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with an absorbing and zero-cost target state, where the objective is to reach the target

state with minimum expected cost. This problem provides a foundation for algorithms for

decision-theoretic planning and probabilistic model checking, among other applications.

This thesis describes an implementation and evaluation of recently developed error

bounds for SSP problems. The bounds can be used in a test for convergence of iterative

dynamic programming algorithms for solving SSP problems, as well as in action elimina-
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that do not need to be re-evaluated each iteration. The techniques are shown to be effective

for both decision-theoretic planning and probabilistic model checking.
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CHAPTER 1

INTRODUCTION

This thesis implements and evaluates new error bounds for the stochastic shortest path

problem that were recently derived by Hansen [18]. Experiments on decision-theoretic

planning and probabilistic model checking problems show that the bounds can be used to

test for convergence and eliminate suboptimal actions.

1.1 Motivation

A Markov decision process (MDP) is a widely used mathematical model for sequential

decision problems under uncertainty [6]. The stochastic shortest path (SSP) problem is

a Markov decision process that generalizes the deterministic shortest path problem in a

graph by allowing the effect of an action in a particular state to be a probability distribution

over successor states. MDPs, especially in the form of SSP problems, are commonly used

in decision-theoretic planning [1, 7], probabilistic model checking [5, 20], and have many

other applications.

Value iteration (VI) [6] is the baseline algorithm for solving MDPs, including SSP

problems. It finds the optimal solution by iteratively improving the value of every state

until all state values converge (in practice an ε-optimal solution is computed). Once the
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value function converges, an optimal policy is extracted. But since VI only converges in

the limit, it is useful to have errors bounds to approximate the solution.

Although the SSP problem has been widely used in computer science for more than two

decades, no error bounds have been known until the recent work of Hansen [18]. In this

thesis, the new bounds are implemented and evaluated. As we will see, the error bounds

can be used to improve value iteration in two ways:

1. to test for convergence.

2. to speedup convergence by using error bounds to limit the number of actions (and
states) that need to be evaluated each iteration.

1.2 Organization of the thesis

The remainder of this thesis is organized as follows. Chapter 2 reviews the stochastic

shortest path problem and algorithms for solving it, especially value iteration. The new er-

ror bounds are also reviewed in Chapter 2. In Chapters 3 and 4, the error bounds are applied

to decision-theoretic planning and probabilistic model checking respectively. Conclusions

and future work are described in Chapter 5.
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CHAPTER 2

BACKGROUND

This chapter reviews the stochastic shortest path problem, dynamic programming algo-

rithms for solving the problem, and methods for computing error bounds.

2.1 Stochastic shortest path problem

The stochastic shortest path problem (SSP) is a generalization of the deterministic

shortest path problem where each state (node) and action is associated with a probabil-

ity distribution over a set of possible successor states [9]. The problem is defined by a

tuple < S,A, T ,c, t > where:

• S is a finite set of states numbered from 1 to n, where t is a goal or terminal state
and s1 is a start state.

• A is set of actions and A(s) denotes the actions available for state s.

• T : S ×A× S → [0, 1]: specifies a probabilistic transition function, where T (s, a, s′) =
ps,s′(a) is the probability that taking action a ∈ A in state s results in a transition to
successor state s′.

• c : S ×A → R: is a cost function that associates with each state s ∈ S and action
a ∈ A(s), the cost c(s, a) of taking action a in s.

The goal state t is absorbing, i.e.,∀ a ∈ A(t), pt,t(a) = 1. In addition, c(t, a) = 0,

∀ a ∈ A(t).

The classic deterministic shortest path problem is a special case of the stochastic short-

est path problem in which the transition function is deterministic instead of stochastic.
3



A policy π : S → A is a mapping from states to actions that specifies which action

to take in each state. A policy π is said to be proper if the process is guaranteed to reach

the goal state when policy π is followed beginning from any initial state. It is said to be

improper otherwise.

Furthermore, the SSP problem is defined by the following restrictions:

• There exist at least one proper policy.

• For every improper policy π, there exist at least one state s ∈ S for which Jπ(s) is
infinite, where Jπ(s) is the expected cumulative cost of following policy π starting
from state s. This is defined more precisely by Equation 2.1 below.

Solving an SSP problem means finding an optimal policy, where a policy is said to be

optimal if it minimizes the expected cumulative cost of the process starting from every

initial state. The assumptions of the SSP problem guarantee that an optimal policy is also

a proper policy.

2.2 Dynamic programming algorithms

For a given policy π and state s ∈ S , the expected value of following policy π starting

from state s is defined as follows:

Jπ(s) = E
[ ∞∑
t=0

c(st, π(st))|s0 = s
]
. (2.1)

The value function Jπ : S → R for policy π is the solution of the following system of

linear equations.

Jπ(s) =
[
c(s, π(s)) +

∑
s′∈S

ps,s′(π(s))Jπ(s′)
]
, s ∈ S. (2.2)

4



Dynamic programming algorithms for solving the stochastic shortest path problem

leverage the fact that the optimal value function J∗ : S → R is the unique solution of

a Bellman optimality equation defined as follows:

J∗(s) = min
a∈A(s)

[
c(s, a) +

∑
s′∈S

ps,s′(a)J∗(s′)
]
, s ∈ S. (2.3)

The Bellman equations given by Equation 2.3 are non-linear. They can be solved by

either value iteration or policy iteration.

