








amount of reduction provided by bit compaction varies by model, but is usually closer to

a factor of four. The algorithm studied in this dissertation shows three positive effects of

bit compaction: smaller states result in less I/O time, less disk space used, and more states

that ft into the state cache, which results in more duplicates being eliminated by immediate

duplicate detection (IDD).

2.2.4 Search Algorithms and Techniques for Improving Scalability

Many algorithms have improved the scalability of model checking, with some concen-

trating on reducing the number of states that need to be searched. Abstraction in search [11]

groups states into less-specifc abstract states and explores a smaller state space. Twometh-

ods, symmetry reduction [7] and partial order reduction [7], use logic to reduce the size

of the searchable state space. Other methods compress the state representation (sometimes

with lossy methods) to allow more states to be explored, including bit-state hashing [16]

and hash compaction [16]. Heuristic search [72] attempts to fnd error states sooner in the

search process, reducing the effort to fnd error states. Parallel search [42, 50, 74] harnesses

multiple processors to one task. External-memory search [3] stores all or portions of the

state space on disk. Partial memory search [76] only maintains portions of the state space,

while still attempting to verify the model.
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2.2.5 Test Models

Table 2.1

Basic search space information on the test models

Model

Size of State Space

States Edges

Largest

Layer

Models Without Errors

newlist

kerb

mcslock

eadash

directory

80,109,979

49,844,072

666,254,196

145,106,401

1,071,401,468

555,579,029

77,053,133

2,665,016,784

2,614,892,276

1,629,512,836

2,867,128

8,530,085

18,982,750

10,878,186

52,824,772

Models With Errors

arbiter1

sci1

ns

adashe

arbiter2

ldash

sci2

71,850,195

16,436,226

363,581,415

4,962,986

530,024,702

119,768,101

351,937,017

485,787,586

24,448,193

485,367,304

134,925,462

7,960,997,549

1,508,732,174

440,449,323

14,827,649

15,418,195

184,955,334

2,554,262

272,440,347

55,698,041

321,644,671

We collected basic information about all the models used in this dissertation using

the algorithm described in Section 3.3 (without partial DDD). Tables 2.1 and 2.2 report

some of the basic statistics of the models used in this dissertation, divided into two types:

models without error states and models with error states. These numbers were collected

by the sorting-based search algorithm described in the next chapter. Since these numbers

are produced by a search algorithm, they represent the reachable state space. The models

with error states are searched incompletely, since the search terminates when an error state

is found, and the numbers reported refect a search that stops at the error state. If the
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Table 2.2

Basic characteristics of the test models

State Loc-

Vari- Vector GB GB De- al-

Model ables Bytes RAM Disk pth ity

Models Without Errors

newlist 90 40 4 4 110 41

kerb 247 96 5 5 28 1

mcslock 25 40 34 32 154 86

eadash 541 543 75 75 63 63

directory 87 83 98 95 114 8

Models With Errors

arbiter1 94 24 3 3 31 15

sci1 265 120 4 4 8 5

ns 77 28 8 7 15 2

adashe 2,330 2,332 34 34 16 5

arbiter2 171 44 58 58 15 10

ldash 503 512 155 155 21 15

sci2 301 352 221 217 8 5
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search were allowed to continue, larger numbers would be reported for every category.

Table 2.1 lists the number of unique states found during the search, the number of edges

encountered in the model, and the number of unique states in the largest layer seen in the

model. Table 2.2 lists the number of variables defned in the Mur° model, the number of

bytes required to store the state vector with bit compaction, the number of gigabytes of

external memory required to store the model in RAM, the number of gigabytes of external

memory required to store the model in external memory, the number of layers in the model,

and the locality [83] observed. Since the same state vector representation is used in both

RAM and disk, the size of the state space is nearly the same in each medium. However,

some information in addition to the state vector is stored with each state. In external

memory we store enough information with each state to locate the parent of that state in

external memory. This extra data can be used for solution reconstruction and amounts

to 12 bytes per state in external memory. The states in RAM also have some additional

information including: parent pointers, pointers for organizing them into linked lists, and

information that helps us build the tables and graphs reported in this document. All of

this information amounts to 15 bytes per state in RAM. The difference in the size of the

state representation for RAM states and disk states is 3 bytes per state. The size of the

state vector usually dominates the total state size. When the total size of the state space

is rounded to the nearest GB it is usually the same for both RAM and external memory.

Since all of our algorithms use a maximum of 3,000 MB to store states in RAM, all of

these models require external memory to be searched completely.
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Model checking state representations are usually larger than those in most search prob-

lems. In Section 2.2.3, we said a model of 5 dining philosophers took 15 variables and 4

bytes. Our implementation of the Sliding Tile Puzzle, in a 4 by 4 arrangement, takes 16

variables and 12 bytes. The Towers of Hanoi with 4 pegs and 12 disks has been imple-

mented with states of 28 bytes. In contrast, as reported by Table 2.2, the average size of

state representations in the models used in this dissertation is 382 bytes. The larger size

of the state vector means comparison operations (equals, less than, greater than, etc.) are

more expensive in model checking, which affects the performance of the algorithms.

Figure 2.5

Number of unique states in each layer of the newlist model.

Graphs showing the number of states per layer in a model usually approximate a bell-

shaped curve. This means the majority of the states are near the waist of the graph. Figures
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Figure 2.6

Number of unique states in each layer of the kerb model.

Figure 2.7

Number of unique states in each layer of the mcslock model.
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6 newlist: A protocol for sorting a distributed linked list [60, 68] - we used a system

with 8 distributed nodes

7 ns: A model of the Needham-Schroeder protocol for mutually authenticating parties

in a system with intruders [62, 73]; a security protocol used to ensure parties are

communicating with legitimate other parties; environment is hostile, and messages

can be overheard, deleted, and created by intruders - we used a model with 2 mes-

sage initiators, 2 message responders, and 1 intruder; 3 outstanding messages were

allowed at a time, and the intruder could remember 5 messages (this model has an

error state)

8 sci: A model of the IEEE/ANSI Standard for a Scalable Coherent Interface [38,

73]; defnes several cache coherence protocols, each a subset of the last; provides

a shared-memory architecture at the software level, while the actual hardware is

distributed memory. Two variants of sci were tested:

sci1: This model had 4 processors, 4 caches, and 2 memory locations; each

memory location could hold 2 values, and each value was one of 4 types (this model

has an error state)

sci2: This model had 4 processors, 4 caches, and 4 memory locations; each

memory location could hold 4 values, and each value was one of 4 types (this model

has an error state)
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2.3.2.1 Stern and Dill

In an early implementation of external-memory search created by Stern and Dill [75]

and implemented in Mur°, if layers were smaller than RAM, DDD was performed once

per layer. When a layer of states exceeded the size of RAM, duplicate detection happened

immediately when new states were generated. In this approach, all states were kept in a sin-

gle external-memory fle in the original insertion order. Since the fle was not ordered and

was larger than RAM, each candidate state was compared to every state in external mem-

ory during duplicate elimination, an ineffcient implementation that has been improved in

many ways.

