2, rules specify state transitions. They have two

parts, with the frst determining if the transition is possible from a given state and the

second specifying what effects the state transition has. In this model, all rules are part of

rule sets wherein rules differ only by the value of a single element; in this example, it is

element i. The rule sets are used here to apply the same rule to every element of an array;

the variable i is used as an array index. The frst part of the rule is a Boolean statement that

evaluates to true or false, indicating whether the rule is enabled for this state. The frst rule

is enabled for i if forkTaken[i] is false. The second part of the rule specifes portions of

the state to change when generating the child state. The frst rule increments the number

20



1. Ruleset i: p Do

2. Rule “fork on right”

3. !forkTaken[i] – if the fork on the right is not already taken

4. ==> 
5. Begin

6. forkTaken[i]:=true; – take the fork

7. forksInHand[i]:=forksInHand[i]+1; – increment the number of forks being held

8. End;

9.

10. Rule “fork on left”

11. !forkTaken[(i+1)%N] – if the fork on the left is not already taken

12. ==> 
13. Begin

14. forkTaken[(i+1)%N]:=true; – take the fork

15. forksInHand[i]:=forksInHand[i]+1; – increment the number of forks being held

16. End;

17.

18. Rule “eat”

19. forksInHand[i]=2 – two forks are required for eating

20. ==> 
21. Begin

22. eating[i]:=true;

23. End;

24.

25. Rule “fnish eating”

26. eating[i]

27. ==> 
28. Begin

29. forkTaken[i]:=false;

30. forkTaken[(i+1)%N]:=false;

31. eating[i]:=false;

32. forksInHand[i]:=0;

33. End;

34. End; –Ruleset

Figure 2.2

Rules for Dining Philosophers in Mur° Language.
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of forksInHand[i] and sets forkTaken[i] to true. The body of a rule will be treated as an

atomic action, and all other portions of the state will remain unchanged. The modifed state

will be a child of the original state, and most states will have several active rules.

1. Startstate

2. Begin

3. For i:p Do

4. forkTaken[i]:=false; – all forks start on the table

5. eating[i]:=false; – no one is eating in the start state

6. forksInHand[i]:=0; – all hands are empty at start

7. End;

8. End;

Figure 2.3

Start State for Dining Philosophers in Mur° Language.

Figure 2.3 shows how start states are declared. Though not shown in this model, mul-

tiple start states are supported. The start state initializes the variables in the state. In

this case, we initialize every variable, although it is possible to leave the value of some

variables as undefned. A variable being undefned can even be referenced in rules and

invariants. Variables are initialized with C-like code that matches in syntax the body of the

rule declarations, and start states are the entry point of the reactive system.

Finally, Figure 2.4 shows how invariants are declared. Each invariant is a Boolean

statement, and an error state is any state that causes an invariant to evaluate to false. The

frst invariant is a safety property. In this model, if we ever reach a state where every

philosopher holds one fork, a deadlock has been reached with no possible egress from the
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1. Invariant ”Deadlock (Safety)”

2. !(forall i: p do

3. forksInHand[i]=1

4. end);

5.

6. Invariant “Never get to eat (liveness)”

7. exits i: p do

8. !eating[i]

9. end;

Figure 2.4

Invariants for Dining Philosophers in Mur° Language.

state. The frst invariant tests for this deadlocked condition. The second invariant is for

a liveness property and is true for every state that has at least one philosopher not eating,

which is every state in this model. But the model only has a liveness error if a loop through

the error state can be found.

2.2.3 State Vector Representation

This section describes how Mur° internally represents a state. For our dining philoso-

pher model, which is a toy problem, each variable described in Figure 2.1 has a value for

every state in the model. The state vector records these values. The state vector is imple-

mented as an array of unsigned characters. Despite the storage type, state variables are

represented as binary values. Depending on the range of possible values, variables can

span multiple character in the state vector.

Most of this dissertation focuses on similarities between model checking and other

applications of search. But model checking has uniquely large state vectors. The dining
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philosopher example in Figure 2.1 has 15 variables, 10 of these require a single bit of

storage, and the other 5 require two bits. This example is not representative of the size

of state vectors in model checking. Most models have hundreds of variables per state and

those variables usually have much larger data ranges. Model checking problems have much

larger state vectors than most search problems.

Comparing state vectors is expensive. State vectors are compared in many ways in

the algorithms described in this dissertation. For example, states are compared to deter-

mine sorted order and states are compared to establish uniqueness. To compare two states

means to compare the state vectors of those states. Since these state vectors are large, state

comparisons are computationally expensive.

The size of the state vector affects state storage. In the algorithms in this disserta-

tion, the states are stored in RAM and on disk. Because model checking states have large

representations, storage is also a problem.

The default state representation of Mur° uses more bits per variable than is strictly nec-

essary, largely because it requires that each variable start on a byte boundary. But Mur°

includes an option for bit compaction, which is a form of lossless compression of the

state representation that has several advantages. The bit compacted representation of our

philosophers model does away with the requirement of starting variables on byte bound-

aries. Bit compaction, as implemented in Mur°, stores variables in the minimal number

of bits that is lossless. For the dining philosophers example, the standard representation

requires 32 bytes. By contrast, when bit compaction is used the state vector requires four

bytes. For this model bit compaction reduces the state vector by a factor of eight. The exact
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amount of reduction provided by bit compaction varies by model, but is usually closer to

a factor of four. The algorithm studied in this dissertation shows three positive effects of

bit compaction: smaller states result in less I/O time, less disk space used, and more states

that ft into the state cache, which results in more duplicates being eliminated by immediate

duplicate detection (IDD).

2.2.4 Search Algorithms and Techniques for Improving Scalability

Many algorithms have improved the scalability of model checking, with some concen-

trating on reducing the number of states that need to be searched. Abstraction in search [11]

groups states into less-specifc abstract states and explores a smaller state space. Twometh-

ods, symmetry reduction [7] and partial order reduction [7], use logic to reduce the size

of the searchable state space. Other methods compress the state representation (sometimes

with lossy methods) to allow more states to be explored, including bit-state hashing [16]

and hash compaction [16]. Heuristic search [72] attempts to fnd error states sooner in the

search process, reducing the effort to fnd error states. Parallel search [42, 50, 74] harnesses

multiple processors to one task. External-memory search [3] stores all or portions of the

state space on disk. Partial memory search [76] only maintains portions of the state space,

while still attempting to verify the model.
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2.2.5 Test Models

Table 2.1

Basic search space information on the test models

Model

Size of State Space

States Edges

Largest

Layer

Models Without Errors

newlist

kerb

mcslock

eadash

directory

80,109,979

49,844,072

666,254,196

145,106,401

1,071,401,468

555,579,029

77,053,133

2,665,016,784

2,614,892,276

1,629,512,836

2,867,128

8,530,085

18,982,750

10,878,186

52,824,772

Models With Errors

arbiter1

sci1

ns

adashe

arbiter2

ldash

sci2

71,850,195

16,436,226

363,581,415

4,962,986

530,024,702

119,768,101

351,937,017

485,787,586

24,448,193

485,367,304

134,925,462

7,960,997,549

1,508,732,174

440,449,323

14,827,649

15,418,195

184,955,334

2,554,262

272,440,347

55,698,041

321,644,671

We collected basic information about all the models used in this dissertation using

the algorithm described in Section 3.3 (without partial DDD). Tables 2.1 and 2.2 report

some of the basic statistics of the models used in this dissertation, divided into two types:

models without error states and models with error states. These numbers were collected

by the sorting-based search algorithm described in the next chapter. Since these numbers

are produced by a search algorithm, they represent the reachable state space. The models

with error states are searched incompletely, since the search terminates when an error state

is found, and the numbers reported refect a search that stops at the error state. If the
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Table 2.2

Basic characteristics of the test models

State Loc-

Vari- Vector GB GB De- al-

Model ables Bytes RAM Disk pth ity

Models Without Errors

newlist 90 40 4 4 110 41

kerb 247 96 5 5 28 1

mcslock 25 40 34 32 154 86

eadash 541 543 75 75 63 63

directory 87 83 98 95 114 8

Models With Errors

arbiter1 94 24 3 3 31 15

sci1 265 120 4 4 8 5

ns 77 28 8 7 15 2

adashe 2,330 2,332 34 34 16 5

arbiter2 171 44 58 58 15 10

ldash 503 512 155 155 21 15

sci2 301 352 221 217 8 5
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search were allowed to continue, larger numbers would be reported for every category.

Table 2.1 lists the number of unique states found during the search, the number of edges

encountered in the model, and the number of unique states in the largest layer seen in the

model. Table 2.2 lists the number of variables defned in the Mur° model, the number of

bytes required to store the state vector with bit compaction, the number of gigabytes of

external memory required to store the model in RAM, the number of gigabytes of external

memory required to store the model in external memory, the number of layers in the model,

and the locality [83] observed. Since the same state vector representation is used in both

RAM and disk, the size of the state space is nearly the same in each medium. However,

some information in addition to the state vector is stored with each state. In external

memory we store enough information with each state to locate the parent of that state in

external memory. This extra data can be used for solution reconstruction and amounts

to 12 bytes per state in external memory. The states in RAM also have some additional

information including: parent pointers, pointers for organizing them into linked lists, and

information that helps us build the tables and graphs reported in this document. All of

this information amounts to 15 bytes per state in RAM. The difference in the size of the

state representation for RAM states and disk states is 3 bytes per state. The size of the

state vector usually dominates the total state size. When the total size of the state space

is rounded to the nearest GB it is usually the same for both RAM and external memory.

Since all of our algorithms use a maximum of 3,000 MB to store states in RAM, all of

these models require external memory to be searched completely.
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Model checking state representations are usually larger than those in most search prob-

lems. In Section 2.2.3, we said a model of 5 dining philosophers took 15 variables and 4

bytes. Our implementation of the Sliding Tile Puzzle, in a 4 by 4 arrangement, takes 16

variables and 12 bytes. The Towers of Hanoi with 4 pegs and 12 disks has been imple-

mented with states of 28 bytes. In contrast, as reported by Table 2.2, the average size of

state representations in the models used in this dissertation is 382 bytes. The larger size

of the state vector means comparison operations (equals, less than, greater than, etc.) are

more expensive in model checking, which affects the performance of the algorithms.

Figure 2.5

Number of unique states in each layer of the newlist model.

Graphs showing the number of states per layer in a model usually approximate a bell-

shaped curve. This means the majority of the states are near the waist of the graph. Figures
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Figure 2.6

Number of unique states in each layer of the kerb model.

Figure 2.7

Number of unique states in each layer of the mcslock model.
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Figure 2.8

Number of unique states in each layer of the eadash model.

Figure 2.9

Number of unique states in each layer of the directory model.
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2.5, 2.6, 2.7, 2.8, and 2.9 depict the number of unique states per layer in the models without

error states. These graphs are not perfectly bell-shaped; the kerb model has one very short

tail and the directory model spikes overlayed on the bell-shape. But all of these models

approximate a bell curve. Having a large number of states in the middle layer of the graph

strongly affects how algorithms behave on this kind of graph. Models with error states

exhibit the same bell-shaped properties, although they do not continue past the layer in

which the error state is found. When the error is found before the waist of the graph, the

largest layer is usually the last layer. This different layer structure will affect algorithm

behaviour differently than having the largest layers near the middle of the search. Each

model has unique properties, while tending to have a bell-shape overall.

All of the models are based on complex protocols. All of our models are parametrized

by one or more values. Variations of these models can be produced by altering the param-

eters. The parameters used for the test models are given below.

1 arbiter: A mutual exclusion protocol with an arbiter that allocates resources [50].

Two variants of arbiter were tested:

arbiter1 : a model with 13 resources that contains an error state

arbiter2 : a model with 24 resources that contains an error state

2 dash: The Stanford Dash Communication Protocol [56] - this protocol has the fol-

lowing three variant models:

adashe: An abstract model of the dash protocol - this variant has been changed

to deliberately include error states; our adashe model had 1 cluster with memory, 4
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clusters without memory, 1 address in the memory cluster, and 3 value types to be

saved

eadashe: An elementary abstraction of the dash protocol - we tested a model

with 1 cluster with memory, 2 clusters without memory, 2 addresses for each memory

cluster, and 2 value types to be saved; this variant also allowed the cluster with

memory to act as a client

ldash: A literal model of the dash protocol - we tested a model with 2 clusters

with memory where 2 addresses per cluster could be locked and 2 clusters without

memory; all clusters can buffer 1 message, and this model has an error state

3 directory: A directory-based cache protocol [24], a model created by IBM and used

for evaluating the protocol in servers - we tested a model with 14 clients

4 kerb: Amodel of the Kerberos authentication service for distributed open systems [44]

that deals with several clients, servers, and intruders; session keys are maintained

and messages are passed - our model included 2 clients, 1 server, 1 key distribution

center, 1 ticket-granting server, and 1 intruder and allowed 1 outstanding message;

intruders could remember 10 messages and could send 1 message at a time; there

were 10 authenticators and 10 encrypted keys; the model had 2 encrypted key tick-

ets, 1 authenticator ticket, 1 authenticator ticketed id, and 10 session keys

5 mcslock: A protocol for distributed list-based queuing lock without atomic compare

and swap operations [59, 68] - we tested a model that had 4 threads sharing the lock
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6 newlist: A protocol for sorting a distributed linked list [60, 68] - we used a system

with 8 distributed nodes

7 ns: A model of the Needham-Schroeder protocol for mutually authenticating parties

in a system with intruders [62, 73]; a security protocol used to ensure parties are

communicating with legitimate other parties; environment is hostile, and messages

can be overheard, deleted, and created by intruders - we used a model with 2 mes-

sage initiators, 2 message responders, and 1 intruder; 3 outstanding messages were

allowed at a time, and the intruder could remember 5 messages (this model has an

error state)

8 sci: A model of the IEEE/ANSI Standard for a Scalable Coherent Interface [38,

73]; defnes several cache coherence protocols, each a subset of the last; provides

a shared-memory architecture at the software level, while the actual hardware is

distributed memory. Two variants of sci were tested:

sci1: This model had 4 processors, 4 caches, and 2 memory locations; each

memory location could hold 2 values, and each value was one of 4 types (this model

has an error state)

sci2: This model had 4 processors, 4 caches, and 4 memory locations; each

memory location could hold 4 values, and each value was one of 4 types (this model

has an error state)
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2.3 External-Memory Graph Search for Model Checking

This section reviews approaches to external-memory search, particularly focusing on

model checking. It begins with early approaches to delayed duplicate detection (DDD),

covers sorting-based DDD and hash-based DDD, and then explains structured duplicate

detection.