2.2.1 Value iteration

The value function given by Equation 2.1 can be iteratively computed using dynamic

programming [6]. The dynamic programming operator T is defined as follows:

TJ(s) = min
a∈A(s)

[
c(s, a) +

∑
s′∈S

ps,s′(a)J(s′)
]
, s ∈ S. (2.4)

Value iteration (VI) [6] uses Equation 2.4 to successively approximate the optimal value

function staring with an initial estimate. VI takes an SSP problem, an ε arbitrary small,

and performs a sequence of Bellman updates for all the states until the value function con-

verges. The value is improved each iteration and when the maximum difference between

values of two consecutive iterations (Bellman error) is small enough, the algorithm is said

to have converged. The following properties hold in value iteration [9]:

1. The optimal cost vector is the unique solution of Bellman’s equation: TJ∗ = J∗.

2. The value iteration method converges to the optimal cost vector J∗ for an arbitrary
starting vector.

Table 2.1 sketches the algorithm.
5



Table 2.1

Value iteration

Input: An SSP problemM =< S,A, T , c, t > and a threshold parameter ε.
Output: A value function J for which, for every state s, |J ′(s)− J(s)| < ε.

1. Start with an initial cost vector J corresponding to a proper policy.

2. For each state s in S do,

J ′(s) = min
a∈A(s)

[
c(s, a) +

∑
s′∈S

ps,s′(a)J(s′)
]
.

3. Test convergence: if |J ′ − J | < ε go to step 4; else J = J ′ and go to step 2.

4. Solution found: Extract corresponding policy:

π(s) = arg min
a∈A(s)

[
c(s, a) +

∑
s′∈S

ps,s′(a)J(s′)
]
, s ∈ S.

6



2.2.2 Policy iteration

Policy iteration (PI) [6] is another dynamic programming algorithm for solving the

SSP problem evaluates. PI starts with an arbitrary policy π, computes its corresponding

value function using Equation 2.2. Next the algorithm finds an improvement π′ of π. The

procedure is repeated until convergence, i.e. π = π′. In practice however, we look for an

ε-optimal policy which corresponds to an ε-optimal value function.

PI has the following properties [9]:

1. A stationary policy π is optimal if and only if J∗π = J∗.

2. The policy iteration algorithm converges to an optimal proper policy starting from
an arbitrary proper policy.

The algorithm is presented in Table 2.2.

Table 2.2

Policy iteration

Input: An SSP problemM =< S,A, T , c, t >, initial proper policy π
Output: An optimal policy π.

1. Policy Evaluation: Find the value function Jπ given π.

2. Policy Improvement: Construct a better policy π
′

such that for each state s ∈ S.

π′(s) = arg min
a∈A(s)

[
c(s, a) +

∑
s′∈S

ps,s′(a)Jπ(s′)
]
.

3. Convergence Test : π = π′ go to step 4; Otherwise let π = π′ and go to step 2.

4. Return π.

7



2.3 Discounted infinite-horizon MDP and error bounds

This section describes the reduction of a discounted infinite-horizon MDP into an SSP

problem as well as the associated error bounds.

2.3.1 Discounted infinite-horizon MDP

An SSP problem is an undiscounted infinite horizon MDP (discount factor β = 1).

Any discounted infinite-horizon MDP (β < 1) can be converted to an equivalent stochastic

shortest path problem [8]. An artificial terminal state t is created and from any non-terminal

state i, a transition to t with probability (1 − β) is added. The remaining transition prob-

abilities are normalized by multiplication by β. Figure 2.1 illustrates this operation for

β = 0.9.

The Bellman’s equation of the resulting SSP problem is the same as the one of the

original β-discounted problem and has all policies proper [8].

The Bellman update expression for iterations n and n+ 1 is given by:

Jn+1(s) = min
a∈A(s)

[
c(s, a) + β

∑
s′∈S

ps,s′(a)Jn(s′)
]
, s ∈ S. (2.5)

2.3.2 Error bounds

We first consider a discounted infinite-horizon MDP (β < 1). In the value iteration

algorithm, we can associate with the optimal value J∗(s) of each state s ∈ S upper and

lower bounds. Traditional bounds due to McQueen [26] are formulated as follows:

8



s0 s1 s2

s0 s1 s2

t

0.1 0.1 0.1

1

1

1

0.9

0.9

0.9

a)

b)

Figure 2.1

Reduction of a discounted MDP (a) to an equivalent SSP problem (b).
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Let cn and c̄n be the following expressions:

cn = min
s∈S

(Jn+1(s)− Jn(s)). (2.6)

c̄n = max
s∈S

(Jn+1(s)− Jn(s)). (2.7)

After the nth iteration of VI algorithm, the following bounds hold for the optimal value

function J∗:

Jn(s) + (
β

1− β
)cn ≤ J∗(s) ≤ Jn(s) + (

β

1− β
)c̄n, s ∈ S. (2.8)

The upper and lower bounds converge monotonically [26]. The expression
β

1− β
is the

average number of transitions until termination [18].

2.4 Error bounds for the SSP problem with positive action costs

We now consider an SSP problem without a discount factor (β = 1). Since β = 1,

β

1− β
is no longer well-defined. In this case, it is not obvious how to compute the average

number of transitions to terminate as it depends on the policy. In addition, the traditional

bounds are valid only if all policies are proper. Under specific conditions however, error

bounds can be computed for the SSP problem even if the discount factor = 1 and not all

policies are proper. These new bounds generalize McQueen’s bounds. We start with some

definitions:

Definition 1 (Monotone pessimistic function)

A value function (Jn) is said to be monotone pessimistic if TJn(s) ≤ Jn(s), ∀ s ∈ S.

The following theorem, due to Hansen [18], provides the first bounds in the undis-

counted case, provided in addition that all action costs are positive.
10



Theorem 1 (Error bounds when β = 1)

If all action costs are positive with minimum cost g
¯

, then for monotone pessimistic value

functions Jn(s) and Jn+1(s), we have the following error bounds:

Jn(s) + (N̄(s)− 1)cn ≤ J∗(s) ≤ Jn(s),∀ s ∈ S, (2.9)

where N̄(s) =
Jn(s)

g
¯

is an upper bound on the average number of steps until termination

for state s for any policy π for which Jπ(s) ≤ Jn(s).

An upper bound is, in this case, the current value function. The upper and lower bounds

are improved each iteration until they converge to the optimal solution.