2.3.2.2 Della Penna et al.

Della Penna et al. created an external-memory search algorithm that exploits tran-

sition locality [66, 68], a property of state spaces for which duplicate states are likely to

be explored close to each other rather than far apart. In this method, all open states are

expanded before DDD occurs. Most approaches require DDD to compare the candidate

states to the entire closed set, but, in this approach, candidate states are compared during

DDD to a subset of the closed states, which are stored in fles of a constant size. When a

fle flls, another fle is created. During DDD, a randomized heuristic is used to determine

how many closed fles will be used to eliminate duplicates in the candidate set. To exploit

transition locality, selected fles always start at the most recently generated, and only when

the heuristic selects all closed fles will the least recently generated fle be used. The se-

lected closed states are read from disk one at a time and compared to the candidate states
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stored in a hash table; when duplicates are discovered, they are removed from the hash

table. The candidates that remain after the partial DDD are treated as open states, even

though some of them are duplicates. (Because of transition locality, few duplicate states

are treated as open states.) The algorithm then repeats by expanding all of the open states.

2.3.3 Sorting-Based Delayed Duplicate Detection

This section describes three different algorithms that use sorting-based DDD. In sorting-

based methods, the candidate, closed and open sets are kept in sorted conditions. Dupli-

cates within the sorted candidate set will be adjacent and can be recognized by comparing

a candidate to the next state in the set. Candidate states will also be compared to closed

states in sorted order until a closed state is found that equals or exceeds the candidate state.

If an identical closed state is found, the duplicate candidate is removed. If a closed state

that exceeds the candidate state is found, the candidate is shown to be unique and added to

the open set. Because both sets are in sorted order, a single pass through each set is all that

is required to eliminate all the duplicate states in the candidate set.

2.3.3.1 Roscoe

Roscoe [46, 69] used sorting based delayed duplicate detection, but let virtual memory

handle all accesses to external memory. The use of virtual memory limited the effective-

ness of the approach.
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2.3.3.2 Korf

Korf [45, 46] used breadth-frst search with sorting-based DDD and frontier search.

He used input fles containing the open states and the most recent layer of closed states. As

the fle is read, the open states are expanded and the closed states are discarded. The parent

states are retained in a closed fle containing just the most recent layer. The candidate

states are put into a separate fle. When the input fle is exhausted, the candidate states

are sorted and merged with the closed states into a single fle, during the fle merging all

duplicates are eliminated, resulting in a fle of closed states from the most recent layer and

the open states, which is the starting condition of the algorithm. The process then repeats.

The algorithm only maintains two layers, making it a frontier search, but not all duplicates

will be eliminated by two layers, even in undirected graphs, so Korf added “used” bits to

each state. The used bits record which neighbors of a state have been previously expanded,

which keeps duplicate states from even being generated. Used bits, however, are diffcult

to apply to all problem domains.

2.3.3.3 Edelkamp, Jabbar, and Schrödl

External A* [17] extends the A* algorithm for external memory. In this approach, all

states are assigned to buckets, with a unique bucket for each unique combination of g and h

values. As states are generated, they are written to individual fles that correspond to their

buckets. When all candidate states for bucket b have been added, bucket b goes through

DDD. First, the bucket is sorted. Duplicates of states in a bucket labeled g+h can only be

in other buckets with the same h value, which reduces the number of closed states required
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during DDD. The duplicate detection is performed by linear passes through all fles with

the same h value. Because this is a heuristic search, the buckets are expanded from smallest

f value to largest. If no heuristic is used, this approach is equivalent to breadth-frst search.

2.3.4 Hash-Based Delayed Duplicate Detection

Hash-based DDD can perform DDD without sorting, dividing the state space into

buckets using a hash function. Duplicates can be eliminated by examining the states of a

single bucket in a hash table, as found in the following examination of algorithms created

by Korf and Schultze, Bao and Jones, and Evangelista and Kristensen.

2.3.4.1 Korf and Schultze

In hash-based DDD, as described by Korf and Schultze [47, 48], the candidate set is

divided into buckets by a hash function. All open states for layer d are expanded, with the

children states placed into fles according to the buckets they hash to. (The hash function

ensures a small maximum size for all buckets.) When all the open states are expanded, each

bucket is put through DDD separately. When bucket b is put through DDD, all candidates

belonging to bucket b are read from disk and put into a hash table in RAM. Because the

bucket is small, all candidate states in the bucket will ft completely into a RAM hash

table. Duplicate states will be recognized and not inserted twice into the hash table. Each

closed state belonging to bucket b is also read from disk, and if the closed state duplicates a

candidate state in the hash table, the redundant state is removed from the hash table. When

all closed states have been reviewed, the remaining candidate states in the hash table are

written to a disk fle as open states.
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2.3.4.2 Bao and Jones

The Bao and Jones [3, 26] algorithm is a variant on hash-based DDD. Instead of

expanding states in layer order, this algorithm expands states belonging to a single bucket

until there are no more open states currently available for that bucket. Expanded states

that belong to the current bucket are added to a hash table, with duplicates discarded, and

then added to the expansion queue. When a expanded state does not belong to the current

bucket, it is written to a candidate fle for the bucket it hashes to. When all the currently

available states for the current bucket have been expanded, the algorithm then switches

to another bucket and repeats the process. Every time buckets are switched, the Bao and

Jones algorithm writes the entire contents of the current bucket to disk and reads the entire

contents of another bucket from disk. When the algorithm starts using another bucket, the

candidate fle for the new bucket is also read into the hash table. Duplicates are discarded

as they are encountered and the remaining unique states expanded. The process repeats

until no more states are available to be expanded.

2.3.4.3 Evangelista and Kristensen

Evangelista and Kristensen [26] based their external-memory search on the algorithm

by Bao and Jones [3] but changed the base algorithm by modifying the bucketing scheme

as the search progresses to ensure that bucket sizes remain small.

2.3.5 Structured Duplicate Detection

Zhou and Hansen [81] created a structured duplicate detection (SDD) algorithm, a

method for always eliminating duplicates immediately in external-memory search. Burns
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and Zhou created a SDD algorithm for model checking [10]. The Zhou and Hansen al-

gorithm divides the open states into buckets based on a hash function. When generating

a child state s′ of state s from bucket b, the new state s′ can belong only to a subset of

the buckets called the detection scope. When expanding states from bucket b, the entire

detection scope of the bucket is read into a hash table. Generated states are immediately

compared against this hash table, and those that do not exist in the table are unique and

are written to a fle of the bucket they hash to. When all states in the current open bucket

have been expanded, a new open fle is selected. When the open fle changes, the detection

scope also changes, so the states in the hash table are switched to match the current detec-

tion scope, and the process repeats. This approach always fnds duplicates immediately,

but swapping states in and out of memory can be computationally expensive.
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CHAPTER 3

SORTING-BASED EXTERNAL-MEMORY SEARCH

This chapter describes an approach to external-memory graph search for model check-

ing that uses sorting-based delayed duplicate detection (DDD). The sorting-based approach

to duplicate detection is well-known and was reviewed in Section 2.3.3. This chapter pro-

poses and evaluates several improvements of the basic algorithm. In addition, two forms

of local structure in external-memory breadth-frst graph search are identifed, intralayer

and interlayer locality, and techniques are described for leveraging both forms of locality

to improve the effciency of duplicate detection.