2.3.1 Delayed Duplicate Detection

External-memory algorithms usually require delayed duplicate detection. In a RAM-

only search, duplicate elimination can be performed immediately on individual states. In

the large state spaces searched by external-memory algorithms, the whole state space can-

not be held in RAM and duplicate elimination is delayed and performed periodically on

a batch of states. Many external-memory search algorithms have two modes. First, state

expansion where open states are expanded and the generated states are saved in a candidate

set. Second, periodically the entire candidate set is refned to eliminate duplicates. These

two modes repeat in cycles until the search is completed. There are various methods for

that duplicate elimination which will be explained in the following sections.

2.3.2 Early Approaches to Delayed Duplicate Detection

Two early attempts at external-memory search involve comparing all candidate states

to all closed states to determine if the candidate states are unique: frst, the algorithm by

Stern and Dill and then, the Della Penna et al. method.
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2.3.2.1 Stern and Dill

In an early implementation of external-memory search created by Stern and Dill [75]

and implemented in Mur°, if layers were smaller than RAM, DDD was performed once

per layer. When a layer of states exceeded the size of RAM, duplicate detection happened

immediately when new states were generated. In this approach, all states were kept in a sin-

gle external-memory fle in the original insertion order. Since the fle was not ordered and

was larger than RAM, each candidate state was compared to every state in external mem-

ory during duplicate elimination, an ineffcient implementation that has been improved in

many ways.

2.3.2.2 Della Penna et al.

Della Penna et al. created an external-memory search algorithm that exploits tran-

sition locality [66, 68], a property of state spaces for which duplicate states are likely to

be explored close to each other rather than far apart. In this method, all open states are

expanded before DDD occurs. Most approaches require DDD to compare the candidate

states to the entire closed set, but, in this approach, candidate states are compared during

DDD to a subset of the closed states, which are stored in fles of a constant size. When a

fle flls, another fle is created. During DDD, a randomized heuristic is used to determine

how many closed fles will be used to eliminate duplicates in the candidate set. To exploit

transition locality, selected fles always start at the most recently generated, and only when

the heuristic selects all closed fles will the least recently generated fle be used. The se-

lected closed states are read from disk one at a time and compared to the candidate states
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stored in a hash table; when duplicates are discovered, they are removed from the hash

table. The candidates that remain after the partial DDD are treated as open states, even

though some of them are duplicates. (Because of transition locality, few duplicate states

are treated as open states.) The algorithm then repeats by expanding all of the open states.

2.3.3 Sorting-Based Delayed Duplicate Detection

This section describes three different algorithms that use sorting-based DDD. In sorting-

based methods, the candidate, closed and open sets are kept in sorted conditions. Dupli-

cates within the sorted candidate set will be adjacent and can be recognized by comparing

a candidate to the next state in the set. Candidate states will also be compared to closed

states in sorted order until a closed state is found that equals or exceeds the candidate state.

If an identical closed state is found, the duplicate candidate is removed. If a closed state

that exceeds the candidate state is found, the candidate is shown to be unique and added to

the open set. Because both sets are in sorted order, a single pass through each set is all that

is required to eliminate all the duplicate states in the candidate set.

2.3.3.1 Roscoe

Roscoe [46, 69] used sorting based delayed duplicate detection, but let virtual memory

handle all accesses to external memory. The use of virtual memory limited the effective-

ness of the approach.
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2.3.3.2 Korf

Korf [45, 46] used breadth-frst search with sorting-based DDD and frontier search.

He used input fles containing the open states and the most recent layer of closed states. As

the fle is read, the open states are expanded and the closed states are discarded. The parent

states are retained in a closed fle containing just the most recent layer. The candidate

states are put into a separate fle. When the input fle is exhausted, the candidate states

are sorted and merged with the closed states into a single fle, during the fle merging all

duplicates are eliminated, resulting in a fle of closed states from the most recent layer and

the open states, which is the starting condition of the algorithm. The process then repeats.

The algorithm only maintains two layers, making it a frontier search, but not all duplicates

will be eliminated by two layers, even in undirected graphs, so Korf added “used” bits to

each state. The used bits record which neighbors of a state have been previously expanded,

which keeps duplicate states from even being generated. Used bits, however, are diffcult

to apply to all problem domains.

2.3.3.3 Edelkamp, Jabbar, and Schrödl

External A* [17] extends the A* algorithm for external memory. In this approach, all

states are assigned to buckets, with a unique bucket for each unique combination of g and h

values. As states are generated, they are written to individual fles that correspond to their

buckets. When all candidate states for bucket b have been added, bucket b goes through

DDD. First, the bucket is sorted. Duplicates of states in a bucket labeled g+h can only be

in other buckets with the same h value, which reduces the number of closed states required
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during DDD. The duplicate detection is performed by linear passes through all fles with

the same h value. Because this is a heuristic search, the buckets are expanded from smallest

f value to largest. If no heuristic is used, this approach is equivalent to breadth-frst search.

2.3.4 Hash-Based Delayed Duplicate Detection

Hash-based DDD can perform DDD without sorting, dividing the state space into

buckets using a hash function. Duplicates can be eliminated by examining the states of a

single bucket in a hash table, as found in the following examination of algorithms created

by Korf and Schultze, Bao and Jones, and Evangelista and Kristensen.

2.3.4.1 Korf and Schultze

In hash-based DDD, as described by Korf and Schultze [47, 48], the candidate set is

divided into buckets by a hash function. All open states for layer d are expanded, with the

children states placed into fles according to the buckets they hash to. (The hash function

ensures a small maximum size for all buckets.) When all the open states are expanded, each

bucket is put through DDD separately. When bucket b is put through DDD, all candidates

belonging to bucket b are read from disk and put into a hash table in RAM. Because the

bucket is small, all candidate states in the bucket will ft completely into a RAM hash

table. Duplicate states will be recognized and not inserted twice into the hash table. Each

closed state belonging to bucket b is also read from disk, and if the closed state duplicates a

candidate state in the hash table, the redundant state is removed from the hash table. When

all closed states have been reviewed, the remaining candidate states in the hash table are

written to a disk fle as open states.
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2.3.4.2 Bao and Jones

The Bao and Jones [3, 26] algorithm is a variant on hash-based DDD. Instead of

expanding states in layer order, this algorithm expands states belonging to a single bucket

until there are no more open states currently available for that bucket. Expanded states

that belong to the current bucket are added to a hash table, with duplicates discarded, and

then added to the expansion queue. When a expanded state does not belong to the current

bucket, it is written to a candidate fle for the bucket it hashes to. When all the currently

available states for the current bucket have been expanded, the algorithm then switches

to another bucket and repeats the process. Every time buckets are switched, the Bao and

Jones algorithm writes the entire contents of the current bucket to disk and reads the entire

contents of another bucket from disk. When the algorithm starts using another bucket, the

candidate fle for the new bucket is also read into the hash table. Duplicates are discarded

as they are encountered and the remaining unique states expanded. The process repeats

until no more states are available to be expanded.

2.3.4.3 Evangelista and Kristensen

Evangelista and Kristensen [26] based their external-memory search on the algorithm

by Bao and Jones [3] but changed the base algorithm by modifying the bucketing scheme

as the search progresses to ensure that bucket sizes remain small.

2.3.5 Structured Duplicate Detection

Zhou and Hansen [81] created a structured duplicate detection (SDD) algorithm, a

method for always eliminating duplicates immediately in external-memory search. Burns
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and Zhou created a SDD algorithm for model checking [10]. The Zhou and Hansen al-

gorithm divides the open states into buckets based on a hash function. When generating

a child state s′ of state s from bucket b, the new state s′ can belong only to a subset of

the buckets called the detection scope. When expanding states from bucket b, the entire

detection scope of the bucket is read into a hash table. Generated states are immediately

compared against this hash table, and those that do not exist in the table are unique and

are written to a fle of the bucket they hash to. When all states in the current open bucket

have been expanded, a new open fle is selected. When the open fle changes, the detection

scope also changes, so the states in the hash table are switched to match the current detec-

tion scope, and the process repeats. This approach always fnds duplicates immediately,

but swapping states in and out of memory can be computationally expensive.
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CHAPTER 3

SORTING-BASED EXTERNAL-MEMORY SEARCH

This chapter describes an approach to external-memory graph search for model check-

ing that uses sorting-based delayed duplicate detection (DDD). The sorting-based approach

to duplicate detection is well-known and was reviewed in Section 2.3.3. This chapter pro-

poses and evaluates several improvements of the basic algorithm. In addition, two forms

of local structure in external-memory breadth-frst graph search are identifed, intralayer

and interlayer locality, and techniques are described for leveraging both forms of locality

to improve the effciency of duplicate detection.

3.1 Basic Algorithm

This section describes a basic approach to external-memory search with sorting-based

delayed duplicate detection (DDD). Pseudocode for the basic algorithm is shown in Fig-

ure 3.1. This algorithm proceeds one layer at a time, generating all unique states. There

are two distinct phases for each layer: state generation and DDD. States can be classifed

three ways: candidate states, open states, and closed states. Open states are unique states

that have not yet been expanded to generate children states. Candidate states are generated

states that have not yet been proven unique by DDD. Closed states are unique states that

have been expanded to generate children states. During state generation, the algorithm will
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read open states from the current layer and expand each open state to generate candidate

states for the next layer. The candidate states are saved in fles, sorted, and later refned

by DDD. DDD refnes the candidate set by removing all duplicate states by comparison to

other candidate and closed states that are read from fles. After DDD, the open states of the

next layer are written to fles. These two steps of state generation and DDD are repeated

for every layer of the breadth-frst graph. The algorithm stops on two conditions: if an

error state is encountered or if no more open states remain to expand.

The DDD portion of the algorithm starts on Line 18. Both the candidate set and the

closed set are read in sorted order from fles. Since candidates are sorted, duplicate candi-

dates will be adjacent. The candidates are considered one at a time. If the current candidate

is identical to the next candidate in sorted order, it is discarded as a duplicate. In this way

all duplicates of other candidate states are eliminated. To prove a candidate state is unique,

it must be shown to not duplicate a closed state. Since the closed set is in sorted order,

closed states are compared to states in the candidate set until a closed state is found that

equals or exceeds the candidate state in sorted order. If a duplicate is found in the closed

set, the candidate is discarded. Otherwise the candidate has been shown to be unique and

is added to the open set. Because both the closed set and candidate set are in sorted order,

the next candidate considered cannot possibly duplicate closed states already considered,

so each set only needs to be examined once. This makes the complexity of DDD linear in

the size of the closed and candidate sets.
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1. externalBFS(S0,ErrorStates)

2. i := 0 % index of layer

3. Layer(i) := S0 % set of initial states

4. Candidates := ∅ 
5. while Layer(i) = ∅ do

% Generate successors of all states in current layer

6. for each s ∈ Layer(i) do
′ 7. for each successor s of s do

′ 8. if (s ∈ ErrorStates) return false
′ 9. else Candidates.enqueue(s )

10. sort(Candidates)

11. i := i + 1

12. DDD(Candidates,i)

13. return true

14.

15.

16.

17. % Remove duplicates among generated states

18. DDD(Candidates,candidate layer)

19. for each c ∈ Candidates do
20. if c = Candidates.top()

21. while c > Closed.top() do
22. Closed.pop()

23. if c = Closed.top()

24. Layer(candidate layer)].enqueue(c)

Figure 3.1

External-memory BFS with sorting-based DDD.

6

6

6
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3.2 Related Work

Jabbar and Edelkamp [17, 40] implemented sorting-based external-memory search for

model checking in SPIN [8]. Their approach is called External A* and is based on a best-

frst search. Their method employs a heuristic to compute a h value for each state, records

the number of steps each state is from the start state, and records the g value. Jabbar and

Edelkamp have one bucket for each unique combination of h and g values observed. Each

state is bucketed by the associated h and g values.

In Jabbar and Edelkamp’s algorithm, buckets can contain duplicate states. This algo-

rithm employs DDD to refne the candidate sets to include only unique open states. In

this approach, the system waits until there are no more possible states to add to a particular

bucket, then the entire bucket is sorted. In a sorted list, duplicates are adjacent, and the sys-

tem traverses the list and removes them. States can also duplicate states in other buckets

that share the same h value. Comparison to previous buckets is also done in sorted order to

eliminate duplicates effciently. The candidate set is compared to every closed state with

the same h value to ensure it is not a duplicate.

Jabbar and Edelkamp’s algorithm expands the buckets in a heuristic order. The sum of

the h and g values is referred to as f , and the existing bucket with the lowest f value is

expanded frst. In the case of multiple buckets with the same f value, the bucket with the

smallest g value is selected. Heuristic expansion can fnd error states earlier but depends

on the strength of the heuristic and provides no value in graphs that do not exhibit an error

state.
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Expanding a bucket means generating the child states of every state belonging to the

bucket. The newly generated states are then bucketed as described above. The cycle con-

tinues until no new states are generated (meaning the model is verifed) or an error state is

discovered.

3.2.1 Differences

While the algorithm that is the focus of this chapter is very similar to Jabbar and

Edelkamp’s, two details do not match. First, there was no useful heuristic for a best-frst

search, so a breadth-frst search was used instead. Second, without the heuristic, h values

were not available to bucket by, so all states are treated as if they have the same h value.

It is unclear how Jabbar and Edelkamp stored the closed set. It may have been com-

bined into one fle per bucket or one fle per layer per bucket. Since it is ambiguous, both

approaches were tested, but ultimately separate fles for each layer were used, since this

method provides the best performance. Results for these tests will be presented later.