To compute the bounds from [18], we need to compute upper bounds on the number

of stages until termination N̄ (s), ∀ s ∈ S. The value function of such initial policy is

monotone pessimistic [18]. We also need the problem to have at least one proper policy.

An SSP problem has by definition at least one proper policy. Once we find an initial

proper policy π0, it is evaluated, the corresponding value function Jπ0 is an upper bound

(monotone pessimistic) on the optimal value function. Value iteration is initialized using

Jπ0 and the subsequent value functions are also monotone pessimistic. The tightness of the

bounds will depend on how good N̄ , the upper bound on the number of steps to terminate,

is. The next section describes a way to improve the error bounds .

2.5 Improved error bounds

In this section, we explain how to use sequential space decomposition to get tighter

error bounds.

11



2.5.1 Sequential space decomposition

A strongly connected component (SCC) of a graph G = (V,E), where V is the set

of vertices and E is the set of edges, is the maximum set of vertices W ⊆ V such that

for every pair of vertices (u, v) ∈ W , there exists a path from u to v and vice-versa. The

graph GSCC , obtained by contracting the states in every SCC of the original graph G into

one state, is an acyclic graph and defines a topological order of G. Figure 2.2 shows an

example of an SSP problem and its SCCs.

s0

s1 s5

s3

s2 s6

s4

SCC0
SCC1

s7

SCC2

Figure 2.2

Example of sequential space decomposition.

GSCC can be easily computed by depth-first traversal of G. Tarjan [27] and Kosaraju

[13] algorithms are typically used to compute SCCs.

Several techniques have been developed to speedup algorithms to solve the SSP prob-

lem [14, 16, 21, 24] . These techniques take advantage of the graphical structure of the

SSP problem to efficiently backup states. Topological Value Iteration (TVI) algorithm [14]

12



uses the topological order of the SSP problem to methodically perform backups: The SSP

problem is decomposed into SCCs and each SCC is solved separately. The SCCs graph

(obtained by aggregating states of each SCC into one meta-state) is acyclic and there exist

an optimal backup order of the states of the SCCs graph [8]. TVI algorithm is presented in

Table 2.3.

Table 2.3

Topological value iteration

Input: An MDPM =< S,A, T , c >, parameter ε: the threshold value.
Output: An ε-optimal value function J .

1. SCC(M)
2. For scc in SCCSet do

VI(scc, ε)

Function SCC(M):
Input: An MDPM =< S,A, T , c >
SCCSet = Tarjan(M)
return SCCSet.

2.5.2 Bounds and offset

The basic error bounds assume that, in order to compute an upper bound on the number

of stages until termination N̄ , all actions have positive cost. It is in fact still possible to

compute N̄ if all non-terminal actions (actions not leading to a goal state) have positive

costs [18]. This comes from the fact that the cost of terminal actions can be changed by a

constant without changing the optimal policy [18]. The idea here is to change the cost of

13



terminal actions to improve the value of N̄ which in return will improve the bounds. The

following lemma [18] gives the new values of N̄ (s) ∀ s ∈ S.

Lemma 1 (Error bounds with offset)

Let g
¯

be the smallest expected cost of any nonterminal action. If g
¯
> 0, then for any

monotone pessimistic value functions J , an upper bound on the mean number of stages

until termination beginning from state s is given by:

N̄(s) =
J̄(s) + offset

g
, (2.10)

where offset is the quantity by which the terminal costs need to be increased or decreased

to make them equal to g
¯

.

In order to compute the new bounds we first need to compute g
¯

the smallest cost of

all non-terminal actions and the offset. In SCC based value iteration we start with the last

component and move backward towards the start state. We also have to take into account

the offset now, such that the new terminal action cost is reduced to g
¯
. The way to compute

a proper policy now, is to consider for each SCC, the target as the following SCC (towards

the goal).

By decomposing the problem into SCCs and solving every SCC separately with spe-

cific bounds, the distance to reach the goal state (within every SCC) becomes smaller, thus

we get a better initial value function. The goal here is to divide the problem into smaller

problems and compute the error bounds for every subproblem instead of directly comput-

ing them on the initial problem.
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2.6 Initial proper policy

This section presents two approaches to compute a monotone pessimistic value func-

tion for initializing value iteration.

2.6.1 Uniform proper policy

An initial proper policy can be obtained by choosing, for each state s, an action at

random from the set of possible actions in s based on a uniform probability distribution.

For an SSP problem, such policy is proper [18]. The policy is evaluated to compute the

corresponding value function.

2.6.2 Proper policy using backward search from the goal

We perform backwards traversal of all nodes in the graph beginning from the goal.

Initially label goal as proper, for each state s, if there is some action such that at least one

successor state is already labeled proper, then we choose that action for state s and label s

as proper.

At the end of the graph traversal, either all states are labeled proper (in which case the

policy is proper) or at least one state is unlabeled. If there is a proper policy, it can be

evaluated using a policy evaluation algorithm to get the initial value function.

This method has the advantage of checking if there is a proper policy and computes

one if all states can reach the goal with probability 1.
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2.6.3 Improving the initial policy

Essentially, the error bounds can be very loose at the beginning essentially due to the

starting value function. So far, in order to compute an initial proper policy for a given state

s, the first action in the set of possible actions leading to a successor state (that can reach

the goal) is chosen without considering the probability distribution. It is not obvious how

to efficiently select a good initial proper policy.

2.7 Use of error bounds

In this section, two cases where error bounds can be used are presented.

2.7.1 Testing convergence

An important parameter when using iterative algorithms, such as value and policy it-

erations, is a stopping criterion. In practice a state s has converged when the difference

between its values from two consecutive iterations is smaller than a user-defined thresh-

old ε. The algorithm has converged when all the states have converged. This threshold is

arbitrary fixed and does not make much sense specially for the undiscounted problems.