3.1 Basic Algorithm

This section describes a basic approach to external-memory search with sorting-based

delayed duplicate detection (DDD). Pseudocode for the basic algorithm is shown in Fig-

ure 3.1. This algorithm proceeds one layer at a time, generating all unique states. There

are two distinct phases for each layer: state generation and DDD. States can be classifed

three ways: candidate states, open states, and closed states. Open states are unique states

that have not yet been expanded to generate children states. Candidate states are generated

states that have not yet been proven unique by DDD. Closed states are unique states that

have been expanded to generate children states. During state generation, the algorithm will
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read open states from the current layer and expand each open state to generate candidate

states for the next layer. The candidate states are saved in fles, sorted, and later refned

by DDD. DDD refnes the candidate set by removing all duplicate states by comparison to

other candidate and closed states that are read from fles. After DDD, the open states of the

next layer are written to fles. These two steps of state generation and DDD are repeated

for every layer of the breadth-frst graph. The algorithm stops on two conditions: if an

error state is encountered or if no more open states remain to expand.

The DDD portion of the algorithm starts on Line 18. Both the candidate set and the

closed set are read in sorted order from fles. Since candidates are sorted, duplicate candi-

dates will be adjacent. The candidates are considered one at a time. If the current candidate

is identical to the next candidate in sorted order, it is discarded as a duplicate. In this way

all duplicates of other candidate states are eliminated. To prove a candidate state is unique,

it must be shown to not duplicate a closed state. Since the closed set is in sorted order,

closed states are compared to states in the candidate set until a closed state is found that

equals or exceeds the candidate state in sorted order. If a duplicate is found in the closed

set, the candidate is discarded. Otherwise the candidate has been shown to be unique and

is added to the open set. Because both the closed set and candidate set are in sorted order,

the next candidate considered cannot possibly duplicate closed states already considered,

so each set only needs to be examined once. This makes the complexity of DDD linear in

the size of the closed and candidate sets.
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1. externalBFS(S0,ErrorStates)

2. i := 0 % index of layer

3. Layer(i) := S0 % set of initial states

4. Candidates := ∅ 
5. while Layer(i) = ∅ do

% Generate successors of all states in current layer

6. for each s ∈ Layer(i) do
′ 7. for each successor s of s do

′ 8. if (s ∈ ErrorStates) return false
′ 9. else Candidates.enqueue(s )

10. sort(Candidates)

11. i := i + 1

12. DDD(Candidates,i)

13. return true

14.

15.

16.

17. % Remove duplicates among generated states

18. DDD(Candidates,candidate layer)

19. for each c ∈ Candidates do
20. if c = Candidates.top()

21. while c > Closed.top() do
22. Closed.pop()

23. if c = Closed.top()

24. Layer(candidate layer)].enqueue(c)

Figure 3.1

External-memory BFS with sorting-based DDD.

6

6

6
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3.2 Related Work

Jabbar and Edelkamp [17, 40] implemented sorting-based external-memory search for

model checking in SPIN [8]. Their approach is called External A* and is based on a best-

frst search. Their method employs a heuristic to compute a h value for each state, records

the number of steps each state is from the start state, and records the g value. Jabbar and

Edelkamp have one bucket for each unique combination of h and g values observed. Each

state is bucketed by the associated h and g values.

In Jabbar and Edelkamp’s algorithm, buckets can contain duplicate states. This algo-

rithm employs DDD to refne the candidate sets to include only unique open states. In

this approach, the system waits until there are no more possible states to add to a particular

bucket, then the entire bucket is sorted. In a sorted list, duplicates are adjacent, and the sys-

tem traverses the list and removes them. States can also duplicate states in other buckets

that share the same h value. Comparison to previous buckets is also done in sorted order to

eliminate duplicates effciently. The candidate set is compared to every closed state with

the same h value to ensure it is not a duplicate.

Jabbar and Edelkamp’s algorithm expands the buckets in a heuristic order. The sum of

the h and g values is referred to as f , and the existing bucket with the lowest f value is

expanded frst. In the case of multiple buckets with the same f value, the bucket with the

smallest g value is selected. Heuristic expansion can fnd error states earlier but depends

on the strength of the heuristic and provides no value in graphs that do not exhibit an error

state.
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1. externalBFS(S0,ErrorStates)

2. i := 0 % index of layer

3. OpenBucket[numBuckets] := {∅} 
4. for each s ∈ S0 % set of initial states

5. OpenBucket[hash of(s)].add(s)

6. CandidateBucket[numBuckets] := {∅} 
7. while ∃b OpenBucket[b][i] = ∅ do

% Generate successors of all states in current layer

8. for each b ∈ numBuckets

9. for each s ∈ OpenBucket[b][i] do
′ 10. for each successor s of s 

′ 11. if (s ∈ ErrorStates) return false
′ 12. else CandidateBucket[hash of(s ′ )].enqueue(s )

% Remove duplicates among generated states

13. i := i + 1

14. for each b ∈ numBuckets

15. for each c ∈ CandidateBucket[b]
16. hash->add if unique(c)

17. for each s ∈ ClosedBucket[b]
18. hash->remove if present(s)

19. hash->write remaining states to(OpenBucket[b][i])

20. hash->clear()

21. return true

Figure 4.1

External-memory BFS with hash-based DDD.
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Figure 4.4

uplicates eliminated immediately by cache size in newlist and directory models with

sorting and hash-based DDD.

D

90



4.4.2 Effectiveness of the Hash Function

This section examines whether the hash function developed for this chapter outper-

forms randomized selections and considers several slight variations of the proposed automatic-

partition function. These variant heuristics are of our own design. Comparing the algorithm

to these alternatives helps explain the reasons the automatic-partitioning algorithm is suc-

cessful.

4.4.2.1 Heuristics for Creating Initial Partition

This section examines several heuristics specifcally for the initial partition. First an

partition based on randomly selected variables. Then a partition derived from a BFS. Fi-

nally a partition that selects more initial variables.

Table 4.1

Hash function with randomly selected initial variables

Model

Sampling Initialization

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

Random Initialization

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

sci1

ns

kerb

arbiter1

41:27

41:24

1:57:58

41:48

19

68

12

137

3

1

1

0

49:56

1:06:27

2:47:38

2:14:19

40

93

50

512

6

4

2

0

A variant of the automatic-partition function presented here selects the variables used

for the initial partition randomly. Table 4.1 compares the algorithm previously described

with the randomly initialized partition. This subset of the models suffciently demonstrates
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the behavior of the randomly selected initial partition. For both searches, the time required

to complete the search, the fnal number of buckets, and the number of times a bucket was

split are reported. The randomly initialized partition has both more buckets split and more

total buckets. An excessive number of buckets slows the search down because overhead

is incurred for each bucket. Also, splitting a bucket is expensive. The automatic-partition

function outperforms the randomized initialization on all measured metrics.

Table 4.2

BFS used to select initial partition

Model

Total

Time

(hh:

mm:ss)

Sampling Initialization

Init Number Number

Time Final Split

(mm:ss) Buckets Buckets

BFS Initialization

Total

Time Number Number

(hh: Final Split

mm:ss) Buckets Buckets

sci1

ns

kerb

arbiter1

41:27

41:24

1:57:58

41:48

53

55

1:05

55

19

68

12

137

3

1

1

0

44:28

2:30:01

2:35:40

2:15:50

33

226

62

512

6

16

3

0

Table 4.2 compares the automatic-partitioning algorithm with a modifcation that uses

BFS to sample for the initial partition. These models were selected to show the range of

observed behaviors. Total search time required, fnal number of buckets, buckets split,

and time required for the sampling search to create the initial partition are reported. The

sampling search must take the extra step of sampling the state space, which requires more

time compared to the BFS-initialized partition, which just uses the frst portion of the

search as a sample. However, the initializing time is roughly one minute long and does not
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greatly alter the overall time. The BFS-initialized partition, which uses the same heuristics

with a different sample set, produces more buckets overall. Unfortunately, the bucket

sizes produced by the BFS-initialized partition are more unevenly distributed, so more

splitting is required. The sampling initialization samples deeper states in the state space

and produces a more useful partition. The combination of more buckets and more splitting

make the BFS-initialized partition the slower search.