3.3 Algorithm Improvements

This section describes four improvements made to the basic algorithm. Improvements

include sorting in RAM, immediate duplicate detection (IDD), effcient merging of fles,

and partial delayed duplicate detection (DDD).

3.3.1 RAM Sorting

There are a variety of external-memory sorting algorithms, but it is computationally

cheaper to sort in RAM. In the algorithm presented in this chapter, the states are buffered
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before being written to disk. Each time the buffer is written to disk, the states in RAM are

frst sorted. Each time a buffer of states is written to disk, a new fle is created. The result is

many individually sorted candidate fles. The fles are merged with a priority queue during

DDD. This approach takes less time than a pure disk sort algorithm.

The sort algorithm used is Three-way Radix Quicksort as described by Bentley and

Sedgewick [5, 6]. In this algorithm a list of items to be sorted is split into three sublists

that are sorted recursively. The sort algorithm compares the strings one character at a

time, starting with the frst character. In our sorting algorithm, the state representation of

unsigned characters is used as our string. The sublists are created by classifying the strings

according to the value of the current character with respect to a pivot value. The pivot is

selected by choosing the median element of three median elements. Strings with a value

less than the pivot for the current character go into the frst sublist. Strings that equal the

pivot for the current character go into the middle sublist. Strings that are greater than the

pivot for the current character go to the fnal sublist. Each sublist is passed recursively to

the same function, where the lists are further subdivided. Additionally, since every string in

the middle sublist has identical values for the target character, that character is incremented

by one for the middle sublist. In this sort algorithm, the recursion terminates when the

sublist contains ten elements or less and uses insertion sort on the remaining elements.

Switching to an insertion sort on short sublists avoids the worst case performance possible

in the fnal levels of recursion of quicksort [61].

The Bentley and Sedgewick algorithm [5, 6] is also an index sort. Index sort [1] saves

time by moving pointers to states rather than moving the states themselves. Since the state
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pointers are much smaller than the states, this saves time. Index sort works well with

buffered I/O since the buffer is already stored as pointers to states.

This approach results in many sorted candidate fles. For sorting-based DDD, the can-

didates have to be in a globally sorted order. The individual fles are merged using a priority

queue, which is implemented as a heap. Merging these individual fles can be thought of as

the merge step of an external-memory merge sort [43]. Ten states from each fle are added

to the queue. The priority queue ensures that states are dequeued in sorted order. Each

time a state is dequeued from the priority queue, a state from the same fle is added to the

queue. The priority queue effciently organizes the states into one merged order.

When RAM is full, states are fushed to disk. As a consequence of this approach,

more candidate fles are created than are strictly necessary, since RAM is smaller than the

maximum fle size. The extra fles increase the amount of fle I/O required but make sorting

much faster - an acceptable tradeoff.

Usually, the sorted candidate fles can be merged in a single pass during DDD. A single

pass is necessary to keep the I/O complexity of the merge step at order O(n) rather than

orderO(n log n) of a multi-pass merge. All candidate fles must be opened during a single-

pass merge, but operating systems impose a limit on the maximum number of open fles

(for our research that number was 1,000), so the single-pass merge is not possible when

too many candidate fles exist.
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3.3.2 Immediate Duplicate Detection

The approach taken in this dissertation is to translate the model checking problem into

a graph search problem. Each node in the graph represents a potential state of the model.

Each edge in the graph represents an event occurring in the model. When the model is

translated into a graph, any technique for graph search can be applied. The graphs derived

from model checking have common structural characteristics. When these characteristics

are known, they can be exploited to eliminate duplicate states. This section focuses on

two types of locality in a breadth-frst graph: interlayer locality [54] and intralayer locality.

Interlayer locality is covered in Section 3.3.4, but intralayer locality is a novel concept

explained below.

Intralayer locality refers to duplicate states being clustered within a layer when an

open list is expanded in a specifc order. The ordering of the open list affects the amount

of intralayer locality observed. The open list can cluster states in such a way that similar

states are expanded contiguously. There are many ways to group similar states and produce

intralayer locality, but in this chapter a sorted open list is used to produce intralayer locality.

Chapter 4 details an alternative way to order the open list that also produces intralayer

locality in the generated states.

Since the open list is sorted, states that are similar are grouped together. In general,

child states are only slightly different from their parent state, and the children of two similar

parent states are more likely to duplicate each other than the children of two randomly

selected states. States are expanded in the order of the open list. Because the open list

is sorted the open states are grouped by the state variables. The sorted order also creates
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intralayer locality in the candidate set. It takes no additional processing time to produce a

sorted open list, since such lists are a natural consequence of using sorting-based DDD.

Two alternative approaches to exploiting intralayer locality - eliminating duplicates in

the buffer or using an least recently used (LRU) cache to eliminate duplicate states - are

explained here before a later section experimentally examines the differences.

3.3.2.1 Duplicates in I/O Buffer

Since candidate states are buffered and sorted before being written to disk, it is easy to

eliminate duplicates within a buffer. As states are written to disk, one can check to see if

the current state is the same as the previous state in the buffer, which means it will not be

written to disk. Immediate duplicate detection (IDD) does not require a hash table; the size

of the buffer is simply increased to provide the space required. It is not clear if previous

approaches used this method, but any search algorithm that sorts in RAM could do so.

Eliminating duplicates in this way is very cheap computationally and reduces the number

of candidate states, which saves fle I/O and intralayer DDD time.

3.3.2.2 Least Recently Used Cache Replacement

The RAM cache for the algorithm described here was designed to exploit intralayer

locality. Since intralayer states are more likely to duplicate states that have been generated

recently, a least recently used (LRU) cache [78] was employed. This LRU cache is a hash

table that records how recently each element has been accessed and bounds the number of

duplicate states that are not detected.
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An LRU cache keeps states in order of usage and keeps the most recently generated

states in the cache at all times. In order to stay within the limits of RAM size, the cache

must sometimes remove the least recently used states. When states are inserted into the

state cache, they are placed in the hash table without regard to LRU, but pointers to the

states are kept in a linked list that maintains the LRU ordering. States are added to the

head of the list, so the tail of the list becomes the least recently used part. Sometimes a

state is added to the cache that duplicates a state already in the cache; in this case, the

state’s position in the hash table remains unchanged. However, that state is removed from

its current position in the linked list and is reassigned to the head of the list. Reordering

the linked list when duplicate states are encountered maintains the LRU aspect of the list.

When the cache is full, the oldest half of the cache is removed. The states are removed by

starting with the tail of the list and working toward the front until half of the states have

been removed. Removing the oldest states follows the LRU cache replacement policy.

3.3.3 Effcient File Merging

The improvement described in this section saves time by combining intralayer and

interlayer DDD. Candidate states are selected one at a time in sorted order from the candi-

date fles, checked against the closed set, and compared to the most recent candidate state

before being written to the open fle. By detecting duplicates within the candidate set at the

same time as detecting duplicates of closed set, both sets only need to be traversed once,

saving time.
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3.3.4 Partial Delayed Duplicate Detection

Another improvement of the algorithm is to perform DDD by checking only portions

of the closed set. Reading all of what is typically a very large closed set every time DDD

is performed takes a lot of time, especially in the largest models. Instead, this algorithm

reads just those parts of the closed set most likely to eliminate duplicates, eliminating

most duplicates and saving time. Because the closed list is split into one fle per layer, as

described in Section 3.2.1, partial DDD is easier to implement.

Duplicate states are not randomly distributed around the state space; typical properties

of state spaces defne where duplicates are most likely to be found, including interlayer

locality [76]. In breadth-frst search, layer g refers to all states that are g steps from the

start state. When a duplicate state is generated in layer g, the original version of that state

must be in layers 0 to g of the graph. These duplicate states are created by interlayer edges

with a distance equal to the number of layers in between the original version of the state

and the duplicate version.

Interlayer locality, a property of most graphs searched with the breadth-frst method [54,

64, 68, 76], dictates that interlayer edges ( called back edges in the cited papers ) are most

likely to be short and thus local to the most recent layers. All reachable states are some

number of steps distant from the start state, and duplicate states occur when there are mul-

tiple paths to the same state. These paths tend to be nearly the same length because they

often share some of the same steps, in a slightly different order. A common form of in-

terlayer locality is graph symmetry [39], which results in interlayer edges with a distance

of zero. Other types of duplicates lead to interlayer edges of different distances, but the
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principle of interlayer locality states that short interlayer edges are more common than long

interlayer edges.

An interesting case of interlayer locality is an undirected graph which has interlayer

edges with a maximum distance of two. This means that states in layer g can only duplicate

states in layer g, layer g − 1, or layer g − 2. In undirected graphs, all duplicate states are

copies of states in the three most recent layers. This property of undirected graphs is used

to great effect in frontier search [46].

When searched breadth-frst, directed graphs also exhibit interlayer locality, but the

maximum locality is usually a small value. In graphs of model-checking problems, the

average interlayer edge distance is usually short.

Figures 3.16, 3.10, 3.11, 3.12, 3.15, 3.13, and 3.14 show the distribution of inter-

layer edge distance on several models, indicating that the models used for this disserta-

tion exhibit interlayer locality. A few other external-memory search algorithms use partial

DDD, such as hash-collision partial DDD [66, 67, 68], frontier search [46], selective-layer

DDD [25], and periodic DDD [25]. When the typical interlayer edge distance is known,

static partial DDD [54] can be used. By examining the distance of interlayer edges (Fig-

ures 3.16, 3.10, 3.11, 3.12, 3.15, 3.13, and 3.14), the appropriate number of layers to check

during DDD can be chosen to eliminate most duplicates but save time over complete DDD.

The algorithm uses the most recent L layers during DDD, where L is a user-defned param-

eter. By using the most recent layers, the static partial DDD algorithm leverages interlayer

locality [35, 48, 53, 54, 64, 66, 67, 68, 76, 82, 83] and saves time because few duplicates

exist beyond the L layers. (This algorithm was previously published [54].) Using a heuris-
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tic or principled approach to dynamically alter the number of layers checked is, of course,

possible but will be left to future work.

3.4 Experimental Evaluation

This section describes the results of experiments that test the various algorithm im-

provements described in the previous section. In all of these experiments the number of

states stored in RAM is limited to what could ft in 3,000 MB. Tests were run on a machine

with an Intel i7 CPU with 4 cores running at 3.07 GHz with 8 GB of RAM.

3.4.1 Impact of Storing the Closed List in Many Files

Table 3.1 shows the time required for using a single fle for the closed set versus

storing the closed list in one fle per layer. When the closed list is in one fle, that fle must

be rewritten at every layer. Alternatively, if the closed list is in separate fles, the fle I/O

is mildly increased, as well as time for a priority queue used to merge the states from the

various closed fles.

Table 3.1

Comparison of time for storing the closed list in a single fle or multiple fles.

Model

Single Closed File

(d:hh:mm:ss)

Many Closed Files

(hh:mm:ss) Layers

sci1

ns

kerb

arbiter1

newlist

24:52

43:09

4:06:18

1:15:55

>1:11:40:28

22:28

35:31

2:40:12

55:49

3:58:58

8

15

28

31

110

54



When comparing the required time between the two methods of closed-list storage, it

is clear from Table 3.1 that storing the list in many fles is more effcient, and the advantage

becomes more apparent in models with more layers, such as newlist.

3.4.2 Immediate Duplicate Detection

This section details the results of an experiment related to IDD, frst showing the exis-

tence of intralayer locality in multiple models and then comparing methods for exploiting

intralayer locality - using the LRU cache and eliminating duplicates in sorted buffers.

3.4.2.1 Intralayer Locality

To demonstrate intralayer locality, we measured the number of unique states generated

between duplicates of the same state. We call this measure the cache distance of the

duplicates. We produced samplings of the cache distance distribution for the models in

Figures 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9. These graphs show the distance in the

state cache on the x-axis and the number of duplicates at this distance on the y-axis. Note

that the y-axis is logarithmically scaled. The distributions show a large degree of intralayer

locality because short cache distances are far more common than long distances.

3.4.2.2 Performance of LRU State Cache

We compared external-memory search without immediate duplicate detection to external-

memory search with an LRU state cache, as described in Section 3.3.2, with the results pre-

sented in Table 3.2. The columns include the name of the model tested, which algorithm

was used (LRU state cache or no state cache), and the time spent on state generation, IDD,
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Figure 3.2

Intralayer locality of newlist model.

Figure 3.3

Intralayer locality of arbiter1model.
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Figure 3.4

Intralayer locality of ns model.

Figure 3.5

Intralayer locality of sci1 model.
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Figure 3.6

Intralayer locality of ldash model.

Figure 3.7

Intralayer locality of eadash model.
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Figure 3.8

Intralayer locality of mcslock model.

Figure 3.9

Intralayer locality of adashe model.
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intralayer DDD, and interlayer DDD. Duplicates eliminated in IDD and DDD are shown,

and the number of candidate states remaining after intralayer DDD was completed is also

included. Because the state cache and state generation times are tightly interrelated, they

are reported in a single column.

Table 3.2

LRU state cache compared to search without a state cache and partial DDD

Model LRU

State Gen. and IDD

Time

(hh: Duplicates

mm:ss) (states)

DDD

Intralayer Interlayer

Time Time

(hh:) Size (hh:

mm:ss) (states) mm:ss)

Duplicates

(states)

sci1

sci1

yes

no

14:33

14:07

9,627,651

7,006,523

4:37

4:59

17,060,192

17,081,100

4:54

6:58

594,344

1,960,155

ns

ns

yes

no

25:26

21:45

119,004,140

111,859,697

5:10

7:60

63,206,623

121,785,889

5:49

7:53

2,781,749

63,235,139

kerb

kerb

yes

no

2:17:20

2:14:50

22,054,616

22,487,138

9:09

10:41

50,468,174

50,951,945

15:38

20:42

624,237

2,637,301

arbiter1

arbiter1

yes

no

35:17

31:48

384,407,742

228,501,067

7:47

14:52

92,851,697

97,447,917

14:15

17:52

414,474,985

97,447,917

newlist

newlist

yes

no

1:46:26

1:39:28

423,820,281

233,970,984

10:08

20:49

131,725,271

228,535,236

2:04:24

2:54:14

51,644,413

241,493,694

adashe

adashe

yes

no

26:12

32:31

15,165,740

14,600,611

7:30

8:27

5,618,619

5,688,664

13:36

17:09

3,301,600

3,866,729

directory

directory

yes

no

4:17:35

5:58:46

518,695,570

469,706,413

1:49:20

3:22:24

1,115,463,981

1,111,769,297

6:25:32

11:41:56

45,585,435

94,574,592

In all cases, the majority of duplicate states were eliminated with an LRU state cache.