We now have bounds developed in [18]. They are state-dependent and can be used to

derive a test for convergence for an ε-optimal value function if specific conditions are met:

Theorem 2 (ε-optimal convergence test)

If all action costs are positive, then for monotone pessimistic value functions J and TJ

and ε > 0, TJ is ε-optimal if

−(max
s∈S

(N̄(s)− 1))cs ≤ ε, (2.11)
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where cs = mins∈S(TJ(s)− J(s)) and N̄(s) is the upper bounds on the number of transi-

tions to terminate for state s.

2.7.2 Action elimination

As stated previously, value iteration evaluates all the states and actions, which makes

it very slow for large problems. It can be inefficient as well, since not all the states are

necessarily part of the optimal policy. Many actions end up being sub-optimal and will

not be part of an optimal policy. They can therefore be eliminated. Focused Topological

Value Iteration (FTVI) [14] for example, combines TVI and action elimination to eliminate

sub-optimal actions which results in more SCCs in the graph. FTVI uses upper and lower

bounds to eliminate sub-optimal actions.

Bounds on the optimal value function can be used to detect suboptimal actions and

permanently eliminate them and not be considered for future iterations. Given the upper

and lower bounds defined in Section 3.2, the following test [25] detects sub-optimal actions

to immediately eliminate them:

Theorem 3 (Action suboptimality test )

Let L(s) and U(s) be respectively lower and upper bound of the optimal value function

J∗(s) for state s when action a is considered. Action a is sub-optimal if:

c(s, a) +
∑
s′∈S

ps,s′(a)L(s′) > min
a∈A(s)

[
c(s, a) +

∑
s′∈S

ps,s′(a)U(s′)
]
, s ∈ S. (2.12)

For the bounds previously defined, L(s) and U(s) are given by:

U(s) = Jn(s),∀ s ∈ S. (2.13)

L(s) = Jn(s) + (N̄(s)− 1)cn,∀ s ∈ S. (2.14)
17



A modified value iteration algorithm using upper and lower bounds on the optimal

solution to eliminate actions has been successfully implemented [17, 25, 26]. Action elim-

ination is implemented using the new error bounds and is compared to value iteration.

18



CHAPTER 3

APPLICATION TO DECISION-THEORETIC PLANNING

This chapter describes the experimental results of applying the error bounds to decision-

theoretic planning problems.

3.1 Test problems

We consider three test problems, each having two instances. For all problems the goal

can be reached with probability = 1 beginning from any other state, that is, a proper policy

exists. Problems description follows next and Table 3.1 shows the size of the test problems.

3.1.1 Race track problem

The Race track problem simulates automobile racing. “A race track of any shape is

drawn on graph paper, with a starting line at one end and a finish line at the other consisting

of designated squares. Each square within the boundary of the track is a possible location

of the car” [4] (See Figures 3.1 and 3.2 for two examples). “The car is placed on the starting

line at a random position, and moves down the track toward the finish line. Acceleration

and deceleration are simulated as follows. If in the previous move the car moved h squares

horizontally and v squares vertically, then the present move can be h′ squares vertically

and v′ squares horizontally, where the difference between h′ and h is -1, 0, or 1, and the
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difference between v′ and v is -1, 0, or 1. This means that the car can maintain its speed”

[4]. If the car hits the track boundary, it is returned to a random position on the starting

line, its velocity is reduced to zero (that is, h′ - h and v′ - v are considered to be zero), and

it restarts again. The objective is to control the car so that it crosses the finish line in as few

moves as possible. All actions have unit cost, which means the objective is to minimize

the time required to reach the finish line from the starting line.

Page 1 of 1

small.track 09/10/13 14:59

XXXXXXXXXXXXXXXXXX
XXXXSSSSSSXXXGGGGX
XXX      XXX    XX
XX       XX     XX
XX       XX    XXX
X         XX    XX
XX        XX     X
XXXX          XX
XXXXX         XXX
XXXXXX       XXXXX
XXXXXXXXXXXXXXXXXX

Figure 3.1

RaceTrack1: ‘S’ and ‘G’ correspond to start and goal states respectively.

3.1.2 Single-arm pendulum

The single-arm pendulum (SAP) is a two-dimensional minimum-time optimal-control

problem [28]. The agent has two actions available representing positive and negative

torques applied to a rotating pendulum. The agent cannot move the pendulum from the

bottom to the top directly, but must rock it back and forth until it has sufficient velocity
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big.track 09/10/13 14:57
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X      XXXXXXXXXXXXXXXXX       X
X      XXXXXXXXXXXXXXXXX       X
X      XXXXXXXXXXXXXXXXX       X
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Figure 3.2

RaceTrack2.
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[28]. The state space is defined by the angle of the link (θ1) and the angular velocity of the

link (θ̇1). The state space is discretized. The objective is to balance the pendulum vertically

at a zero degree angle and zero velocity (goal state). All actions incur unit cost.

θ1

Figure 3.3

Single-arm pendulum.

3.1.3 Double-arm pendulum

The double-arm pendulum (DAP) [28] is a four-dimensional (θ1, θ2, θ̇1 and θ̇2) minimum-

time optimal-control problem. It is similar to SAP, except that there are two arms instead

of one. It is the smaller link that must be balanced vertically. It is a free-swinging link.

The state space is defined by the two arms angles (θ1, θ2) and their angular velocities

θ̇1 ∈ [−10, 10] radians/s and θ̇2 ∈ [−15, 15] radians/s. The agent cannot move the pen-

dulum from the bottom to the top directly, but must swing it back and forth to generate

sufficient momentum [28]. The objective is to position the pendulum vertically at zero

degree angles and zero velocity. Again, actions have unit cost.
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θ1

θ2

Figure 3.4

Double-arm pendulum.