Table 4.3

Adding one more variable to initial partition

Model

Sampling Initialization

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

More Initial Variables

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

sci1

ns

kerb

arbiter1

newlist

41:27

41:24

1:57:58

41:48

5:13:32

19

68

12

137

384

3

1

1

0

0

41:01

43:07

1:57:51

43:07

6:06:02

21

68

12

144

444

3

1

1

0

0

The initial partition developed in this research stops after creating 1,000 potential buck-

ets. In this section, we compare it to an altered algorithm, with one more variable added

after the usual stopping place. Results appear in Table 4.3. These models were suffcient

for proving the effect of additional variables on the initial partition. For both searches,

time to complete the search, fnal number of buckets, and number of times a bucket was

split were reported. In all but one case, there was not a signifcant time difference between

the two searches. In all of those models, the number of observed buckets was nearly iden-
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tical in both searches. But for the newlist model, one more variable added 60 buckets.

The overhead of those buckets made the modifed search take longer. This result demon-

strates the overhead of buckets and encourages use of the minimum number of buckets that

satisfes the properties required by hash-based DDD.

4.4.2.2 Heuristics for Dynamic Repartitioning

This section examines several heuristics for repartitioning the buckets, establishing

why the heuristic described in this chapter is effective. First a randomly selected split.

Then a split heuristic that minimizes the number of buckets created.

Table 4.4

Hash function with randomly selected variables used for split

Model

Minimal Max Size Split

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

Random Split

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

sci1

ns

kerb

41:27

41:24

1:57:58

19

68

12

3

1

1

N/A

43:01

2:15:40

>1,000

68

16

>1,000

1

2

The repartitioning function was altered to select a random variable to split on, with

results presented in Table 4.4. The models selected for this table all required repartitioning

and demonstrated the range of behaviors observed. For both searches, time required to

complete the search, fnal number of buckets, and number of times a bucket was split were

reported. On the ns model, the two searches had nearly identical performance. On the
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kerb model, the frst randomized split was not effective, requiring a second split. On the

sci1 model, the randomized split reached a pathological case. Every time a bucket was

split, all or most of the states went to a single bucket, requiring another split. The search

was stopped when it reached 1,000 buckets. The newly developed heuristic does far better

than randomized selection at splitting buckets.

Table 4.5

Hash function with heuristic that minimizes the number of generated buckets

Model

Minimal Max Size Split

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

Minimal Sub-Buckets

Total Number Number

Time Final Split

(hh:mm:ss) Buckets Buckets

sci1

ns

41:27

41:24

19

68

3

1

48:24

1:14:39

90

563

16

90

The alternative heuristic described next attempts to minimize the number of buckets

created. Each potential variable is used to split the sample states into new buckets, and

then the number of new buckets containing one or more sample states is counted. This

alternative selects the variable that produces the fewest observed buckets, but variables that

have only one active child bucket are discarded ensuring that the new buckets are always

smaller than the split bucket. Table 4.5 compares this heuristic with the original algorithm

developed for this chapter. For both searches, time required to complete the search, the

fnal number of buckets, and the number of times a bucket was split are reported. In both

cases, the new heuristic resulted in more split buckets and more overall time. Although
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minimizing the number of buckets is an important goal, as explained previously, ensuring

that a large bucket is split into small new buckets is more important. For this section, only

models that require repartitioning are used. Further models required even more run time

and are not reported.

4.4.3 Comparison to Sorting-Based DDD

Table 4.6

Comparing time of hash-based to sorting-based DDD.

Model

Sorting-Based

Simple Phased

Total Total

Time Time

(d:hh:mm:ss) (d:hh:mm:ss)

Hash Based

Automatic Saved

Total Num Total

Time Bucket Time

(d:hh:mm:ss) Split (d:hh:mm:ss)

arbiter1 55:49 42:57 41:48 0 41:15

sci1 22:28 22:06 41:27 3 20:49

newlist 5:43:28 5:26:29 5:13:32 0 4:51:54

kerb 2:40:12 2:32:02 1:57:58 1 1:57:22

ns 35:31 34:59 41:24 1 32:58

arbiter2 12:19:01 11:41:29 10:48:46 76 8:33:02

eadash 1:16:56:53 1:03:05:55 1:03:01:37 27 1:02:16:59

directory 8:42:22 8:05:33 8:17:24 7 7:03:29

sci2 11:30:19 10:44:41 10:23:32 151 8:58:16

Automatic hash generation for hash-based DDD signifcantly reduces the time required

to complete the search, mostly by reducing the number of state comparisons, but also by

removing the sort operation. Table 4.6 reports the total time required for sorting-based and

hash-based DDD, as well as the number of times a bucket is split during the search and
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the total time required for a search using a saved partition. Searching with repartitioning

is faster than searching with sorting-based DDD on the larger models, but searching with

a saved partition is always the fastest. The difference in time between saved-partition and

automatic-partition searching is almost entirely due to repartitioning time. In the larger

models, searching time dominates over repartitioning time; therefore, a speed-up is seen

even when repartitioning is included. The time to complete a phased DDD search is be-

tween the time for the hash-based and sorting-based approaches.

The time savings exhibited by hash-based DDD largely comes from reducing the num-

ber of state comparisons, as can be seen in Table 4.7. This table shows the total time spent,

time required for DDD, and number of state comparisons completed during DDD for a

single search with simple sorting-based DDD, sorting-based phased DDD, and one with

hash-based DDD. The layer column in the table reports the static bound for partial DDD

over the total number of layers in the state space. Since state vectors are large, state com-

parisons are expensive. The three largest models, as measured by GB for storing the state

set, require much more time during DDD than the smaller models. When measured this

way, the larger state set is partially due to the number of states and partially due to the size

of an individual state. Both of those factors increase the time spent on the closed set during

DDD. Remember each state in layer l is part of DDD L − l times as a closed state, where

L is the total layers in the graph. If layer l has n states that is n ∗ (L − l) states used as

a closed state in DDD. The multiplicative nature of closed states during DDD account for

larger models spending a larger portion on DDD.
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Table 4.7

Comparing time of hash-based to sorting-based DDD; state comparisons

Model Algorithm

Total

Time

(d:hh:

mm:ss)

DDD

Time

(d:hh:

mm:ss)