Also, in every case, the extra time spent on IDD was offset by the time saved in other

places. The performance of a state cache was closely related to the number of duplicates

in a graph - few duplicate states meant not as much room for improvement. But as the
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Table 3.3

Duplicates eliminated in LRU state cache and state buffer

Model

State Cache

Time Duplicates

(hh:mm:ss) in Cache

State Buffer

Time Duplicates

(hh:mm:ss) in Buffer

Total

Duplicates

sci1

ns

arbiter1

newlist

adashe

directory

sci2

22:28

35:31

55:49

3:58:58

1:19:48

12:14:29

11:30:19

9,627,651

119,004,140

384,407,742

423,820,281

15,165,740

518,695,570

95,176,964

25:17

36:21

2:02:51

4:52:23

1:27:25

20:28:12

12:30:29

7,006,523

111,859,697

228,501,067

233,970,984

14,600,611

469,706,413

85,903,601

9,221,985

121,785,889

414,474,985

475,464,694

18,467,340

564,281,005

113,634,786

number of duplicate states in the graph increased, the amount of time savings for IDD

likewise increased.

Table 3.3 compares the performance of the state cache to the version that checks for

duplicates in the sorted buffer - as described in Section 3.3.2.1 - and shows the total number

of duplicates in the model, the time in required for both algorithms, and how many of

the duplicate states were eliminated with IDD by that algorithm. Searches with an LRU

state cache were always faster than searches eliminating duplicates within a sorted buffer

(although not remarkably so) due to the number of candidate states. Candidate states may

or may not be unique but are written to disk, sorted, and put through DDD. Reducing the

number of candidate states reduces the amount of disk I/O, the time spent on sorting, and

the time spent in DDD. Having fewer candidate states always saves time in those three

areas. Alternatively, IDD did not impact the times for reading open states or interlayer

DDD.
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Eliminating duplicates in the I/O buffer is computationally cheaper than using a state

cache and nearly as effective. States in the buffer are also in order of expansion, which

means a state is more likely be a to duplicate of a state in the same buffer than in some

other buffer. Not as many duplicates are eliminated in this way as with a state cache, but

the difference is not high, as can be seen in Table 3.3.

The reduction in candidate states comes at the price of time spent checking for the

presence of a state in the state cache, and an LRU cache must maintain itself. The LRU

cache must always know which items are the least recently used and must occasionally

discard some of the states it currently caches. However, Table 3.3 shows that, overall, time

is saved by adding an LRU state cache to an external-memory search because it eliminates

more duplicates than a sorted buffer and has fewer candidate states.

3.4.3 Impact of Effcient File Merging

Time saved when combining intralayer and interlayer DDD into one step (as described

in Section 3.3.3) is illustrated in Table 3.4, with time for several different portions of the

search. It is clear that combining the steps saves a signifcant amount of time, some due to

less required fle I/O, but most because of less required merging time.
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Table 3.4

Combining intralayer DDD with Interlayer DDD

Model Combined

State

Generation

and IDD

(hh:mm:ss)

Read

Can.

(mm:ss)

Write

Open

(mm:ss)

DDD

Read

Closed

(hh:mm:ss)

Other

IO

(mm:ss)

Merge

(hh:mm:ss)

sci1 yes 20:54 1:49 27 1 N/A 15:55

sci1 no 21:06 2:01 24 6 48 41:55

ns yes 1:01:32 14 41 1 N/A 16:12

ns no 1:06:28 18 42 2 57 22:28

kerb yes 1:44:37 18 59 18 N/A 2:14

kerb no 1:45:56 17 4 16 57 6:01

arbiter1 yes 17:49 11 44 8 N/A 4:59

arbiter1 no 20:25 10 1:02 10 47 11:07

directory yes 3:21:08 12:05 27:23 5:27:42 N/A 3:31:49

directory no 3:20:46 23:14 22:58 4:00:37 38:59 4:49:50

sci2 yes 7:07:53 1:31:29 28:50 1:29 N/A 2:20:37

sci2 no 7:19:42 1:37:30 21:12 2:17 1:16:52 3:02:25

3.4.4 Partial Delayed Duplicate Detection

The following fgures show that model-checking graphs exhibit interlayer locality.

Figures 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, and 3.18 show the locality on the x-

axis and the number of duplicates at that distance on the y-axis. These graphs indicate that

the models tested for this dissertation exhibit interlayer locality. Notice that short localities

are the most common.

This section compares the performance of the complete DDD algorithm to the static

partial DDD algorithm. Table 3.5 shows the time for state expansion and DDD, as well as

the number of layers in the model, the number of layers used during DDD, and the number

of states expanded. Since partial DDD can expand duplicate states, this is a good measure

of the redundant work being done by the partial DDD algorithm. This redundant work
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Figure 3.10

Interlayer locality in the arbiter1model.

Figure 3.11

Interlayer locality in the directory model.
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Figure 3.12

Interlayer locality in the ns model.

Figure 3.13

Interlayer locality in the sci1 model.
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Figure 3.14

Interlayer locality in the newlist model.

Figure 3.15

Interlayer locality in the adashe model.
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Figure 3.16

Interlayer locality in the ldash model.

Figure 3.17

Interlayer locality in the mcslock model.
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Figure 3.18

Interlayer locality in the eadash model.

Table 3.5

Comparison of time in and effciency of partial DDD with full DDD

Expansion DDD

Type Time Time States Total Layers

Model DDD (hh:mm:ss) (dd:hh:mm:ss) Expanded Layers Checked

newlist Partial 1:36:39 50:24 565,574,056 110 55

newlist Full 1:25:04 1:37:44 555,579,029 110 all

mcslock Partial 4:58:23 11:02:15 2,665,016,676 154 86

mcslock Full 4:49:29 1:06:53:14 2,665,016,676 154 all

eadash Partial 13:46:11 2:08:18:20 2,614,892,143 63 34

eadash Full 13:49:10 2:22:07:30 2,614,891,276 63 all

directory Partial 3:21:08 9:38:59 1,629,512,836 113 8

directory Full 2:49:46 2:04:31:44 1,629,512,836 113 all

ldash Partial 19:15:26 40:24 1,508,732,174 21 16

ldash Full 19:30:19 2:41:30 1,508,732,174 21 all

sci2 Partial 6:22:37 6:01:03 5,173,413 7 2

sci2 Full 6:10:16 7:29:41 5,173,406 7 all
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does add time overhead, but not as much as the time saved, in the cases shown here. These

results also show search with partial DDD is much faster than search with full DDD, and

the increase in the number of expanded states (which is a risk for partial DDD) is very

small. This indicates that intralayer locality can be exploited effectively in the partial DDD

algorithm.

The static bounds used for these results were selected manually. They were chosen to

minimize DDD time. Static bounds were selected after information on interlayer locality

was gathered through a complete search. The frst approximation for the static bound was

the distance of the locality. To be effective, the bound needs to be longer than the majority

of interlayer edges. Using the information in Figures 3.10, 3.11, 3.12, 3.13, 3.14, 3.15,

3.16, 3.17, and 3.18, a bound that would eliminate most interlayer duplicates was selected

and experimentally verifed. Selecting bounds in this manner is only helpful for repeated

searches. A heuristic for choosing the static bound or a dynamic bound are possibilities for

future work.

Tables 3.6 and 3.7 show how many states were generated per layer, how many of those

states were found to be duplicates by the state cache, how many intralayer and interlayer

duplicates were found during DDD, and howmany unique states belong to each layer. IDD

is most challenging on the largest layers of the graph, which exceed the size of the state

cache, so duplicates might be missed by IDD. These models have many more duplicate

states than unique states: for eadash the ratio is 18:1, and for mcslock the ratio is 4:1. In

eadash, the state cache holds 3,196,681 states; for mcslock 9,825,701 states ft into the

state cache. On the largest layers, the state cache for mcslock can only hold 51% of the
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Generated Duplicates Duplicates on disk Unique

Layer nodes in cache Intralayer Interlayer nodes

0 0 0 0 0 1

1 12 8 0 0 4

2 52 28 0 0 24

3 330 241 0 0 89

4 1,278 992 0 0 286

5 4,259 3,505 0 0 754

6 11,583 9,673 0 0 1,910

7 30,070 25,409 0 0 4,661

8 74,726 63,635 0 0 11,091

9 180,244 155,579 0 0 24,665

10 406,038 354,366 0 0 51,672

11 860,695 759,746 0 0 100,949

12 1,702,714 1,514,015 0 0 188,699

13 3,214,447 2,874,131 0 0 340,316

14 5,837,074 5,243,279 0 0 593,795

15 10,228,608 9,232,901 0 0 995,707

16 17,192,692 15,348,151 0 252,870 1,591,671

17 27,529,252 23,914,321 91,760 1,126,607 2,396,564

18 41,573,436 34,961,957 1,128,364 2,083,981 3,399,134

19 59,214,476 49,147,649 2,264,534 3,239,579 4,562,714

20 79,888,775 65,023,752 4,325,233 4,695,805 5,843,985

21 102,875,958 82,592,063 6,675,751 6,423,203 7,184,941

22 127,149,765 101,489,369 8,786,845 8,364,149 8,509,402

23 151,279,997 120,339,741 10,824,885 10,441,170 9,674,201

24 172,731,376 137,110,032 12,564,767 12,549,671 10,506,906

25 188,409,934 149,614,269 13,438,513 14,478,966 10,878,186

26 195,873,421 155,651,949 13,505,095 15,935,682 10,780,695

27 194,830,593 154,916,360 12,889,396 16,713,473 10,311,364

28 186,938,005 148,723,702 11,814,016 16,791,843 9,608,444

29 174,668,574 139,191,867 10,420,387 16,290,903 8,765,417

30 159,738,582 127,672,888 8,889,279 15,393,064 7,783,351

31 142,201,832 114,034,922 7,267,393 14,232,587 6,666,930

32 122,045,168 98,206,816 5,540,660 12,796,947 5,500,745

33 100,777,494 81,373,243 3,911,829 11,089,676 4,402,746

34 80,699,296 65,479,091 2,504,034 9,250,938 3,465,233

35 63,627,677 51,914,879 1,481,180 7,511,376 2,720,242

36 50,135,520 41,118,580 836,088 6,048,443 2,132,409

37 39,483,776 32,454,169 489,634 4,889,269 1,650,704

38 30,648,919 25,360,953 107,302 3,933,896 1,246,768

39 23,139,186 19,117,146 19,427 3,089,285 913,328

40 16,926,150 13,944,187 245 2,328,079 653,639

41 12,119,156 10,022,310 0 1,629,182 467,664

42 8,696,164 7,287,177 0 1,068,550 340,437

43 6,352,147 5,337,079 0 763,147 251,921

44 4,706,338 4,089,835 0 429,876 186,627

45 3,480,378 3,020,328 0 326,283 133,767

46 2,486,235 2,179,413 0 217,355 89,467

47 1,656,147 1,473,196 0 126,384 56,567

48 1,041,263 950,569 0 54,315 36,379

49 665,934 615,420 0 25,053 25,461

50 464,948 434,200 0 11,118 19,630

51 356,396 335,449 0 5,429 15,518

52 277,655 264,572 0 2,301 10,782

53 189,967 182,994 0 1,083 5,890

54 103,005 99,507 0 653 2,845

55 49,459 47,546 0 84 1,829

56 30,829 29,089 0 29 1,711

57 27,819 26,163 0 7 1,649

58 26,369 25,242 0 6 1,121

59 18,033 17,611 0 5 417

60 7,089 7,004 0 4 81

61 1,635 1,615 0 3 17

62 355 350 0 4 1

63 19 15 0 3 1

64 20 15 0 4 1

65 18 15 0 2 1

66 18 14 0 3 1

67 20 18 0 1 1

68 20 16 0 3 1

69 20 16 0 3 1

Table 3.6

Eadash layer by layer.
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Table 3.7

Mcslock layer by layer.