Table 3.1

Test problems

Problem Number of states Number of actions
RaceTrack1 1,849 16,641
RaceTrack2 21,371 192,339

SAP100 10,000 20,000
SAP300 90,000 180,000
DAP10 10,000 20,000
DAP20 160,000 320,000
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Experiments All test problems have unit action cost; thus g
¯

= 1, moreover, there is

at least one proper policy for each problem. An initial proper policy is first computed,

and the value iteration algorithm is initialized using the value function obtained from the

evaluation of the initial proper policy. Table 3.2 presents the starting and the optimal values

of the start state for the test problems. In each iteration, error bounds are computed and

convergence is tested using Theorem 2.

Table 3.2

Initial(J0(s0)) and final(J∗(s0)) values of the start state

RaceTrack1 RaceTrack2 SAP100 SAP300 DAP10 DAP20
J0(s0) J∗(s0) J0(s0) J∗(s0) J0(s0) J∗(s0) J0(s0) J∗(s0) J0(s0) J∗(s0) J0(s0) J∗(s0)

179.15 9.16 1321.91 31.37 150.09 140.88 388.99 369.64 26.36 19.31 50.19 35.86

Tables 4.3, 4.4 and 4.5 present for each problem, the residual = −cs and the new error

bound =−(max
s∈S

(N̄(s)−1))cs values for the start state, for each iteration until convergence.

The algorithms are considered to have converged when the error bound is less than ε =

10−6.

The results presented in Tables 4.3, 4.4 and 4.5 show that the error bounds can be used

to test for convergence to an ε-optimal solution. The bigger the problem, the longer it

takes to converge. The errors are quite poor at beginning but get better as we run more

iterations. The better the initial policy, the better the initial bounds and the faster the

algorithm converges. As presented in Table 3.2, the initial value (for the start state) is often

very high given the final value.
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Table 3.3

Error bounds (Race Track)

RaceTrack1 RaceTrack2
iteration res. ¯Nmax error res. ¯Nmax error

0 186.505864 50.369 33837.783 1320.506367 400.278 1744874.6
4 6.523357 9.201 70.392718 52.302179 34.484 2818.9315
9 0.053002 10.503 0.538530 3.806509 31.410 124.58362

10 0.014861 9.160 0.150993 2.576267 31.392 84.089260
11 0.003179 9.201 0.032298 1.042913 31.384 34.009237
12 0.000612 9.160 0.006218 0.642675 31.381 20.949511
13 0.000112 9.160 0.001140 0.526696 31.380 17.166135
14 0.000020 9.160 0.000204 0.332708 31.379 10.842908
15 0.000004 9.160 0.000036 0.125295 31.379 4.083227
16 0.000001 9.160 0.000006 0.062574 31.379 2.039186
20 - - - 0.003190 31.379 0.103960
24 - - - 0.000225 31.379 0.007335
28 - - - 0.000008 31.379 0.000263
29 - - - 0.000004 31.379 0.000114
30 - - - 0.000002 31.379 0.000050
31 - - - 0.000001 31.379 0.000022
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Table 3.4

Error bounds (Single-arm pendulum)

SAP100 SAP300
iteration res. ¯Nmax error res. ¯Nmax error

0 120.803491 149.0968 36036.3474 352.2018 387.9924 281593.11
19 17.759731 149.0968 4551.269944 38.2262 387.9924 29518.266
59 0.791498 149.0856 117.777815 24.9297 387.9924 17029.916
99 0.461258 148.9390 68.477939 16.6732 387.9924 9731.1416

139 0.299921 142.1510 42.636557 12.4160 387.9924 5258.9819
179 0.070637 141.4356 9.933969 1.064990 387.9924 418.88727
219 0.001882 140.8911 0.264038 0.838617 387.9924 329.84919
259 0.000020 140.8898 0.002830 0.737511 387.9924 290.08160
279 0.000002 140.8898 0.000338 0.697940 387.9924 274.51745
285 0.000001 140.8898 0.000133 0.685916 387.9924 269.78774
286 - - - 0.683466 387.9924 268.82411
316 - - - 0.620663 382.8564 244.12233
376 - - - 0.449282 370.4367 173.30112
436 - - - 0.076815 370.1065 29.276448
496 - - - 0.005737 369.7025 2.186421
556 - - - 0.000029 369.6475 0.011157
577 - - - 0.000002 369.6474 0.000925
584 - - - 0.000001 369.6474 0.000379
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Table 3.5

Error bounds (Double-arm pendulum)

DAP10 DAP20
iteration res. ¯Nmax error res. ¯Nmax error

0 9.754700 25.066726 365.07479 19.343652 48.968765 1549.4707
5 3.130976 22.749747 111.26919 7.415049 46.879543 585.37200

10 1.267190 21.163182 36.969128 5.380304 43.536117 416.96231
15 0.568972 20.058999 15.350997 3.800557 41.513830 279.33796
20 0.256870 19.577365 6.538414 2.575460 39.806039 165.69315
25 0.118588 19.398144 2.933673 1.082850 38.045388 65.554680
30 0.041992 19.339087 1.027285 0.911191 36.902693 52.006848
35 0.014141 19.321316 0.344643 0.630935 36.319243 34.599122
40 0.004225 19.316241 0.102847 0.410741 36.051993 21.519977
45 0.001217 19.314866 0.029618 0.241949 35.938940 12.309922
50 0.000330 19.314504 0.008030 0.128658 35.893086 6.437655
55 0.000087 19.314412 0.002120 0.059487 35.874810 2.959066
60 0.000022 19.314388 0.000543 0.025545 35.867762 1.267723
65 0.000006 19.314383 0.000136 0.010446 35.865188 0.517940
72 0.000001 19.314381 0.000019 0.002770 35.864112 0.137310
73 - - - 0.002276 35.864051 0.112817
84 - - - 0.000236 35.863824 0.011707
94 - - - 0.000028 35.863805 0.001393

104 - - - 0.000003 35.863803 0.000151
109 - - - 0.000001 35.863803 0.000049

27



Action elimination is also tested on these problems. Sub-optimal actions are not con-

sidered in the state backups. Suboptimality is tested using Theorem 3 of Chapter 3. Results

are presented in Table 3.6. In some cases, action elimination does not improve the runtime.