State

Comparisons

Lay-

ers

arbiter1 Sorting-based

Phased DDD

Hashed-based

55:49

42:57

41:15

20:32

10:55

1:33

2,812,276,020

1,013,046,619

727,540,638

15/31

newlist Sorting-based

Phased DDD

Hashed-based

5:43:28

5:26:29

4:51:54

33:45

13:33

2:41

39,840,685,268

1,592,461,317

755,429,862

55/110

kerb Sorting-based

Phased DDD

Hashed-based

2:40:12

2:32:02

1:57:22

22:52

21:57

11:19

539,591,146

415,673,648

21,493,558

2/28

mcslock Sorting-based

Phased DDD

Hashed-based

1:12:01:30

1:09:25:53

23:34:54

1:07:01:17

1:03:02:57

17:41:02

675,461,989,138

55,803,846,707

3,141,882,730

86/154

eadash Sorting-based

Phased DDD

Hashed-based

1:16:56:53

1:03:05:55

1:02:16:59

1:09:43:14

16:10:25

12:37:05

95,272,642,030

9,925,349,583

961,697,774

34/63

directory Sorting-based

Phased DDD

Hashed-based

8:42:22

8:05:33

7:03:29

6:33:54

5:54:09

4:08:36

47,860,383,324

18,895,064,859

3,500,445,738

8/114

sci2 Sorting-based

Phased DDD

Hashed-based

11:30:19

10:44:41

8:58:16

4:22:26

3:35:09

2:04:08

8,483,872,618

8,434,772,822

114,777,097

2/7
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Sorting-based DDD requires more state comparisons during DDD than hash-based

DDD. The actual comparisons are done with memcmp. We will now describe what state

comparisons are necessary for sorting-based DDD. As explained in Section 3.3.1, in our

sorting-based DDD, states from several fles are merged into a single sorted list using a

priority queue implemented as a heap. Each update to the heap involves log(10 ∗ n) state

comparisons, where n is the number of fles merged and ten states from each fle are in-

cluded in the heap at all times. There are two heaps, one to merge the candidate fles

and one to merge the closed fles. Each candidate state s dequeued from the heap will

be compared to additional candidate states from the heap until a state is found that is not

a duplicate of s. The candidate state s will then be compared to closed states dequeued

from the other heap until a duplicate of s is found or a state past s in the sorted order is

found. All of these state comparisons (heap reorder, candidate to candidate, and candidate

to closed) are counted and put into the comparisons column in Table 4.7.

Hash-based DDD requires fewer state comparisons during DDD than sorting-based

DDD. During hash-based DDD, the candidate states are read from the candidate fle and

placed into a chained hash table. When a collision occurs in a chained hash, the states are

kept in a linked list. So when state s hashes to an entry in the table containing n states,

state s is compared to all n states to see if s is a duplicate of any of them. If it is not, state

s is added at the tail of the linked list. After all candidate states are in the linked list, the

closed states are used to fnd duplicates in the hash table. Each closed state is hashed and

compared to all elements in the linked list it collides with. All state comparisons looking

for duplicates in the linked list are counted and put into the comparisons column in Ta-
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ble 4.7. Hash-based DDD always reduces the number of state comparisons dramatically.

This is because the number of comparisons for hash collisions is much less than compar-

isons to maintain a priority queue in a sorted order. As explained in Section 2.2.5, in model

checking state vectors are large and state comparisons are costly. Large reductions in the

number of state comparisons result in a corresponding reduction in total time required and

time spent for DDD.

The phased DDD algorithm combines sorting-based DDDwith some elements of hash-

based DDD. Phased DDD also ends up between these two algorithms in performance and

state comparisons. In phased DDD, the candidate states are merged into a single sorted

order with a heap. The candidate merging process is the same as the simple sorting-based

DDD algorithm, so it uses the same number of state comparisons. Then the candidate states

are inserted into a hash table in a similar manner as hash-based DDD. Inserting states into

a hash table involves state comparisons due to hash collisions. The closed states belonging

to a single phase are read from disk and detected by a binary search, also requiring state

comparisons, as explained in Section 4.2.4. Phased DDD has fewer state comparisons than

the simple sorting-based search because it does not employ a heap to merge the closed

states. Using a hash table combined with binary search requires fewer state comparisons

than simple sorting-based DDD. The reduced number of state comparisons is why phased

DDD is faster than simple sorting-based DDD.

Phased DDD is not as effcient as hash-based DDD. Phased DDD requires more state

comparisons than hash-based DDD. The main reason phased DDD requires more state

comparisons than hash-based DDD is the merging of the candidate states. Many candidate
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fles are merged into a single sorted order using a heap. The heap requires many state

comparisons that the hash-base DDD does not require. Since hash-based DDD does not

need the candidate states in any particular order, they can be put into the hash table in the

same order they are in the fles. Because hash-based DDD uses fewer state comparisons

than phased DDD it is the faster search. Phased DDD does reduce state comparisons and

time when compared to the simple sorting-based DDD, but not as much as hash-based

DDD.

The models that use a higher layer bound show a larger reduction in the number of

state comparisons. Higher bounds mean more layers are used during DDD. More layers

in DDD equates to more closed states used in DDD. When more closed states are used,

methods that reduce the required state comparisons with closed states, such as phased

DDD, will have more of an effect. You can see that difference in Table 4.7. In the kerb and

directory models, where the layer bound is very low relative to the total number of layers,

there is a small difference in the number of state comparisons between simple sorting-based

DDD and phased DDD. In the newlist,mcslock, and eadashmodels the layer bound is high

relative to the total number of layers. For these high bound models, there is a comparatively

large reduction in the number of state comparisons between the simple sorting-based DDD

and phased DDD searches. The number of layers used during DDD effects the reduction

in state comparisons observed in phased DDD.

State comparisons are always expensive, but the cost of a state comparison is propor-

tional to the size of the state vector. The eadash model has much larger state vectors than

the mcslock model. The size of the state vector helps explain why phased sort reduces the
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number of state comparison for both eadash andmcslock by a factor of ten but eadash has a

much bigger reduction in DDD time than is observed for mcslock. Models with larger state

vectors demonstrate a larger speedup relative to the number of state comparisons reduced.
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CHAPTER 5

CONCLUSION

“State explosion” is a central problem for graph search and model checking. State

spaces increase exponentially with the number of variables in the state description, making

the large models common in the real world diffcult to verify. Use of external memory

can circumvent the limits on RAM size imposed by cost and computer architecture, but

external-memory algorithms come with their own set of challenges, including slow I/O

time and seek time latency. This dissertation explores a variety of means to improve the

scalability of model checking in external memory.

5.1 Contributions

A brief summary of some of the key contributions of this dissertation follows.

5.1.1 Improvements to Sorting-based DDD

Several improvements of sorting-based DDD have been developed that improve its

effciency. The two most effective are use of a more effcient internal sorting algorithm and

use of phased delayed duplicate detection.
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5.1.1.1 Internal Sort Algorithm

The sorting algorithm used can have a large infuence on performance. It was found

that sorting states internally before they are written to disk is most effcient. The states are

sorted in the state buffer that is already used for buffered I/O, and an indexed sort is used

to move small state pointers instead of large state descriptions. A three-way radix quick-

sort [5, 6] designed specifcally for sorting large keys of fxed size since model checking

states meet this criteria.