80

90

100

110

120

130

140

150

Generated Duplicates Duplicates on disk Unique Generated Duplicates Duplicates on disk Unique

Layer nodes in cache Intralayer Interlayer nodes Layer nodes in cache Intralayer Interlayer nodes

0 0 0 0 0 1 77 64,681,844 34,094,989 4,181,280 9,589,184 16,816,391

1 4 3 0 0 1 78 67,265,564 35,163,984 4,362,643 10,353,063 17,385,874

2 4 2 0 0 2 79 69,543,496 35,589,142 4,991,244 11,099,230 17,863,880

3 8 5 0 0 3 71,455,520 35,891,620 5,441,539 11,823,394 18,298,967

4 12 7 0 0 5 81 73,195,868 35,992,088 6,028,454 12,547,326 18,628,000

5 20 13 0 0 7 82 74,512,000 36,036,066 6,377,572 13,243,244 18,855,118

6 28 17 0 0 11 83 75,420,472 35,995,428 6,511,614 13,930,680 18,982,750

7 44 26 0 0 18 84 75,931,000 35,901,940 6,516,274 14,534,813 18,977,973

8 72 44 0 0 28 85 75,911,892 35,584,541 6,367,539 15,062,522 18,897,290

9 112 67 0 0 45 86 75,589,160 34,835,076 6,455,568 15,548,703 18,749,813

10 180 112 0 0 68 87 74,999,252 34,324,544 6,234,445 15,984,751 18,455,512

11 272 171 0 0 101 88 73,822,048 33,079,092 6,337,161 16,315,524 18,090,271

12 404 258 0 0 146 89 72,361,084 32,290,752 5,854,927 16,562,805 17,652,600

13 584 379 0 0 205 70,610,400 31,496,053 5,284,018 16,710,912 17,119,417

14 820 538 0 0 282 91 68,477,668 30,086,014 5,037,051 16,778,041 16,576,562

15 1,128 749 0 0 379 92 66,306,248 29,046,229 4,534,059 16,788,881 15,937,079

16 1,516 1,015 0 0 501 93 63,748,316 27,358,147 4,483,297 16,665,273 15,241,599

17 2,004 1,344 0 0 660 94 60,966,396 26,114,733 3,843,013 16,485,083 14,523,567

18 2,640 1,778 0 0 862 95 58,094,268 24,927,947 3,197,092 16,218,968 13,750,261

19 3,448 2,320 0 0 1,128 96 55,001,044 23,176,776 3,011,883 15,872,557 12,939,828

20 4,512 3,044 0 0 1,468 97 51,759,312 21,512,444 2,654,967 15,404,980 12,186,921

21 5,872 3,970 0 0 1,902 98 48,747,684 20,051,349 2,388,737 14,923,845 11,383,753

22 7,608 5,157 0 0 2,451 99 45,535,012 18,442,810 2,119,442 14,341,401 10,631,359

23 9,804 6,659 0 0 3,145 42,525,436 16,933,051 1,931,267 13,795,262 9,865,856

24 12,580 8,577 0 0 4,003 101 39,463,424 15,529,732 1,722,046 13,150,132 9,061,514

25 16,012 10,923 0 0 5,089 102 36,246,056 13,921,779 1,554,924 12,439,776 8,329,577

26 20,356 13,925 0 0 6,431 103 33,318,308 12,664,560 1,320,817 11,732,584 7,600,347

27 25,724 17,653 0 0 8,071 104 30,401,388 11,416,213 1,075,439 10,995,654 6,914,082

28 32,284 22,163 0 0 10,121 105 27,656,328 10,093,794 996,193 10,287,049 6,279,292

29 40,484 27,798 0 0 12,686 106 25,117,168 9,287,802 596,390 9,572,285 5,660,691

30 50,744 34,803 0 0 15,941 107 22,642,764 8,241,341 488,794 8,846,404 5,066,225

31 63,764 43,661 0 0 20,103 108 20,264,900 7,259,101 346,797 8,113,861 4,545,141

32 80,412 55,071 0 0 25,341 109 18,180,564 6,573,660 176,036 7,424,768 4,006,100

33 101,364 69,571 0 0 31,793 16,024,400 5,595,236 153,714 6,700,915 3,574,535

34 127,172 87,255 0 0 39,917 111 14,298,140 4,965,145 77,756 6,115,312 3,139,927

35 159,668 109,797 0 0 49,871 112 12,559,708 4,325,714 0 5,476,303 2,757,691

36 199,484 137,336 0 0 62,148 113 11,030,764 3,708,581 0 4,926,135 2,396,048

37 248,592 171,079 0 0 77,513 114 9,584,192 3,192,394 0 4,328,103 2,063,695

38 310,052 213,680 0 0 96,372 115 8,254,780 2,664,218 0 3,819,390 1,771,172

39 385,488 266,093 0 0 119,395 116 7,084,688 2,251,907 0 3,308,068 1,524,713

40 477,580 329,822 0 0 147,758 117 6,098,852 1,896,810 0 2,894,884 1,307,158

41 591,032 409,100 0 0 181,932 118 5,228,632 1,632,298 0 2,479,220 1,117,114

42 727,728 504,177 0 0 223,551 119 4,468,456 1,573,788 0 1,948,954 945,714

43 894,204 619,966 0 0 274,238 3,782,856 1,362,141 0 1,639,878 780,837

44 1,096,952 762,500 0 0 334,452 121 3,123,348 1,081,215 0 1,389,124 653,009

45 1,337,808 931,885 0 0 405,923 122 2,612,036 912,214 0 1,173,927 525,895

46 1,623,692 1,132,703 0 0 490,989 123 2,103,580 695,689 0 961,937 445,954

47 1,963,956 1,373,481 0 0 590,475 124 1,783,816 609,198 0 815,076 359,542

48 2,361,900 1,654,753 0 0 707,147 125 1,438,168 477,638 0 656,516 304,014

49 2,828,588 1,984,262 0 0 844,326 126 1,216,056 403,876 0 573,469 238,711

50 3,377,304 2,375,181 0 0 1,002,123 127 954,844 346,271 0 415,737 192,836

51 4,008,492 2,823,114 0 0 1,185,378 128 771,344 329,159 0 296,769 145,416

52 4,741,512 3,346,071 0 0 1,395,441 129 581,664 238,700 0 225,694 117,270

53 5,581,764 3,898,188 0 50,888 1,632,688 469,080 271,028 0 110,689 87,363

54 6,530,752 4,381,507 0 246,766 1,902,479 131 349,452 213,073 0 61,758 74,621

55 7,609,916 5,054,821 0 347,117 2,207,978 132 298,484 193,646 0 49,308 55,530

56 8,831,912 5,835,908 0 449,408 2,546,596 133 222,120 139,046 0 37,709 45,365

57 10,186,384 6,718,841 0 542,503 2,925,040 134 181,460 119,206 0 30,530 31,724

58 11,700,160 7,669,321 0 689,157 3,341,682 135 126,896 81,954 0 22,705 22,237

59 13,366,728 8,663,223 0 905,741 3,797,764 136 88,948 61,100 0 12,872 14,976

60 15,191,056 9,781,310 0 1,110,007 4,299,739 137 59,904 42,060 0 6,714 11,130

61 17,198,956 11,039,128 0 1,314,685 4,845,143 138 44,520 32,377 0 3,958 8,185

62 19,380,572 12,387,825 0 1,561,971 5,430,776 139 32,740 23,449 0 2,377 6,914

63 21,723,104 13,792,069 0 1,863,088 6,067,947 27,656 20,854 0 1,798 5,004

64 24,271,788 15,267,112 67,387 2,195,885 6,741,404 141 20,016 15,216 0 1,262 3,538

65 26,965,616 16,773,358 194,307 2,548,626 7,449,325 142 14,152 11,122 0 894 2,136

66 29,797,300 17,979,657 682,859 2,936,851 8,197,933 143 8,544 6,802 0 610 1,132

67 32,791,732 19,378,759 1,088,421 3,352,346 8,972,206 144 4,528 3,578 0 296 654

68 35,888,824 20,806,857 1,492,800 3,813,166 9,776,001 145 2,616 2,192 0 111 313

69 39,104,004 22,393,163 1,788,884 4,315,456 10,606,501 146 1,252 965 0 68 219

70 42,426,004 24,064,426 2,067,986 4,858,762 11,434,830 147 876 688 0 42 146

71 45,739,320 25,654,998 2,378,310 5,435,588 12,270,424 148 584 481 0 2 101

72 49,081,696 27,166,123 2,744,449 6,059,004 13,112,120 149 404 343 0 3 58

73 52,448,480 28,699,147 3,115,855 6,706,365 13,927,113 232 192 0 4 36

74 55,708,452 30,184,389 3,404,498 7,392,126 14,727,439 151 144 132 0 0 12

75 58,909,756 31,676,793 3,640,667 8,109,897 15,482,399 152 48 43 0 0 5

76 61,929,596 32,987,483 3,931,984 8,839,668 16,170,461 153 20 19 0 0 1
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largest layer; on edash, the state cache can only hold 29% of the largest layer. On eadash,

more than 84% of the duplicates are eliminated with the state cache on each layer; on

mcslock, more than 63% of the duplicates are eliminated during IDD on the largest layer

in the graph. These two tables show that the LRU state cache is effective even on layers

that are much larger than the state cache size.
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CHAPTER 4

HASH-BASED DDDWITH AUTOMATIC PARTITIONING

This chapter describes an approach to external-memory search starting with the con-

cept of hash-based DDD, and compares it to the approach described in the previous chap-

ter, which uses sorting-based DDD. A hybrid approach that borrows from hash-based and

sorting-based DDD is described and evaluated as well.

4.1 Basic Algorithm

External-memory breadth-frst search with hash-based DDD [47, 48] generates all

unique states in each layer of a breadth-frst search graph in two phases: state generation

and delayed duplicate detection (DDD). All states belonging to layer l are generated before

moving on to layer l + 1. The hash-based DDD algorithm divides each layer of the state

space into buckets using a hash function. There are three kinds of states: open states,

candidate states, and closed states. Open states are unique states that have not yet been

expanded to generate children states. Candidate states are states that have not yet been

proven unique by DDD. Closed states are unique states that have been expanded to generate

children states. During state generation, the algorithm expands each open state in the

current layer to generate candidate states for the next layer. The candidate states are saved

in fles and later refned by DDD. DDD refnes a candidate set by removing all duplicate
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states by comparison to other candidate and closed states that are read from fles belonging

to the same bucket. The result of DDD is an open set that contains the open states of the

next layer. The open states are written to fles, one for each bucket. These two steps of

state generation and DDD are repeated for every layer of the graph. The algorithm stops

on one of two conditions: an error state is encountered or no more open states remain to

expand.

In hash-based DDD, all states are assigned a particular bucket by a hash function. Can-

didate states are separated into fles, with one fle per bucket. Each bucket is put through

DDD separately. When bucket b is put through DDD, all candidates belonging to bucket b

are read from disk and put into a hash table. If the hash function is designed appropriately,

all candidate states in the bucket will ft completely into a RAM hash table. Duplicate

states will be recognized and not inserted twice into the hash table. Each closed state be-

longing to bucket b is also read from disk, and if it is a duplicate of a candidate state in

the hash table, the redundant candidate state is removed. When all closed states have been

reviewed, the remaining candidate states are written to disk as open states. There is one

open fle per bucket per layer.

The original motivation for the hash-based approach to DDD was to eliminate the over-

head for sorting in sorting-based DDD [48]. But the frst hash-based approaches to DDD

were tested for frontier search algorithms that do not save and check previous layers of

the graph for duplicates. This dissertation compares sorting-based and hash-based DDD

for external-memory graph search algorithms that keep and check previous layers of the

search graph for duplicates.
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1. externalBFS(S0,ErrorStates)

2. i := 0 % index of layer

3. OpenBucket[numBuckets] := {∅} 
4. for each s ∈ S0 % set of initial states

5. OpenBucket[hash of(s)].add(s)

6. CandidateBucket[numBuckets] := {∅} 
7. while ∃b OpenBucket[b][i] = ∅ do

% Generate successors of all states in current layer

8. for each b ∈ numBuckets

9. for each s ∈ OpenBucket[b][i] do
′ 10. for each successor s of s 

′ 11. if (s ∈ ErrorStates) return false
′ 12. else CandidateBucket[hash of(s ′ )].enqueue(s )

% Remove duplicates among generated states

13. i := i + 1

14. for each b ∈ numBuckets

15. for each c ∈ CandidateBucket[b]
16. hash->add if unique(c)

17. for each s ∈ ClosedBucket[b]
18. hash->remove if present(s)

19. hash->write remaining states to(OpenBucket[b][i])

20. hash->clear()

21. return true

Figure 4.1

External-memory BFS with hash-based DDD.

6
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4.2 Algorithm Improvements

A challenge in using hash-based DDD is selecting a proper hash function. The hash

function must create buckets that are smaller than the size of the hash table. Also, since

there is overhead for creating buckets, the hash function needs to minimize the total num-

ber of buckets. This section describes an automatic partitioning algorithm for domain-

independent hash-based DDD. The hash function described in this section also creates

temporal locality, which is exploited by immediate duplicate detection (IDD).

4.2.1 Immediate Duplicate Detection

Immediate duplicate detection (IDD) is a method for removing many duplicate can-

didate states immediately, rather than waiting for DDD. IDD was described in detail in

Section 3.3.2.2. Intralayer locality must be present in the open sets for the LRU state cache

to be effective. Because of intralayer locality, the states in the state cache are more likely to

eliminate duplicates than a randomly selected set of states from the state space. Hash-based

DDD creates intralayer locality. In hash-based DDD, the open set is split into buckets by

the hash function. For this research, the function is an abstraction of the state, taking into

account a subset of the state variables. Under this hashing method, the states belonging to

the same bucket are the same on all criteria considered by the hash function. As described

in Section 3.3.2, states that are similar produce more duplicate children than state that are

different. Thus, the hash bucket itself provides intralayer locality in this hash-based DDD

implementation.
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The algorithm detailed for this section has two hash tables, each of size 3,000 MB,

one for IDD and one for DDD. If IDD and DDD shared a single hash table, the hash table

would have to be wiped clean every time a new candidate set was put through DDD. If

the hash table was cleaned out once per layer, it would reduce the number of intralayer

duplicates eliminated. Additionally it takes time to clear the hash table. By employing two

separate hash tables, the algorithm can maintain the state cache from layer to layer, which

allows interlayer duplicates to be eliminated by the state cache.

4.2.2 Automatic Partition

The hash-based DDD search created for this chapter uses an automatic partition that

dynamically alters the hash function to ensure candidate buckets stay smaller than the size

of RAM, a feature required to do duplicate elimination using a RAM hash table. Creating

such a hash function is diffcult without a detailed knowledge of the state space. Instead,

an automatic hash function was employed that changes based on the states encountered,

where buckets that become too large are split.

The ideal hash function would have buckets of equal size for each layer, and the max-

imum number of candidates for a single bucket would be smaller than the size of the hash

table. Ideally, the partition would never need to be altered because changing the partition

can be expensive. Also the hash function would need to have the minimum number of

buckets possible, since a bucket requires some overhead in time and memory. All of these

ideals cannot be satisfed because they are, in some ways, contradictory. Instead, the algo-

rithm created for this chapter focuses on a balance between reducing the number of times
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repartitioning is necessary and avoiding the need for an excessive number of buckets. The

next section describes the hash function developed for this algorithm: frst, how the initial

partition is determined, and second, how the partition is maintained throughout the search.