This is due to the fact that every iteration, two backups per state are performed to compute

state actions lower bounds. Furthermore, due to the fact that the state lower bound is quite

poor at the beginning, only few actions are eliminated. Most of the actions are eliminated

within a small interval towards the “middle” of the process as shown by Figures 3.5, 3.6

and 3.7. A slightly faster algorithm is obtained by switching to regular value iteration at

the “beginning” and at the “end” of the process.

Table 3.6

Value iteration and Action elimination on planning problems

Problem Value iteration(sec.) Action elimination(sec.) % of sub-optimal actions
RaceTrack1 0.01 0.01 59
RaceTrack2 0.19 0.19 59

SAP100 0.28 0.29 12
SAP300 6.20 6.14 6
DAP10 0.12 0.12 49
DAP20 3.90 3.86 49
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Number of sub-optimal actions: RaceTrack
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CHAPTER 4

APPLICATION TO PROBABILISTIC MODEL CHECKING

In this chapter we apply the new bounds to the minimum expected time problem in

probabilistic model checking. The experimental results for both basic and SCC-based

error bounds are presented.

4.1 Probabilistic model checking

Model checking is a formal verification technique used to exhaustively analyze finite-

state systems [3]. A model which represents all possible execution paths of the system

over time is constructed as a finite state automaton. Desired properties of the system such

as “the system never ends up in an error state” or “the system always reaches a given state

sg within t time steps” are expressed in temporal logic and the model is explored to check

whether or not the properties always hold. If a property is not satisfied, an error trace is

generated. Figure 4.1 illustrates the principle of model checking.

It is not always possible to have absolute guarantee of correctness of a given system.

There often exists some positive probability of failure that is not possible to eliminate and

has to be considered in the analysis. The uncertainty often comes from the unpredictability

of the system over time or from the difficulty of having a deterministic specification of the

system. It becomes unrealistic to express correctness as: “the system cannot fail”. Instead,
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Figure 4.1

Principle of model checking.

it is expressed as: “with 99% chance the system will not fail”. Another reason to consider

probabilistic behavior is when analyzing randomized algorithms that are intrinsically prob-

abilistic. For example, distributed algorithms often include a randomization step to break

“symmetry” between processes [3].

Probabilistic model checking analyzes systems with probabilistic behavior. Probabilis-

tic finite-state systems can be modeled in a number of different ways. Markov chains model

systems with a probability distribution over successor states; the next state is chosen prob-

abilistically. Markov decision processes are used in randomized distributed systems to add

nondeterminism in actions to Markov chains [16].

Probabilistic model checking considers two types of properties: qualitative and quan-

titative. Qualitative properties apply to events that happen with probability 0 or 1. For
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example: “every philosopher will eventually get to eat (with probability 1)” or “the pro-

gram will almost never be in a deadlock state (with probability 0)”. These properties are

verified by performing reachability analysis on the model. Depth-first search is the baseline

algorithm used to verify qualitative properties.

The quantitative properties apply to the cost or probability of an event. For example:

“what is the minimum expected time steps t to guarantee that all philosophers get to eat”

or “with probability at least 0.99, a leader is elected within t time steps”. Dynamic pro-

gramming algorithms are used in quantitative analysis.

In the remainder of this chapter, we only consider systems modeled as Markov decision

processes.

4.1.1 States with proper policy

In order to perform quantitative analysis on a system for the minimum expected time,

we need to divide the state space into three sets: states that are guaranteed to reach the goal

state with probability = 1, states that will never reach the goal state and states in between.

Quantitative analysis are only performed on the latter set of states.

States S1
max, for which the maximum probability of reaching the target state is 1 are

computed using algorithm Prob1 [15]. Prob1 is described in Table 4.1.

Prob1’s search space is initialized with the whole state space S, it then does a backward

search from the target set to identify and remove trap states (states that will never reach the

target set) and actions leading to trap states from the search space. It iterates this step until

convergence. The algorithm runs in O(nm) time, where n and m are number of states
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and edges in the model respectively. This often makes it the slowest part in the process of

verifying a given property of the system [16].

Improved versions of Prob1 algorithm have been developed [10, 11]. These versions

take advantage of the properties of the graphical structure of the model.

Table 4.1

Prob1 algorithm

Input: MDPM =< S,A, T, c >, target set t ∈ S.
Output: S1

max = {s ∈ S | Prmaxs (reach(t)) = 1} .

1 R := S
2 do
3 R′ := R
4 R := t
5 do
6 R′′ := R
7 R := R′′ ∪ {s ∈ S | ∃a ∈ A(s).
8 (∀s′ ∈ S. (ps,s′(a) > 0→ s′ ∈ R′)) ∧ (∃s′ ∈ R′′. ps,s′(a) > 0)}
9 while (R 6= R′′)
10 while (R 6= R′)
11 return R.

Computing minimum expected time is a quantitative analysis. First, the set of states for

which there is at least one path that leads to the target set is computed. These are the states

with maximum probability 1 of reaching the target set. States that do not have any proper

policy are not considered as they have infinite cost. This precomputation step corresponds

to running the Prob1 algorithm. Value iteration can then be used to compute the expected

cost, in term of time steps, for the states returned by Prob1 algorithm. The slowest part in
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solving this problem is usually the Prob1 algorithm as it is quadratic in the worst case [16].

There is not trivial way of avoiding this step for the minimum expected time.

4.1.2 Minimum expected time

For problems where a proper policy exists, a probabilistic model checker is often con-

cerned with computing the minimum expected time to reach a target state. This problem is

equivalent to the stochastic shortest path problem for Markov decision processes and thus

it can be solved using value iteration.