5.1.1.2 Phased Delayed Duplicate Detection

Phased DDD combines features of sorting-based and hash-based DDD. A hash table

is used to eliminate duplicates, which is more effcient than comparing two sorted lists

for duplicate elimination. No partitioning (i.e. hash) function is needed. Instead the state

space is divided into phases in a way that never requires repartitioning. All candidate

states that ft into the hash table belong to a single phase. Using the last candidate state to

be entered into the hash table, it is possible to determine phase membership of all closed

states. Duplicates are removed by only using closed states from the same phase, much

like hash-based DDD uses only closed states in the same bucket. Phased DDD reduces the

number of state comparisons relative to a simple sorting-based algorithm, which is how

phased DDD saves time. When the time to generate the partition is not considered, phased

DDD is not as effcient as hash-based DDD. However, phased DDD does not require a hash

function, so it can be a good alternative when hash functions are diffcult to obtain.
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5.1.2 Hash-Based DDD with Automatic Partitioning

Use of hash-based DDD effectively reduces DDD to a linear-time operation [47, 48].

It also reduces the number of state comparisons necessary for DDD. However, hash-based

DDD requires a specialized hash function that ensures buckets ft in RAM. Finding the best

bucketing scheme is as diffcult a problem as performing the verifcation itself [36]. To be

domain independent, a hash function must be generated automatically. To automatically

generate a hash function that satisfes the requirements of hash-based DDD, the state space

must be dynamically repartitioned. An initial hash function is used until a bucket becomes

too large, then a new hash function is generated. Both the initial hash function and the

subsequent alterations are created by heuristics. Automatic partitioning allows the domain-

independent use of hash-based DDD, which saves time by eliminating many of the state

comparisons.

5.1.3 Leveraging Local Structure

This dissertation shows that model checking graphs exhibit two types of locality that

can be exploited for a more effcient search: interlayer locality and intralayer locality. Both

forms of locality are shown to exist in hash-based and sorting-based DDD.

5.1.3.1 Interlayer Locality

Interlayer locality is the principle that short interlayer edge distances are more com-

mon than long interlayer edge distances. Interlayer locality has been shown to exist for

some time [64]. Delayed duplicate detection consumes a large portion of external-memory

search time. By leveraging interlayer locality in external memory to perform partial de-
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layed duplicate detection, which means only checking the most recent layers for duplicates,

DDD time is reduced, while most delayed duplicates are still eliminated.

5.1.3.2 Intralayer Locality

Intralayer locality refers to duplicate states within a layer having small cache distances.

Intralayer locality has not previously been explored in model checking. Structured dupli-

cate detection (SDD) [81] is a complicated predictive cache algorithm that organizes a

state cache to exploit intralayer locality in planning problems. However, simple methods,

such as sorting and grouping by abstract states, can effectively create intralayer locality in

model-checking graphs.

Intralayer locality can be created in problems other than traditional model checking,

including the multiple sequence alignment problem in bioinformatics, in search problems

common in artifcial intelligence, and in learning the optimal structure of a Bayesian net-

work [57]. Evidence supports the idea that intralayer locality can be created in many

graphs.

In external-memory search, the option to use a state cache has often been ignored [17,

75] or implemented ineffciently [35, 66]. The state cache presented in this dissertation

exploits both intralayer and interlayer locality [64]. By maintaining the most recent states

in the cache, it can eliminate many duplicates in RAM. Time is saved because fewer du-

plicates needed to be considered by DDD and space is saved because fewer duplicates are

stored in external memory.
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5.2 Publication Summary

Portions of this dissertation have been published on two occasions. A frst non-refereed

four page paper detailed the layered state cache [53] that was the origin of the LRU state

cache explained in Section 3.3.2.2. A second referred publication retained the same state

cache and included the partial-DDD algorithm [54] described in Section 3.3.4.

5.3 Future Work

Two natural extensions to the algorithms in this dissertation are proposed and ex-

plained.

5.3.1 Heuristic for Partial Delayed Duplicate Detection

The partial delayed duplicate detection algorithm in this dissertation requires a man-

ually set layer bound. This bound is best set only after extensive knowledge of the state

space has been obtained. Ideally a heuristic would be used to create the bound. The algo-

rithm would sample the state space to determine a bound. The bound would not have to be

static, instead it could be adjusted as the search progressed. Such a heuristic would have to

account for potential exponential increases in duplicates if the bound were too short. Not

only would a heuristic make partial DDD domain independent, but it has the potential to

increase the effciency of the partial DDD.

5.3.2 Parallel Algorithm

One possible method of increasing the speed of external-memory search is to paral-

lelize the approach. Model checking has been parallelized in multiple ways. Mur° was
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frst parallelized by Stern and Dill [74]. Kumar and Mercer [50] added load balancing to

the same design. Parallel and external-memory approaches were added to the SPIN model

checker by Jabbar, Edelkamp, and Stefan Schrödl [17, 41]. Jabbar expanded on this imple-

mentation in his dissertation [40]. Both the sorting-based and hash-based DDD algorithms

described in this dissertation could be parallelized. We will now explain a shared mem-

ory parallel algorithm and two parallel distributed memory algorithms. One distributed

memory algorithm is based on sorting-based DDD and the other on hash-based DDD.

5.3.2.1 Parallel Shared Memory Algorithm

The algorithm could be parallelized with shared memory. In this approach all threads

would share access to the same data structures. This could be based on the shared hash table

described by Zhang and Hansen [80]. Each thread expands different states, but checks

for duplicates using the same hash-table. The hash-table is a variant of a chained hash

meant for threaded access. This approach is best suited to a single node multithreaded

architecture.

5.3.2.2 Parallel Sorting-based Delayed Duplicate Detection

As demonstrated by the Jabbar algorithm [40], parallel external-memory search can

be combined with sorting-based DDD. A parallel external memory search with sorting-

based DDD still needs a hash function to divide the states into buckets. The buckets are

used to divide the work among the threads. In the Jabbar algorithm a heuristic was used

as the hash function. Unlike search with hash-based DDD, the hash function used by a

parallel sorting-based approach does not have to be constructed to ensure all buckets are
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less than the size of RAM. This is an advantage over hash-based DDD, which has stringent

requirements on the hash-function employed. A suitable hash function for a hash-based

search can be diffcult to obtain, where almost any function will work for a sorting-based

search. The primary goal for a parallel sorting-based DDD hash function is to divide the

state space such that each bucket is approximately the same size.

The parallel implementation is based around a work queue, with access to the queue

controlled by a mutex. Any thread that has fnished its current work will take the next

chunk of work from the queue. Work comes in two types: open sets and candidate sets.

The work queue is sorted to ensure the fles are processed in the correct order and is guided

by two factors: the layer of the fle (fles of layer l will be processed before fles of layer

l + 1) and the type of state in the fle (fles containing candidate states will be processed

before fles containing open states of the same layer). Candidate fles are refned frst

because duplicates must be eliminated before states can be expanded. Ordering the work

queue ensures that all duplicate states are recognized and that the shortest error path is

always discovered. The work queue allows threads to share the search tasks in a balanced

way.

The threads must synchronize which layer they are processing because parent states

from multiple open fles can generate children states that belong to a single candidate fle.

To ensure that all candidate states belonging to bucket b and layer l are correctly merged

into a single fle, no work can begin on layer l until all open states of layer l− 1 have been

expanded. Some idle time would results from each thread waiting for the last open bucket

of a particular layer to be expanded.
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A thread that takes an open set from the queue will expand states, which is the same as

in the serial search. States in the open set are read from disk and designated as parent states,

and children states are generated. A hash table is used to perform IDD, which reduces the

number of candidate states written to disk and refned during DDD. The hash function

described in the frst paragraph of this section is used to distribute the states into candidate

buckets. Expanded states that are not recognized as duplicates are sorted and written to

disk with buffered I/O. When all states in the open set have been expanded, any remaining

states in the buffers are sorted and fushed to disk. All candidate fles are enqueued into the

work queue, and the thread then dequeues the next chunk of work.