4.2.2.1 Creation of Initial Partition

This algorithm starts with no knowledge of the state space. A modifed BFS is used

to sample the state space and employs the set of states explored to create an initial hash

function. In Mur° models, rules are grouped into rule sets. The sampling search only

expands the frst fve rules in any given rule set, ignoring other children states, which

means it encounters deeper states than a pure BFS would. This algorithm samples 100

MB of the state space using this method. The sampling search also fnds a wider variety

of states than the frst few layers of a breadth-frst search, a variety that makes the initial

partition less likely to need modifcation.

The hash function developed here is an abstraction of the state. Each state represents

values for several variables, and a few selected variables are used as the hash function. A

heuristic selects variables for the hash function that have a wide range of observed values

- the theory is that variables with a wide variety of values will lead to more active buckets.

Around a dozen variables are used for the initial partitioning function, and new variables

are added until the number of potential buckets exceeds 1,000. In practice, many of those

potential buckets remain empty and are not tracked by this algorithm.

If more variables are added to the initial partition, more buckets result. More buckets

generally means smaller buckets and less changing of the hash function on the fy, but more
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buckets does not always guarantee smaller buckets. Buckets also come with an overhead,

and an excessive number of buckets is more expensive than occasionally altering the hash

function.

4.2.2.2 Dynamic Repartitioning

The initial partition can sometimes be used without modifcation. However, sometimes

the candidate states in a single bucket of the partition can grow larger than the hash table

can hold. In order to ensure candidate buckets remain small, the hash function is dynami-

cally altered. When a large bucket is encountered, states are redistributed by splitting the

largest bucket and leaving the remaining buckets unchanged. The advantage of splitting

a single bucket is that all states in all other buckets can remain in the fles as they stand.

Only states in the split bucket is rearranged. Since moving the states is expensive, there is

a huge beneft to splitting only a single bucket at a time.

The hash function can be represented as a tree, as illustrated in the example in Fig-

ure 4.2. The interior nodes, drawn as rectangles, are labeled with a variable name from the

state representation. The outgoing edges are labeled with possible values of that variable.

The leaf nodes, drawn as circles, are labeled with a bucket number. To fnd the proper

bucket for a state, we traverse the tree until we reach a leaf node. At each interior node, we

select the branch with a label that matches this state’s value for the variable of the interior

node. The tree on the top left represents the initial partition, with a single interior node.

The initial partition is always a balanced tree as depicted here. The tree on the top right

shows the situation after bucket 2 is split. A new interior node replaces the leaf labeled
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Tree Representation of Hash Function.

80



2, and two new leaf nodes are added as children of the node labeled aligned, creating an

unbalanced tree. The two trees on the bottom represent the hash function after two more

buckets are split. No tree balance is enforced during repartitioning.

Any time the number of candidate states in a single bucket exceeded 95% of the size

of the hash table, the bucket was split. Because intralayer duplicates contained in the

candidate set do not need to be stored in the hash table, this method could sometimes split

buckets unnecessarily. Alternatively, it is possible to start with DDD regardless of how

many candidate states exist and only split the bucket when the hash table overfows. This

algorithm was designed to split buckets preemptively for three reasons. First, a bucket that

just barely fts in the hash table in layer l is likely to require splitting in layer l+1. That is,

even if buckets are split when it is not immediately required, it will often be required soon.

Second, if DDD is under way before the decision to split is made, the effort spent on DDD

up to that point is wasted. Those same candidates will have to be read in again under the

new partitioning scheme. Finally, splitting the bucket earlier is computationally cheaper.

Every state in the bucket must be moved to new fles, which is less work when the bucket

is preemptively split.

The new distribution is created with a heuristic computed based on a sample of 10,000

of the most recent states in the bucket to be split. Each unused variable is considered for

addition to the hash function. For each variable, sample states are divided into potential

buckets, one for each possible value of that variable. Variables are scored by the size of

the largest potential new bucket, and the variable that receives the lowest score is used to

split the bucket. With this heuristic, a small score indicates that the split will result in small
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new buckets. Ensuring that the new buckets will be small reduces the number of times

repartitioning must occur.

All states belonging to the split bucket are redistributed to the new buckets created.

The closed states belonging to that bucket are read from disk and then written to fles for

the newly created buckets. Only the states in the split bucket are rearranged, and states

are moved in a single pass. Rewriting fles is expensive, which inspires two goals: to

minimize the number of times buckets are split and to change only a single bucket during

repartitioning. The algorithm detailed in this chapter satisfes these goals well.

This system of automatic partitioning guarantees small candidate buckets on any do-

main with limited overhead, and use of smaller buckets reduces the number of times repar-

titioning is required. Ideally, the heuristic would create new buckets that contain the same

number of states and would reduce the number of new buckets created. But sometimes the

newly generated buckets become larger when trying to fulfll both of the goals stated in

the previous paragraph, and larger buckets mean more repartitioning. For this reason, the

splitting heuristic is focused solely on minimizing the size of the generated buckets.

4.2.3 Saved Partition

Repartitioning would be unnecessary if the perfect hash function were known a priori.

A perfect hash function is impossible to guarantee before the search completes, but when

a good hash function was found, it is recorded for later use. A second search on the same

model can then employ the previous hash function to avoid all repartitioning time. This

approach is called using a saved partition.
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4.2.4 Phased Delayed Duplicate Detection

An algorithm that combines attributes of sorting-based DDD and hash-based DDD

was also implemented. Generally, hash-based DDD is faster than the implementation of

sorting-based DDD described in the previous chapter due to fewer state comparisons. This

observation led to development of an improved implementation of sorting-based DDD,

called phased DDD, which only changes the DDD portion of the search.

In phased DDD, the sorted candidates are inserted into a hash table until the hash table

is full. Intralayer duplicate states are removed as they are inserted into the hash table. All

states in the hash table at the same time belong to a single phase. When all candidates in a

phase are in the hash table, all closed states in the same phase are checked for membership

in the hash table and removed if present. The remaining states in the hash table are written

to disk in sorted order as open states. Because all duplicates of states in phase p must also

belong to phase p, this method removes all duplicate states. When the phase is fnished, the

hash table is emptied and the process is repeated on the next phase until no more candidate

states remain to refne.

Phase membership is determined as the hash table flls. If the frst candidate state

inserted into the hash table is sF and the last candidate inserted into the hash table is sL,

then the phase can be defned as all states that sort between sF and sL. Since, candidate

states are inserted into the hash table in sorted order until it flls, all of those candidate

states belong to the phase and sort between sF and sL. Finding closed states in a particular

phase means fnding all closed states that sort between sF and sL. Closed states are read

in batches and put into a buffer, flling slots b0 through bn. Because the closed fles are in
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sorted order, states bi+1 sorts higher than bi, and bn will always sort last of the buffered

states. State bn is compared to sL, if bn is before sL in sorted order, it is known by the

property of transitivity that the entire buffer belongs to the current phase. If not, a binary

search [13] is used on the buffer, until the frst state (bj ) that sorts after than sL is found.

States b0 through bj−1 will be used during the current phase. States bj through bn will be

saved for the next phase. A binary search takes O(log n) state comparisons to determine

phase membership [13], where n is the number of elements to be searched through.

A phase is like a temporary bucket from hash-based DDD. Each layer of the BFS will

have a different set of phases, phase membership will be discovered as the hash table flls.

Each state will belong to exactly one phase per layer, which is like a bucket for just that

layer. Also like a bucket, all duplicates in a phase can be eliminated by only comparing to

other states that belong to the same phase. This duplicate elimination is done through the

hash table, which is similar to hash-based DDD.

Phased search reduces the number of state comparisons required to complete sorting-

based DDD. A simple sorting-based DDD requires two heaps, one to merge candidate fles

and one to merge closed fles. Phased DDD does not use a heap to merge closed fles.

But phased search does have two categories of state comparison that a simple sorting-

based DDD does not. A binary search is used to establish phase membership in the closed

states, which requires state comparisons. Additionally, phased search uses a chained hash

table for duplicate elimination, so each hash collision results in more state comparisons.

However, when compared to simple sorting-based DDD, phased DDD reduces the overall

number of state comparisons.
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Phased DDD still requires more state comparisons than hash-based DDD. Hash-based

DDD does not have a binary search, or sorted candidate sets, or a heap to merge candidate

states into a sorted list. For these reasons, a hash-based search where repartitioning is not

required will usually be faster than a phased search. However, phased search does not

require a partitioning function. Phase membership is determined very simply from which

candidate states ft into the hash table. In situations where a satisfactory partition is diffcult

to obtain, phased DDD could be superior.

4.3 Related Work

Hash-based DDD requires a hash function to partition the state space, and the partition

must guarantee that no bucket exceeds the size of available RAM. Two methods previously

used to generate this partition include a user-defned hash function that requires knowledge

of the state space and automatically generating the partition with heuristics and sampling.

Both methods will be explained.

4.3.1 Hash-Based DDD with User-Defned Partition

A partition for hash-based DDD can be generated manually. Korf and Schultze [47, 48]

implemented hash-based DDD for Rubik’s Cube, Sliding Tile Puzzle, and Towers of Hanoi.

In each case, Korf and Schultze created a hash function manually that ensured a small

maximum size for all buckets. They were able to create these hash functions because these

problem sets have regular properties that can be discovered in small versions of the problem

such as looking extensively at Towers of Hanoi with just three disks. The properties can

then be generalized to much larger problem sets. However, it is diffcult to apply this work
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to unrelated problem sets because extensive knowledge of the graph is required to create

a user defned hash function that meets the necessary conditions. Also, many graphs in

model checking are much more complicated and do not scale in such obvious ways.

4.3.2 Hash-Based DDD with Automatic Partition

Evangelista and Kristensen [26] based their external-memory search on the algorithm

by Bao and Jones [3]. The Bao and Jones algorithm expands states belonging to a sin-

gle bucket until there are no more open states currently available for that bucket. It then

switches to another bucket and repeats the process. Every time buckets are switched, the

Bao and Jones algorithm writes the entire contents of the current bucket to disk and reads

the entire contents of another bucket from disk, a process called a context switch. Cross

transitions occur when a state in bucket b has a child state in a bucket other than b. In

the Bao and Jones algorithm, increasing cross transitions increases the amount of disk I/O

and overall time to complete the search because self transitions do not result in context

switches with disk - only cross transitions do so. In this algorithm, it is benefcial to reduce

the number of cross transitions.

Evangelista and Kristensen [26] created an alternative method for dynamically chang-

ing the partitioning scheme as the search progresses. Using this method allows Evangelista

and Kristensen to search spaces without manually creating a hash function for the space.

Their algorithm only divides buckets that are larger than available RAM, which saves time

by not changing the bucketing scheme for the entire state space. When a bucket is split,

Evangelista and Kristensen use a heuristic to select how to alter the partition. Evangelista
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and Kristensen evaluated six different heuristic functions, mostly focused on having a min-

imal set of buckets. Their theory seems to have been that fewer buckets equate to fewer

cross transitions. Evangelista and Kristensen then evaluated which heuristics prevented

cross transitions and were able to reduce cross transitions when compared to off-the-shelf

hash functions. This reduced context switching and the time required for the search. The

number of cross transitions does not affect the amount of disk I/O in the algorithm de-

scribed in this dissertation because each bucket is encountered no more than two times per

layer: once in state expansion of open states and once in DDD of candidate states. Also,

in the algorithm detailed here, the entire bucket is read from disk only during DDD, so

cross transitions have no effect on the amount of disk I/O. The heuristics employed here

minimize the number of repartitions required and reduce the number of buckets created.

4.4 Experimental Evaluation

This section describes the experimental results associated with this newly developed

hash-based DDD algorithm. First, it is demonstrated that intralayer locality is preserved

in the hash-based algorithm. Then, the effectiveness of the hash function is examined.

Finally, the hash-based algorithm is compared to the sorting-based algorithm from the last

chapter.

These results come from continued use of the partial DDD algorithm described in Sec-

tion 3.3.4. As described in Section 4.2.1, two hash tables of equal 3,000 MB size are used,

as is the state cache described in Section 3.3.2.2. As described in Section 4.2.2.2, buckets

are split when the size of the candidate set exceeds 95% of the size of the hash table. Tests
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were run on a machine with an Intel i7 CPU with 4 cores running at 3.07 GHz with 8 GB

of RAM.

4.4.1 Temporal Locality for Immediate Duplicate Detection

Intralayer locality is present in hash-based DDD and is necessary for the LRU state

cache to work effectively. Figures 4.3 and 4.4 show graphs that compare the intralayer

locality for a bucketed open set without sorting to a sorted open set. These graphs show

the number of duplicates eliminated by various-sized state caches for both sorting-based

DDD and hash-based DDD. Hash-based DDD does not exhibit as much intralayer locality

as sorting-based DDD. Specifcally, hash-based DDD does not have as many duplicates

with very short locality. Looking at the larger cache sizes, hash-based DDD is only slightly

worse than sorting-based DDD, but sorting-based DDD eliminates more duplicates overall.

Therefore, considering all variables can be advantageous for IDD with a state cache.

Intralayer locality is present in hash-based DDD because every state in a bucket is

identical on every variable considered by the hash function and states are expanded in

bucket order. These two features of the algorithm group open states by similarity and

create the intralayer locality. The intralayer locality in hash-based DDD is a side effect of

the states being bucketed by a hash function, and this particular function was chosen for its

effects on bucket size and the total number of buckets, not the state cache effects. Looking

at the comparison graphs (Figures 4.3 and 4.4), it is clear that some bucketing schemes are

much more successful at creating intralayer locality than others, so it might be possible to

choose abstraction variables to maximize the performance of the IDD.
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Figure 4.3

Duplicates eliminated immediately by cache size in sci1 and arbiter1models with sorting

and hash-based DDD.
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Figure 4.4

uplicates eliminated immediately by cache size in newlist and directory models with

sorting and hash-based DDD.

D
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4.4.2 Effectiveness of the Hash Function

This section examines whether the hash function developed for this chapter outper-

forms randomized selections and considers several slight variations of the proposed automatic-

partition function. These variant heuristics are of our own design. Comparing the algorithm

to these alternatives helps explain the reasons the automatic-partitioning algorithm is suc-

cessful.