4.2 Test problems

The problems described in this section are all from the Prism model checker bench-

mark. All problems can be decomposed into several SCCs. Table 4.2 summarizes their

properties.

4.2.1 Zeroconf(N, K)

ZeroConf is a dynamic configuration protocol for IPv4 link-local addresses [12]. The

protocol describes how to configure an IP address for a new device in the network. When

a new device joins the network, it first randomly selects an IP address from 65,024 pos-

sible addresses. It then waits between 0 and 2 seconds before it broadcasts four Address

Resolution Protocol (ARP) packets to request the use of the selected IP address. Four ARP

packets are sent to handle message loss. If the address is already used, the device using

it will reply with an ARP reply packet claiming the use of the address. The new device

chooses a new address and sends new ARP packets and the process is repeated. Every time
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there is an address conflict, a counter C is incremented. If C = 10, the device idles for at

least one minute. If the device gets no reply after sending four ARP packets, it starts using

the chosen address and broadcasts two confirmation ARP messages to the network. The

confirmation messages are sent at 2 second intervals. The parameter N is the size of the

network before the new device joins in. The probability that the new device picks an avail-

able address is
65024−N

65024
. The parameter K is the maximum number of ARP packets

sent by the device; up to four packets are sent. The probability of message loss is fixed to

0.1. A detailed description of this protocol model can be found in [23]. The goal state is

having the new device correctly configured. We are interested in computing the expected

cost in term of time steps of reaching the goal state for different values of N and K.

4.2.2 Consensus(N, K)

The randomized consensus protocol is a distributed algorithm used to reach agreement

betweenN asynchronous processes that communicate using read/write shared registers [2].

The processes go through as many rounds as necessary to reach agreement. Each agree-

ment attempt involves reading the status of all other processes. If the processes disagree, a

shared coin-flipping is used to decide their next preferred values. The parameter K > 1 is

used to set a barrier on the value of a globally shared counter of the number of coin flips

depending on which, a process chooses its preferred value. The algorithm terminates when

all processes have the same value. The property checked is the minimum expected number

of steps (time units) it takes to reach agreement.
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4.2.3 Israeli and Jalfon Self-Stabilizing Protocol(N)

Consider a network of N processors organized into a ring. The network is said to be

in a stable configuration when only one processor has a token. Israeli and Jalfon’s self-

stabilization protocol (ij) [19] when applied on a ring of N processes, always reaches a

stable configuration from any initial configuration without any outside intervention within

a finite number of steps. Each process in the ring has a local boolean variable qi indicating

that the token is in place i. Processes with a token are said to be active. Neighboring

processes communicate using shared read/write registers. Active processes are managed

by a scheduler. A scheduled process randomly passes its token to one of its neighbors. We

are interested in computing the minimum expected time to reach a stable configuration.

Table 4.2

Properties of state space for test problems.

Problem # of states # of actions # of transitions # of trivial SCCs # of n-t SCCs
Zeroconf(10, 1) 31,954 57,482 73,318 11,180 1
Zeroconf(10, 2) 89,586 164,169 207,825 29,914 1
Consensus(4, 2) 22,656 60,544 75,232 2,546 65
Consensus(4, 4) 43,136 115,840 144,352 2,546 65
ij(10) 1,023 5,120 8,960 1 9
ij(15) 32,767 245,760 430,080 1 14

4.3 Experiments

The minimum expected time problem can be modeled as a stochastic shortest path

problem. A cost of 1 is associated with each action; this makes it suitable for the new error
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bounds. As in the planning case, in order to use the new bounds, we have to start with an

initial proper policy. It is possible to extract an initial proper policy while running the Prob1

algorithm of Table 2.3. The returned policy is then evaluated to get the corresponding initial

value function. Bounds are then computed in each iteration as in the planning case.

The experiments are run using PRISM [22], a probabilistic model checker, written in

C++ and Java, developed at the Universities of Birmingham and Oxford. PRISM supports

several probabilistic models, including Markov decision processes, with implementations

of value iteration and policy iteration. In addition to the explicit data structures used to

represent the models, PRISM uses sparse matrices, binary decision diagrams (BDDs) and

multi-terminal BDDs (MTBDDs). These memory-efficient data structures can handle very

large models. For numerical computations, PRISM comes with three separate engines.

The first engine uses explicit data structures, the second uses MTBDDs, and the third uses

hybrid engine which combines MTBDDs and sparse matrices. For these experiments, only

the explicit engine is used.

Properties such as the minimum expected time of reaching a set of states in the model

are easily expressed in probabilistic temporal logic.

All problems described in the previous section have unit edge cost; thus g
¯

= 1 and

there is at least one proper policy. An initial policy is first computed and the value itera-

tion algorithm is used. The algorithm is initialized using the value function obtained from

the evaluation of the initial proper policy. Tables 5.2, 5.3 and 5.4 show the starting val-

ues (obtained from the initial value function) and the optimal values of the state with the
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largest upper bound on the number of steps to terminate. Each iteration, error bounds are

computed and convergence is tested using Theorem 2.

Table 4.3

Initial(J0(s0)) and final(J∗(s0)) values of the state with the largest error bound (Zeroconf)

Zeroconf(10, 1) Zeroconf(10, 2)
J0(s0) J∗(s0) J0(s0) J∗(s0)

27.10 25.40 30.50 28.80

Table 4.4

Initial(J0(s0)) and final(J∗(s0)) values of the state with the largest error bound
(Consensus)

Consensus(4, 2) Consensus(4, 4)
J0(s0) J∗(s0) J0(s0) J∗(s0)

239.70 199.99 851.18 755.97

Tables 5.5, 5.6 and 5.7 show the residual, −cs, and the error bound, −(max
s∈S

(N̄(s) −

1))cs, for each test problem.