Some of the work items in the work queue are refnement tasks. These are candidate

buckets that the algorithm refnes through DDD to create open states. The sorting-based

approach compares the sorted candidate states against sorted closed lists. Phased DDD,

described in Section 4.2.4, should be used since it is more effcient than the simple sorting-

based DDD. One change to sorting-based DDD is that delayed duplicate detection would

only be applied to one bucket at a time, rather than the whole candidate layer. This would

involve further subdividing buckets into phases.

The search continues until one of two possible conditions are met. First, an error state

could be found by any thread expanding an open state. Since open states are expanded in

layer order and threads are synchronized by layer, the frst error state detected is guaranteed

to have the shortest error path. The second termination condition is reached if all threads

are idle and the work queue is empty. In such a case, the model is verifed because no error
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state is reachable. The parallel search will always terminate with the same conditions as a

serial search.

One potential challenge with parallelizing our serial algorithm is that both the number

of cores available and RAM space are limited resources. This algorithm has large hash

tables for both IDD and phased DDD. It is possible to use a single hash table for both

usages, which reduces RAM requirements. But using a single table would also reduce

the effectiveness of the state cache, because it would no longer have a completely LRU

replacement policy. Instead sometimes the state cache could be emptied and hash table

repurposed for phased DDD. Korf and Schultze [48] found that the number of threads used

should exceed the number of cores available, but when taken to the extreme, it would also

be possible to use more threads than can be well supported by the cores. If ample RAM and

processing cores are available, these challenges would not have to be addressed directly.

5.3.2.3 Parallel Hash-based Delayed Duplicate Detection

The hash-based delayed duplicate detection algorithm can also be parallelized. The

same work queue structure could be used, with threads switching between expansion and

refnement tasks. One difference is that the hash-function described in Section 4.2.3 is

used to distribute the states into candidate buckets. This hash-function has to guarantee

each bucket never exceeds the RAM size available.

The expansion portion of the parallel algorithm can be nearly identical for a sorting-

based and hash-based approach. States are dequeued from open fles and expanded to gen-

erate children states. Immediate duplicate detection can be applied to reduce the number
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of candidate states. The expansion order of the states will be different between hash-based

and sorting-based approaches, which effects intralayer locality and the performance of the

state cache, as explained in Section 4.4.3. The remaining candidate states are written to

candidate fles. For the state expansion portion of a parallel search, hash-based and sorting-

based approaches differ in only two respects: sorting candidate states before writing them

to disk and the effectiveness of the state cache.

Threads may also take candidate sets from the work queue. Candidate sets are refned to

remove duplicate states, which can be hash-based DDD. The thread goes through each state

in a candidate fle, adding unique states to a hash table. Duplicate states are detected when

a copy of the state already exists in the hash table, with the second copy being discarded.

Since adding a new state to the hash table and detecting a duplicate are the same action,

no time is wasted. When all candidate states in the bucket have been processed, the thread

then reads through all closed fles belonging to the same bucket in previous layers. If any

of the closed states are duplicated in the hash table, they are removed. When all unique

candidates have been added to the hash table and all duplicates of closed states removed,

the remaining states are written to disk. The open fle is enqueued into the work queue,

and the thread then dequeues the next chunk of work.

The same exit conditions as the parallel sorting-based algorithm apply. The search

would terminate if an error state is found or the open state becomes empty. In all cases the

algorithm would produce the same result as the serial algorithm.

The same resource limitations described for parallel sorting-based DDD apply to par-

allel hash-based DDD. Parallel hash-based DDD also has large hash tables for DDD and
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IDD, which may be shared with some penalties. The number of threads used would have

to be balanced against the available resources.

5.4 Signifcance

Developing techniques for improving the effciency and scalability of a graph-search

algorithm for an external-memory model checker will allow searches of larger spaces and

make such searches faster. Model checking reduces the presence of critical errors in ex-

pensive and safety-critical systems, saving money and lives. The ability to verify larger

models faster increases our ability to verify systems completely, including more complex,

real-world systems. Verifcation of large problems is especially important for safety-critical

systems like avionics controls. The algorithm developed in the research for this disserta-

tion was tested on graphs that require hundreds of gigabytes of disk storage and days to

search, pushing the boundaries of model-checking size.

Finally, since the techniques applied herein are domain independent, they apply to any

large graph-search problem, including such search problems as those found in artifcial

intelligence, planning, high-performance computing, and other areas.
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Frühwirth, and G. Palm, eds. 2004, vol. 3238 of Lecture Notes in Computer Science,

pp. 226–240, Springer.

[18] S. Edelkamp, S. Jabbar, and D. Sulewski, “Distributed Verifcation of Multi-threaded

C++ Programs,” Electr. Notes Theor. Comput. Sci., vol. 198, no. 1, 2008, pp. 33–46.

[19] S. Edelkamp,M. Kellershoff, and D. Sulewski, “ProgramModel Checking via Action

Planning,” In van der Meyden and Smaus [77], pp. 32–51.

[20] S. Edelkamp, P. Sanders, and P. Simecek, “Semi-external LTL Model Checking,”

CAV, A. Gupta and S. Malik, eds. 2008, vol. 5123 of Lecture Notes in Computer

Science, pp. 530–542, Springer.

[21] S. Edelkamp, V. Schuppan, D. Bosnacki, A. Wijs, A. Fehnker, and H. Aljazzar.,

“Survey on Directed Model Checking.,” MoChArt, D. Peled and M. Wooldridge,

eds., Berlin, Heidelberg, 2008, vol. 5348 of Lecture Notes in Computer Science, pp.

65–89, Springer-Verlag.

115



[22] S. Edelkamp and D. Sulewski, “Effcient Explicit-State Model Checking on General

Purpose Graphics Processors,” SPIN, J. van de Pol and M. Weber, eds. 2010, vol.

6349 of Lecture Notes in Computer Science, pp. 106–123, Springer.

[23] S. Edelkamp and D. Sulewski, “External Memory Breadth-First Search with Delayed

Duplicate Detection on the GPU,” In van der Meyden and Smaus [77], pp. 12–31.

[24] A. E. Emerson, S. German, J. Havlicek, and A. Venkataramani, “Model Checking A

Parameterized Directory-based Cache Protocol,”, 2002.

[25] S. Evangelista, “Dynamic Delayed Duplicate Detection for External Memory Model

Checking,” SPIN, K. Havelund, R. Majumdar, and J. Palsberg, eds. 2008, vol. 5156

of Lecture Notes in Computer Science, pp. 77–94, Springer.

[26] S. Evangelista and L. M. Kristensen, “Dynamic State Space Partitioning for External

Memory Model Checking,” FMICS, M. Alpuente, B. Cook, and C. Joubert, eds.

2009, vol. 5825 of Lecture Notes in Computer Science, pp. 70–85, Springer.

[27] S. Evangelista and L. M. Kristensen, Search-Order Independent State Caching, Tech.

Rep., DAIMI - Aarhus University, Denmark, 2009.

[28] S. Evangelista and L. M. Kristensen, “Search-Order Independent State Caching,” T.

Petri Nets and Other Models of Concurrency, vol. 4, 2010, pp. 21–41.