4.4.2.1 Heuristics for Creating Initial Partition

This section examines several heuristics specifcally for the initial partition. First an

partition based on randomly selected variables. Then a partition derived from a BFS. Fi-

nally a partition that selects more initial variables.

Table 4.1

Hash function with randomly selected initial variables

Model

Sampling Initialization

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

Random Initialization

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

sci1

ns

kerb

arbiter1

41:27

41:24

1:57:58

41:48

19

68

12

137

3

1

1

0

49:56

1:06:27

2:47:38

2:14:19

40

93

50

512

6

4

2

0

A variant of the automatic-partition function presented here selects the variables used

for the initial partition randomly. Table 4.1 compares the algorithm previously described

with the randomly initialized partition. This subset of the models suffciently demonstrates
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the behavior of the randomly selected initial partition. For both searches, the time required

to complete the search, the fnal number of buckets, and the number of times a bucket was

split are reported. The randomly initialized partition has both more buckets split and more

total buckets. An excessive number of buckets slows the search down because overhead

is incurred for each bucket. Also, splitting a bucket is expensive. The automatic-partition

function outperforms the randomized initialization on all measured metrics.

Table 4.2

BFS used to select initial partition

Model

Total

Time

(hh:

mm:ss)

Sampling Initialization

Init Number Number

Time Final Split

(mm:ss) Buckets Buckets

BFS Initialization

Total

Time Number Number

(hh: Final Split

mm:ss) Buckets Buckets

sci1

ns

kerb

arbiter1

41:27

41:24

1:57:58

41:48

53

55

1:05

55

19

68

12

137

3

1

1

0

44:28

2:30:01

2:35:40

2:15:50

33

226

62

512

6

16

3

0

Table 4.2 compares the automatic-partitioning algorithm with a modifcation that uses

BFS to sample for the initial partition. These models were selected to show the range of

observed behaviors. Total search time required, fnal number of buckets, buckets split,

and time required for the sampling search to create the initial partition are reported. The

sampling search must take the extra step of sampling the state space, which requires more

time compared to the BFS-initialized partition, which just uses the frst portion of the

search as a sample. However, the initializing time is roughly one minute long and does not

92



greatly alter the overall time. The BFS-initialized partition, which uses the same heuristics

with a different sample set, produces more buckets overall. Unfortunately, the bucket

sizes produced by the BFS-initialized partition are more unevenly distributed, so more

splitting is required. The sampling initialization samples deeper states in the state space

and produces a more useful partition. The combination of more buckets and more splitting

make the BFS-initialized partition the slower search.

Table 4.3

Adding one more variable to initial partition

Model

Sampling Initialization

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

More Initial Variables

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

sci1

ns

kerb

arbiter1

newlist

41:27

41:24

1:57:58

41:48

5:13:32

19

68

12

137

384

3

1

1

0

0

41:01

43:07

1:57:51

43:07

6:06:02

21

68

12

144

444

3

1

1

0

0

The initial partition developed in this research stops after creating 1,000 potential buck-

ets. In this section, we compare it to an altered algorithm, with one more variable added

after the usual stopping place. Results appear in Table 4.3. These models were suffcient

for proving the effect of additional variables on the initial partition. For both searches,

time to complete the search, fnal number of buckets, and number of times a bucket was

split were reported. In all but one case, there was not a signifcant time difference between

the two searches. In all of those models, the number of observed buckets was nearly iden-
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tical in both searches. But for the newlist model, one more variable added 60 buckets.

The overhead of those buckets made the modifed search take longer. This result demon-

strates the overhead of buckets and encourages use of the minimum number of buckets that

satisfes the properties required by hash-based DDD.

4.4.2.2 Heuristics for Dynamic Repartitioning

This section examines several heuristics for repartitioning the buckets, establishing

why the heuristic described in this chapter is effective. First a randomly selected split.

Then a split heuristic that minimizes the number of buckets created.

Table 4.4

Hash function with randomly selected variables used for split

Model

Minimal Max Size Split

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

Random Split

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

sci1

ns

kerb

41:27

41:24

1:57:58

19

68

12

3

1

1

N/A

43:01

2:15:40

>1,000

68

16

>1,000

1

2

The repartitioning function was altered to select a random variable to split on, with

results presented in Table 4.4. The models selected for this table all required repartitioning

and demonstrated the range of behaviors observed. For both searches, time required to

complete the search, fnal number of buckets, and number of times a bucket was split were

reported. On the ns model, the two searches had nearly identical performance. On the
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kerb model, the frst randomized split was not effective, requiring a second split. On the

sci1 model, the randomized split reached a pathological case. Every time a bucket was

split, all or most of the states went to a single bucket, requiring another split. The search

was stopped when it reached 1,000 buckets. The newly developed heuristic does far better

than randomized selection at splitting buckets.

Table 4.5

Hash function with heuristic that minimizes the number of generated buckets

Model

Minimal Max Size Split

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

Minimal Sub-Buckets

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

sci1

ns

41:27

41:24

19

68

3

1

48:24

1:14:39

90

563

16

90

The alternative heuristic described next attempts to minimize the number of buckets

created. Each potential variable is used to split the sample states into new buckets, and

then the number of new buckets containing one or more sample states is counted. This

alternative selects the variable that produces the fewest observed buckets, but variables that

have only one active child bucket are discarded ensuring that the new buckets are always

smaller than the split bucket. Table 4.5 compares this heuristic with the original algorithm

developed for this chapter. For both searches, time required to complete the search, the

fnal number of buckets, and the number of times a bucket was split are reported. In both

cases, the new heuristic resulted in more split buckets and more overall time. Although
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minimizing the number of buckets is an important goal, as explained previously, ensuring

that a large bucket is split into small new buckets is more important. For this section, only

models that require repartitioning are used. Further models required even more run time

and are not reported.

4.4.3 Comparison to Sorting-Based DDD

Table 4.6

Comparing time of hash-based to sorting-based DDD.

Model

Sorting-Based

Simple Phased

Total Total

Time Time

(d:hh:mm:ss) (d:hh:mm:ss)

Hash Based

Automatic Saved

Total Num Total

Time Bucket Time

(d:hh:mm:ss) Split (d:hh:mm:ss)

arbiter1 55:49 42:57 41:48 0 41:15

sci1 22:28 22:06 41:27 3 20:49

newlist 5:43:28 5:26:29 5:13:32 0 4:51:54

kerb 2:40:12 2:32:02 1:57:58 1 1:57:22

ns 35:31 34:59 41:24 1 32:58

arbiter2 12:19:01 11:41:29 10:48:46 76 8:33:02

eadash 1:16:56:53 1:03:05:55 1:03:01:37 27 1:02:16:59

directory 8:42:22 8:05:33 8:17:24 7 7:03:29

sci2 11:30:19 10:44:41 10:23:32 151 8:58:16

Automatic hash generation for hash-based DDD signifcantly reduces the time required

to complete the search, mostly by reducing the number of state comparisons, but also by

removing the sort operation. Table 4.6 reports the total time required for sorting-based and

hash-based DDD, as well as the number of times a bucket is split during the search and
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the total time required for a search using a saved partition. Searching with repartitioning

is faster than searching with sorting-based DDD on the larger models, but searching with

a saved partition is always the fastest. The difference in time between saved-partition and

automatic-partition searching is almost entirely due to repartitioning time. In the larger

models, searching time dominates over repartitioning time; therefore, a speed-up is seen

even when repartitioning is included. The time to complete a phased DDD search is be-

tween the time for the hash-based and sorting-based approaches.

The time savings exhibited by hash-based DDD largely comes from reducing the num-

ber of state comparisons, as can be seen in Table 4.7. This table shows the total time spent,

time required for DDD, and number of state comparisons completed during DDD for a

single search with simple sorting-based DDD, sorting-based phased DDD, and one with

hash-based DDD. The layer column in the table reports the static bound for partial DDD

over the total number of layers in the state space. Since state vectors are large, state com-

parisons are expensive. The three largest models, as measured by GB for storing the state

set, require much more time during DDD than the smaller models. When measured this

way, the larger state set is partially due to the number of states and partially due to the size

of an individual state. Both of those factors increase the time spent on the closed set during

DDD. Remember each state in layer l is part of DDD L − l times as a closed state, where

L is the total layers in the graph. If layer l has n states that is n ∗ (L − l) states used as

a closed state in DDD. The multiplicative nature of closed states during DDD account for

larger models spending a larger portion on DDD.
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Table 4.7

Comparing time of hash-based to sorting-based DDD; state comparisons

Model Algorithm

Total

Time

(d:hh:

mm:ss)

DDD

Time

(d:hh:

mm:ss)

State

Comparisons

Lay-

ers

arbiter1 Sorting-based

Phased DDD

Hashed-based

55:49

42:57

41:15

20:32

10:55

1:33

2,812,276,020

1,013,046,619

727,540,638

15/31

newlist Sorting-based

Phased DDD

Hashed-based

5:43:28

5:26:29

4:51:54

33:45

13:33

2:41

39,840,685,268

1,592,461,317

755,429,862

55/110

kerb Sorting-based

Phased DDD

Hashed-based

2:40:12

2:32:02

1:57:22

22:52

21:57

11:19

539,591,146

415,673,648

21,493,558

2/28

mcslock Sorting-based

Phased DDD

Hashed-based

1:12:01:30

1:09:25:53

23:34:54

1:07:01:17

1:03:02:57

17:41:02

675,461,989,138

55,803,846,707

3,141,882,730

86/154

eadash Sorting-based

Phased DDD

Hashed-based

1:16:56:53

1:03:05:55

1:02:16:59

1:09:43:14

16:10:25

12:37:05

95,272,642,030

9,925,349,583

961,697,774

34/63

directory Sorting-based

Phased DDD

Hashed-based

8:42:22

8:05:33

7:03:29

6:33:54

5:54:09

4:08:36

47,860,383,324

18,895,064,859

3,500,445,738

8/114

sci2 Sorting-based

Phased DDD

Hashed-based

11:30:19

10:44:41

8:58:16

4:22:26

3:35:09

2:04:08

8,483,872,618

8,434,772,822

114,777,097

2/7
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Sorting-based DDD requires more state comparisons during DDD than hash-based

DDD. The actual comparisons are done with memcmp. We will now describe what state

comparisons are necessary for sorting-based DDD. As explained in Section 3.3.1, in our

sorting-based DDD, states from several fles are merged into a single sorted list using a

priority queue implemented as a heap. Each update to the heap involves log(10 ∗ n) state

comparisons, where n is the number of fles merged and ten states from each fle are in-

cluded in the heap at all times. There are two heaps, one to merge the candidate fles

and one to merge the closed fles. Each candidate state s dequeued from the heap will

be compared to additional candidate states from the heap until a state is found that is not

a duplicate of s. The candidate state s will then be compared to closed states dequeued

from the other heap until a duplicate of s is found or a state past s in the sorted order is

found. All of these state comparisons (heap reorder, candidate to candidate, and candidate

to closed) are counted and put into the comparisons column in Table 4.7.

Hash-based DDD requires fewer state comparisons during DDD than sorting-based

DDD. During hash-based DDD, the candidate states are read from the candidate fle and

placed into a chained hash table. When a collision occurs in a chained hash, the states are

kept in a linked list. So when state s hashes to an entry in the table containing n states,

state s is compared to all n states to see if s is a duplicate of any of them. If it is not, state

s is added at the tail of the linked list. After all candidate states are in the linked list, the

closed states are used to fnd duplicates in the hash table. Each closed state is hashed and

compared to all elements in the linked list it collides with. All state comparisons looking

for duplicates in the linked list are counted and put into the comparisons column in Ta-
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ble 4.7. Hash-based DDD always reduces the number of state comparisons dramatically.

This is because the number of comparisons for hash collisions is much less than compar-

isons to maintain a priority queue in a sorted order. As explained in Section 2.2.5, in model

checking state vectors are large and state comparisons are costly. Large reductions in the

number of state comparisons result in a corresponding reduction in total time required and

time spent for DDD.

The phased DDD algorithm combines sorting-based DDDwith some elements of hash-

based DDD. Phased DDD also ends up between these two algorithms in performance and

state comparisons. In phased DDD, the candidate states are merged into a single sorted

order with a heap. The candidate merging process is the same as the simple sorting-based

DDD algorithm, so it uses the same number of state comparisons. Then the candidate states

are inserted into a hash table in a similar manner as hash-based DDD. Inserting states into

a hash table involves state comparisons due to hash collisions. The closed states belonging

to a single phase are read from disk and detected by a binary search, also requiring state

comparisons, as explained in Section 4.2.4. Phased DDD has fewer state comparisons than

the simple sorting-based search because it does not employ a heap to merge the closed

states. Using a hash table combined with binary search requires fewer state comparisons

than simple sorting-based DDD. The reduced number of state comparisons is why phased

DDD is faster than simple sorting-based DDD.

Phased DDD is not as effcient as hash-based DDD. Phased DDD requires more state

comparisons than hash-based DDD. The main reason phased DDD requires more state

comparisons than hash-based DDD is the merging of the candidate states. Many candidate
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fles are merged into a single sorted order using a heap. The heap requires many state

comparisons that the hash-base DDD does not require. Since hash-based DDD does not

need the candidate states in any particular order, they can be put into the hash table in the

same order they are in the fles. Because hash-based DDD uses fewer state comparisons

than phased DDD it is the faster search. Phased DDD does reduce state comparisons and

time when compared to the simple sorting-based DDD, but not as much as hash-based

DDD.

The models that use a higher layer bound show a larger reduction in the number of

state comparisons. Higher bounds mean more layers are used during DDD. More layers

in DDD equates to more closed states used in DDD. When more closed states are used,

methods that reduce the required state comparisons with closed states, such as phased

DDD, will have more of an effect. You can see that difference in Table 4.7. In the kerb and

directory models, where the layer bound is very low relative to the total number of layers,

there is a small difference in the number of state comparisons between simple sorting-based

DDD and phased DDD. In the newlist,mcslock, and eadashmodels the layer bound is high

relative to the total number of layers. For these high bound models, there is a comparatively

large reduction in the number of state comparisons between the simple sorting-based DDD

and phased DDD searches. The number of layers used during DDD effects the reduction

in state comparisons observed in phased DDD.