The value iteration results are presented in Tables 5.5, 5.6 and 5.7. The error bounds

make it possible to test for convergence to an ε-optimal solution. The bigger the problem,

the longer value iteration takes to converge since the values of all the states have to con-

verge. The errors bounds are loose at beginning but get better in successive iterations. The

better the initial policy, the better the initial bounds and the faster the algorithm converges.
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Table 4.5

Initial(J0(s0)) and final(J∗(s0)) values of the state with the largest error bound
(Self-stabilization)

ij(10) ij(15)
J0(s0) J∗(s0) J0(s0) J∗(s0)

44.99 44.99 104.99 104.99

Table 4.6

Error bounds - Zeroconf (N, K)

Zeroconf(10, 1) Zeroconf(10, 2)
iteration res. ¯Nmax error res. ¯Nmax error

1 14.12 27.10 368.53 13.48 30.50 397.66
10 1.73 25.40 42.11 2.24 28.80 62.272
20 0.64 25.40 15.42 0.65 28.80 18.070
30 0.06 25.40 1.46 0.39 28.80 10.842
40 .00006 25.40 .00146 0.01 28.80 0.2780
50 .00006 25.40 .00146 .00003 28.80 .00083
60 .00006 25.40 .00146 .00003 28.80 .00083
70 .00006 25.40 .00146 .00003 28.80 .00083
80 .00004 25.40 .00097 .00002 28.80 .00055
90 .00003 25.40 .00073 .00002 28.80 .00055

100 .00003 25.40 .00073 .00001 28.80 .00027
110 .00002 25.40 .00048 .00001 28.80 .00027
115 .000007 25.40 .00017 .00001 28.80 .00027
120 .000007 25.40 .00017 .000006 28.80 .00016
125 .000007 25.40 .00017 .000006 28.80 .00016
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Table 4.7

Error bounds - Consensus (N)

Consensus(4, 2) Consensus(4, 4)
iteration res. ¯Nmax error res. ¯Nmax error

1 25.49 239.70 6064.4 49.47 851.18 42058
100 0.91 220.34 199.59 0.95 849.77 806.33
200 0.36 208.00 74.520 0.54 840.45 453.30
300 0.15 203.33 30.349 0.50 830.14 414.57
400 0.062 201.34 12.421 0.42 820.63 344.24
500 0.025 200.54 4.988 0.35 812.70 284.09
600 0.011 200.23 2.191 0.29 806.55 233.60
700 .0046 200.09 0.915 0.24 801.13 192.03
800 .0019 200.03 0.378 0.20 796.70 159.14
900 .0008 200.01 0.159 0.16 793.20 126.75

1000 .0003 200.005 0.059 0.13 790.15 102.58
1100 .0001 200.001 0.019 0.11 787.66 86.532
1200 .00006 199.999 0.011 0.09 785.69 70.622
1300 .00002 199.998 .00397 0.07 783.97 54.807
1400 .00001 199.998 .01989 0.06 782.57 46.894
2400 .000009 199.998 .00179 0.01 776.96 7.759
3400 .000009 199.998 .00179 .0015 776.12 1.162
4400 .000009 199.998 .00179 .00024 775.99 0.185
5400 .000009 199.998 .00179 .00003 775.97 0.023
6134 .000009 199.998 .00179 .000009 775.97 0.006

12000 .000009 199.998 .00179 .000009 775.97 0.006
24000 .000009 199.998 .00179 .000009 775.97 0.006
24472 .000009 199.998 .00179 .000009 775.97 0.006

Table 4.8

Error bounds - Self-stabilization (N)

ij(10) ij(15)
iteration res. ¯Nmax error res. ¯Nmax error

1 0.000009 44.99 0.0003 0.000009 104.99 0.0009
2 0.000000 44.99 0.0000 0.000000 104.99 0.0000

42



Another way of improving the bounds is using sequential space decomposition to de-

compose the problem into smaller stochastic shortest path problems. The problem is de-

composed into strongly connected components (SCCs) which are sequentially solved start-

ing from the goal. Every SCC is a goal for the SCCs that can immediately reach it. This

makes the number of steps to terminate smaller. An upper bound on the average number of

steps to finish is computed using the offset defined in Section 3.3. The best case is when the

problem decomposes into equal-size strongly connected components. Instead of backing

up all the states, each SCC is separately solved which means fewer states evaluated each

iteration and faster convergence when SCCs are solved in a topological order.

In our test problems we have several trivial SCCs (one state per SCC) and only few non-

trivial SCCs for Zeroconf and Consensus problems. When backing up states in topological

order, trivial SCCs need only one iteration to converge. Table 4.9 shows the number of

iterations needed by value iteration and SCC-based value iteration on the largest SCC, to

converge.

Adding action elimination to value iteration often makes it slower for model checking

problems. This is due to the fact that these problems have very few actions per state

(2-3 actions in average) and at the end the number of backups saved from eliminating

sub-optimal actions (less than 10%) is not enough to compensate the overhead created by

action elimination.
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Table 4.9

Value iteration vs. SCC-based value iteration

Problem Value iteration # SCC-based VI on the largest SCC
Zeroconf(10, 1) 113 113
Zeroconf(10, 2) 119 118
Zeroconf(15, 3) 125 105
Consensus(4, 2) 1,426 852
Consensus(4, 4) 6,134 4,884
Consensus(4, 8) 24,458 22,357
ij(10) 1 1
ij(12) 1 1
ij(15) 1 1
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis we have implemented and evaluated new error bounds for the stochastic

shortest path problem both for decision-theoretic planning and probabilistic model check-

ing. We have shown that it is possible to use these bounds in test for convergence and in

action elimination. We have also shown that better error bounds can be computed by using

sequential space decomposition.

One the drawbacks of the value iteration algorithm is that all the states are evaluated

each iteration. These error bounds can be used in branch and bound algorithm where both

suboptimal action and non-relevant states are pruned for the state space. This is a topic for

future research.
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