[29] S. Evangelista and L. M. Kristensen, “Dynamic state space partitioning for external

memory state space exploration,” Sci. Comput. Program., vol. 78, no. 7, 2013, pp.

778–795.

[30] S. Evangelista, L. Petrucci, and S. Youcef, “Parallel Nested Depth-First Searches for

LTL Model Checking,” In Bultan and Hsiung [9], pp. 381–396.

[31] S. Evangelista, M. Westergaard, and L. M. Kristensen, “The ComBack Method Re-

visited: Caching Strategies and Extension with Delayed Duplicate Detection,” CPN,

2008.

[32] J. Geldenhuys, “State Caching Reconsidered.,” In Graf and Mounier [34], pp. 23–38.

[33] P. Godefroid, G. J. Holzmann, and D. Pirottin, “State-Space Caching Revisited.,”

CAV, G. von Bochmann and D. K. Probst, eds. 1992, vol. 663 of Lecture Notes in

Computer Science, pp. 178–191, Springer.

[34] S. Graf and L. Mounier, eds., Model Checking Software, 11th International SPIN

Workshop, Barcelona, Spain, April 1-3, 2004, Proceedings, vol. 2989 of Lecture

Notes in Computer Science. Springer, 2004.

116



[35] M. Hammer and M. Weber, ““To Store or not to Store” Reloaded: Reclaiming Mem-

ory on Demand,” 11th International Workshop on Formal Methods for Industrial

Critical Systems. 2006, Springer-Verlag.

[36] V. Holub and P. Tuma, “Streaming State Space: A Method of Distributed Model

Verifcation,” TASE. 2007, pp. 356–368, IEEE Computer Society.

[37] G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual, Addison-

Wesley, 2003.

[38] IEEE Computer Society, IEEE Standard for Scalable Coherent Interface (SCI), IEEE

Computer Society, 1992, IEEE Standard 1596-1992.

[39] R. Iosif, “Symmetry reduction criteria for software model checking,” In Proceedings

of Ninth International SPIN Workshop. April 2002, vol. 2318 of LNCS, pp. 22–41,

Springer.

[40] S. Jabbar, External Memory Algorithms for State Space Exploration in Model Check-

ing and Action Planning, doctoral dissertation, Technischen Universität Dortmund

and der Fakultät für Informatik, Dortmund, Germany, 2008.

[41] S. Jabbar and S. Edelkamp, “Parallel External Directed Model Checking with Linear

I/O.,” VMCAI, E. A. Emerson and K. S. Namjoshi, eds. 2006, vol. 3855 of Lecture

Notes in Computer Science, pp. 237–251, Springer.

[42] M. Jones, E. Mercer, T. Bao, R. Kumar, and P. Lamborn, “Benchmarking Explicit

State Parallel Model Checkers,” 2nd International Workshop on Parallel and Dis-

tributed Methods in Verifcation, July 2003.

[43] D. Knuth, The Art of Computer Programming, 2nd ed. edition, Addison-Wesley,

1998.

[44] J. T. Kohl, B. C. Neuman, and T. Y. Ts’o, “The Evolution of the Kerberos Authen-

tication Service,” Proceedings of the Spring 1991 EurOpen Conference. 1991, pp.

78–94, IEEE Computer Society Press.

[45] R. E. Korf, “Delayed Duplicate Detection: Extended Abstract,” Proceedings of

the Eighteenth International Joint Conference on Artifcial Intelligence (IJCAI-03),

Acapulco, Mexico, G. Gottlob and T. Walsh, eds. 2003, Morgan Kaufmann.

[46] R. E. Korf, “Best-First Frontier Search with Delayed Duplicate Detection,” AAAI,

D. L. McGuinness and G. Ferguson, eds. 2004, pp. 650–657, AAAI Press / The MIT

Press.

[47] R. E. Korf, “Linear-time disk-based implicit graph search,” J. ACM, vol. 55, no. 6,

2008.

117



[48] R. E. Korf and P. Schultze, “Large-scale parallel breadth-frst search,” Proceedings

of the 20th National Conference on Artifcial Intelligence (AAAI-05), July 2005, pp.

1380–1385.

[49] L. M. Kristensen and T. Mailund, “A Generalised Sweep-Line Method for Safety

Properties.,” Proceedings of the International Symposium of Formal Methods Eu-

rope, L.-H. Eriksson and P. A. Lindsay, eds. July 2002, vol. 2391 of Lecture Notes in

Computer Science, pp. 549–567, Springer.

[50] R. Kumar and E. G. Mercer, “Load Balancing Parallel Explicit State Model Check-

ing,” Electr. Notes Theor. Comput. Sci., vol. 128, no. 3, 2005, pp. 19–34.

[51] A. Laarman, R. Langerak, J. van de Pol, M. Weber, and A. Wijs, “Multi-core Nested

Depth-First Search,” In Bultan and Hsiung [9], pp. 321–335.

[52] A. Laarman, J. van de Pol, and M. Weber, “Boosting Multi-Core Reachability Per-

formance with Shared Hash Tables,” CoRR, vol. abs/1004.2772, 2010.

[53] P. Lamborn and E. A. Hansen, “Memory-effcient graph search in planning and

model checking,” Doctoral Consortium of The International Conference on Auto-

mated Planning and Scheduling (ICAPS). June 2006, The International Conference

on Automated Planning and Scheduling.

[54] P. Lamborn and E. A. Hansen, “Layered Duplicate Detection in External-Memory

Model Checking,” In 15th International SPIN Workshop on Model Checking of Soft-

ware, 2008, pp. 160–175.

[55] L. Lamport, “Proving the Correctness of Multiprocess Programs.,” IEEE Transac-

tions on Software Engineering, vol. 3, no. 2, 1977, pp. 125–143.

[56] D. Lenoski, DASH Prototype System, doctoral dissertation, Stanford University,

1992.

[57] B. Malone, C. Yuan, E. A. Hansen, and S. Bridges, “Improving the scalability of op-

timal Bayesian network learning with external-memory frontier breadth frst branch

and bound search,” 27th Conference on Uncertainty in Artifcial Intelligence (UAI-

11), 2011, pp. 479–488.

[58] R. Mateescu and A. Wijs, “Hierarchical Adaptive State Space Caching Based on

Level Sampling,” TACAS, S. Kowalewski and A. Philippou, eds. 2009, vol. 5505 of

Lecture Notes in Computer Science, pp. 215–229, Springer.

[59] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scalable Synchronization

on Shared-Memory Multiprocessors,” ACM Trans. Comput. Syst., vol. 9, no. 1, 1991,

pp. 21–65.

118



[60] MUG, “Explicit State Model Checking Benchmarks,”, Available at

http://vv.cs.byu.edu/emc benchmarks/whole query.html, 2004.

[61] D. R. Musser, “Introspective Sorting and Selection Algorithms,” Softw., Pract. Ex-

per., vol. 27, no. 8, 1997, pp. 983–993.

[62] R. M. Needham and M. D. Schroeder, “Using Encryption for Authentication in Large

Networks of Computers.,” Communincations of the ACM, vol. 21, no. 12, 1978, pp.

993–999.

[63] R. A. Pearce, M. Gokhale, and N. M. Amato, “Multithreaded Asynchronous Graph

Traversal for In-Memory and Semi-External Memory,” SC. 2010, pp. 1–11, IEEE.
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