State comparisons are always expensive, but the cost of a state comparison is propor-

tional to the size of the state vector. The eadash model has much larger state vectors than

the mcslock model. The size of the state vector helps explain why phased sort reduces the
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number of state comparison for both eadash andmcslock by a factor of ten but eadash has a

much bigger reduction in DDD time than is observed for mcslock. Models with larger state

vectors demonstrate a larger speedup relative to the number of state comparisons reduced.
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CHAPTER 5

CONCLUSION

“State explosion” is a central problem for graph search and model checking. State

spaces increase exponentially with the number of variables in the state description, making

the large models common in the real world diffcult to verify. Use of external memory

can circumvent the limits on RAM size imposed by cost and computer architecture, but

external-memory algorithms come with their own set of challenges, including slow I/O

time and seek time latency. This dissertation explores a variety of means to improve the

scalability of model checking in external memory.

5.1 Contributions

A brief summary of some of the key contributions of this dissertation follows.

5.1.1 Improvements to Sorting-based DDD

Several improvements of sorting-based DDD have been developed that improve its

effciency. The two most effective are use of a more effcient internal sorting algorithm and

use of phased delayed duplicate detection.
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5.1.1.1 Internal Sort Algorithm

The sorting algorithm used can have a large infuence on performance. It was found

that sorting states internally before they are written to disk is most effcient. The states are

sorted in the state buffer that is already used for buffered I/O, and an indexed sort is used

to move small state pointers instead of large state descriptions. A three-way radix quick-

sort [5, 6] designed specifcally for sorting large keys of fxed size since model checking

states meet this criteria.

5.1.1.2 Phased Delayed Duplicate Detection

Phased DDD combines features of sorting-based and hash-based DDD. A hash table

is used to eliminate duplicates, which is more effcient than comparing two sorted lists

for duplicate elimination. No partitioning (i.e. hash) function is needed. Instead the state

space is divided into phases in a way that never requires repartitioning. All candidate

states that ft into the hash table belong to a single phase. Using the last candidate state to

be entered into the hash table, it is possible to determine phase membership of all closed

states. Duplicates are removed by only using closed states from the same phase, much

like hash-based DDD uses only closed states in the same bucket. Phased DDD reduces the

number of state comparisons relative to a simple sorting-based algorithm, which is how

phased DDD saves time. When the time to generate the partition is not considered, phased

DDD is not as effcient as hash-based DDD. However, phased DDD does not require a hash

function, so it can be a good alternative when hash functions are diffcult to obtain.

104



5.1.2 Hash-Based DDD with Automatic Partitioning

Use of hash-based DDD effectively reduces DDD to a linear-time operation [47, 48].

It also reduces the number of state comparisons necessary for DDD. However, hash-based

DDD requires a specialized hash function that ensures buckets ft in RAM. Finding the best

bucketing scheme is as diffcult a problem as performing the verifcation itself [36]. To be

domain independent, a hash function must be generated automatically. To automatically

generate a hash function that satisfes the requirements of hash-based DDD, the state space

must be dynamically repartitioned. An initial hash function is used until a bucket becomes

too large, then a new hash function is generated. Both the initial hash function and the

subsequent alterations are created by heuristics. Automatic partitioning allows the domain-

independent use of hash-based DDD, which saves time by eliminating many of the state

comparisons.

5.1.3 Leveraging Local Structure

This dissertation shows that model checking graphs exhibit two types of locality that

can be exploited for a more effcient search: interlayer locality and intralayer locality. Both

forms of locality are shown to exist in hash-based and sorting-based DDD.

5.1.3.1 Interlayer Locality

Interlayer locality is the principle that short interlayer edge distances are more com-

mon than long interlayer edge distances. Interlayer locality has been shown to exist for

some time [64]. Delayed duplicate detection consumes a large portion of external-memory

search time. By leveraging interlayer locality in external memory to perform partial de-
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layed duplicate detection, which means only checking the most recent layers for duplicates,

DDD time is reduced, while most delayed duplicates are still eliminated.

5.1.3.2 Intralayer Locality

Intralayer locality refers to duplicate states within a layer having small cache distances.

Intralayer locality has not previously been explored in model checking. Structured dupli-

cate detection (SDD) [81] is a complicated predictive cache algorithm that organizes a

state cache to exploit intralayer locality in planning problems. However, simple methods,

such as sorting and grouping by abstract states, can effectively create intralayer locality in

model-checking graphs.

Intralayer locality can be created in problems other than traditional model checking,

including the multiple sequence alignment problem in bioinformatics, in search problems

common in artifcial intelligence, and in learning the optimal structure of a Bayesian net-

work [57]. Evidence supports the idea that intralayer locality can be created in many

graphs.

In external-memory search, the option to use a state cache has often been ignored [17,

75] or implemented ineffciently [35, 66]. The state cache presented in this dissertation

exploits both intralayer and interlayer locality [64]. By maintaining the most recent states

in the cache, it can eliminate many duplicates in RAM. Time is saved because fewer du-

plicates needed to be considered by DDD and space is saved because fewer duplicates are

stored in external memory.
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5.2 Publication Summary

Portions of this dissertation have been published on two occasions. A frst non-refereed

four page paper detailed the layered state cache [53] that was the origin of the LRU state

cache explained in Section 3.3.2.2. A second referred publication retained the same state

cache and included the partial-DDD algorithm [54] described in Section 3.3.4.

5.3 Future Work

Two natural extensions to the algorithms in this dissertation are proposed and ex-

plained.

5.3.1 Heuristic for Partial Delayed Duplicate Detection

The partial delayed duplicate detection algorithm in this dissertation requires a man-

ually set layer bound. This bound is best set only after extensive knowledge of the state

space has been obtained. Ideally a heuristic would be used to create the bound. The algo-

rithm would sample the state space to determine a bound. The bound would not have to be

static, instead it could be adjusted as the search progressed. Such a heuristic would have to

account for potential exponential increases in duplicates if the bound were too short. Not

only would a heuristic make partial DDD domain independent, but it has the potential to

increase the effciency of the partial DDD.

5.3.2 Parallel Algorithm

One possible method of increasing the speed of external-memory search is to paral-

lelize the approach. Model checking has been parallelized in multiple ways. Mur° was
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frst parallelized by Stern and Dill [74]. Kumar and Mercer [50] added load balancing to

the same design. Parallel and external-memory approaches were added to the SPIN model

checker by Jabbar, Edelkamp, and Stefan Schrödl [17, 41]. Jabbar expanded on this imple-

mentation in his dissertation [40]. Both the sorting-based and hash-based DDD algorithms

described in this dissertation could be parallelized. We will now explain a shared mem-

ory parallel algorithm and two parallel distributed memory algorithms. One distributed

memory algorithm is based on sorting-based DDD and the other on hash-based DDD.

5.3.2.1 Parallel Shared Memory Algorithm

The algorithm could be parallelized with shared memory. In this approach all threads

would share access to the same data structures. This could be based on the shared hash table

described by Zhang and Hansen [80]. Each thread expands different states, but checks

for duplicates using the same hash-table. The hash-table is a variant of a chained hash

meant for threaded access. This approach is best suited to a single node multithreaded

architecture.

5.3.2.2 Parallel Sorting-based Delayed Duplicate Detection

As demonstrated by the Jabbar algorithm [40], parallel external-memory search can

be combined with sorting-based DDD. A parallel external memory search with sorting-

based DDD still needs a hash function to divide the states into buckets. The buckets are

used to divide the work among the threads. In the Jabbar algorithm a heuristic was used

as the hash function. Unlike search with hash-based DDD, the hash function used by a

parallel sorting-based approach does not have to be constructed to ensure all buckets are
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less than the size of RAM. This is an advantage over hash-based DDD, which has stringent

requirements on the hash-function employed. A suitable hash function for a hash-based

search can be diffcult to obtain, where almost any function will work for a sorting-based

search. The primary goal for a parallel sorting-based DDD hash function is to divide the

state space such that each bucket is approximately the same size.

The parallel implementation is based around a work queue, with access to the queue

controlled by a mutex. Any thread that has fnished its current work will take the next

chunk of work from the queue. Work comes in two types: open sets and candidate sets.

The work queue is sorted to ensure the fles are processed in the correct order and is guided

by two factors: the layer of the fle (fles of layer l will be processed before fles of layer

l + 1) and the type of state in the fle (fles containing candidate states will be processed

before fles containing open states of the same layer). Candidate fles are refned frst

because duplicates must be eliminated before states can be expanded. Ordering the work

queue ensures that all duplicate states are recognized and that the shortest error path is

always discovered. The work queue allows threads to share the search tasks in a balanced

way.

The threads must synchronize which layer they are processing because parent states

from multiple open fles can generate children states that belong to a single candidate fle.

To ensure that all candidate states belonging to bucket b and layer l are correctly merged

into a single fle, no work can begin on layer l until all open states of layer l− 1 have been

expanded. Some idle time would results from each thread waiting for the last open bucket

of a particular layer to be expanded.
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A thread that takes an open set from the queue will expand states, which is the same as

in the serial search. States in the open set are read from disk and designated as parent states,

and children states are generated. A hash table is used to perform IDD, which reduces the

number of candidate states written to disk and refned during DDD. The hash function

described in the frst paragraph of this section is used to distribute the states into candidate

buckets. Expanded states that are not recognized as duplicates are sorted and written to

disk with buffered I/O. When all states in the open set have been expanded, any remaining

states in the buffers are sorted and fushed to disk. All candidate fles are enqueued into the

work queue, and the thread then dequeues the next chunk of work.

Some of the work items in the work queue are refnement tasks. These are candidate

buckets that the algorithm refnes through DDD to create open states. The sorting-based

approach compares the sorted candidate states against sorted closed lists. Phased DDD,

described in Section 4.2.4, should be used since it is more effcient than the simple sorting-

based DDD. One change to sorting-based DDD is that delayed duplicate detection would

only be applied to one bucket at a time, rather than the whole candidate layer. This would

involve further subdividing buckets into phases.

The search continues until one of two possible conditions are met. First, an error state

could be found by any thread expanding an open state. Since open states are expanded in

layer order and threads are synchronized by layer, the frst error state detected is guaranteed

to have the shortest error path. The second termination condition is reached if all threads

are idle and the work queue is empty. In such a case, the model is verifed because no error
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state is reachable. The parallel search will always terminate with the same conditions as a

serial search.

One potential challenge with parallelizing our serial algorithm is that both the number

of cores available and RAM space are limited resources. This algorithm has large hash

tables for both IDD and phased DDD. It is possible to use a single hash table for both

usages, which reduces RAM requirements. But using a single table would also reduce

the effectiveness of the state cache, because it would no longer have a completely LRU

replacement policy. Instead sometimes the state cache could be emptied and hash table

repurposed for phased DDD. Korf and Schultze [48] found that the number of threads used

should exceed the number of cores available, but when taken to the extreme, it would also

be possible to use more threads than can be well supported by the cores. If ample RAM and

processing cores are available, these challenges would not have to be addressed directly.

5.3.2.3 Parallel Hash-based Delayed Duplicate Detection

The hash-based delayed duplicate detection algorithm can also be parallelized. The

same work queue structure could be used, with threads switching between expansion and

refnement tasks. One difference is that the hash-function described in Section 4.2.3 is

used to distribute the states into candidate buckets. This hash-function has to guarantee

each bucket never exceeds the RAM size available.

The expansion portion of the parallel algorithm can be nearly identical for a sorting-

based and hash-based approach. States are dequeued from open fles and expanded to gen-

erate children states. Immediate duplicate detection can be applied to reduce the number
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of candidate states. The expansion order of the states will be different between hash-based

and sorting-based approaches, which effects intralayer locality and the performance of the

state cache, as explained in Section 4.4.3. The remaining candidate states are written to

candidate fles. For the state expansion portion of a parallel search, hash-based and sorting-

based approaches differ in only two respects: sorting candidate states before writing them

to disk and the effectiveness of the state cache.

Threads may also take candidate sets from the work queue. Candidate sets are refned to

remove duplicate states, which can be hash-based DDD. The thread goes through each state

in a candidate fle, adding unique states to a hash table. Duplicate states are detected when

a copy of the state already exists in the hash table, with the second copy being discarded.

Since adding a new state to the hash table and detecting a duplicate are the same action,

no time is wasted. When all candidate states in the bucket have been processed, the thread

then reads through all closed fles belonging to the same bucket in previous layers. If any

of the closed states are duplicated in the hash table, they are removed. When all unique

candidates have been added to the hash table and all duplicates of closed states removed,

the remaining states are written to disk. The open fle is enqueued into the work queue,

and the thread then dequeues the next chunk of work.

The same exit conditions as the parallel sorting-based algorithm apply. The search

would terminate if an error state is found or the open state becomes empty. In all cases the

algorithm would produce the same result as the serial algorithm.

The same resource limitations described for parallel sorting-based DDD apply to par-

allel hash-based DDD. Parallel hash-based DDD also has large hash tables for DDD and
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IDD, which may be shared with some penalties. The number of threads used would have

to be balanced against the available resources.

5.4 Signifcance

Developing techniques for improving the effciency and scalability of a graph-search

algorithm for an external-memory model checker will allow searches of larger spaces and

make such searches faster. Model checking reduces the presence of critical errors in ex-

pensive and safety-critical systems, saving money and lives. The ability to verify larger

models faster increases our ability to verify systems completely, including more complex,

real-world systems. Verifcation of large problems is especially important for safety-critical

systems like avionics controls. The algorithm developed in the research for this disserta-

tion was tested on graphs that require hundreds of gigabytes of disk storage and days to

search, pushing the boundaries of model-checking size.

Finally, since the techniques applied herein are domain independent, they apply to any

large graph-search problem, including such search problems as those found in artifcial

intelligence, planning, high-performance computing, and other areas.
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