
 

 

 

 

 

 

 

 
 

 
 

 
 

 

 

  

4.1.4 Experiment results and discussion 

We use a layer of temperature data from a 1998 ocean field investigation data set. 

The samples are taken along a ship. We implement two methods for interpolating 

scattered samples. We would like to know the modeling error of the reconstructions by 

using vertical comparison and lateral comparison.  

(1) Vertical Comparison Method: Vertical comparison compares the standard 

functions with reconstructed data. The experiment is conducted on 5 standard functions 

[59] listed below. The sample locations are provided by one layer of a field investigation 

data (Figure 4.1). The number of sample points is 86. The data-level error and feature-

level error are shown in the table 4.1 and 4.2. 

1( , )  0.75exp(((9x  2)2  (9 2F x y  y  2) ) / 4) 

0.75exp((9x 1)2 / 49  (9y 1) /10)
 (4.2)

2 20.50exp(((9x  7)  (9y  3) ) / 4) 

0.20exp((9x  4)2  (9 y  7) )2 

3 ( , )  (1.25  cos(5.4y)) / (6  6(3x 1) )2F x y  (4.3) 

2 2F x y5 ( , )  exp(20.25((x  0.5)  (y  0.5) )) / 3  (4.4) 

7 ( , )  2cos(10x)sin(10y)  sin(10x)F x y  (4.5) 

F9  ((20 / 3)3 exp((10  20x) / 3) exp((10  20x) / 3))2 

*((1/ (1 exp((10  20x) / 3)))(1/ (1 exp((10  20 y) / 3))))5

 (4.6)
*(exp((10  20x) / 3)  2 / (1 exp((10  20x) / 3))) 

*(exp((10  20x) / 3)  2 / (1 exp((10  20 y) / 3))) 
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Table 4.1 Interpolation Error of Multiquadric Method 

Test functions F1 F3 F5 F7 F9
Mean 

RMS 0.0132 0.0083 0.0017 0.0156 0.0051 0.0088 
n 4 3 1 23 5 
m 8 8 1 22 14 

| n m  | 4 5 0 1 9 5 
'( ,Distance C C ) 0.1933 0.1530 0.0081 0.1207 0.1367 0.1216 

* n  is the number of critical points in a test function F ; m  is the number of critical 
points in the interpolation function F ' ; C  and C '  are the sets of critical points of F  and 
F ' , respectively. 

Table 4.2 Interpolation Error of MQS Method 

Test functions F1 F3 F5 F7 F9 
Mean 

RMS 0.0162 0.0141 0.0029 0.0176 0.0089 0.0119 
n 4 2 1 23 5 
m 25 15 35 51 30 

| n m  | 21 13 34 28 25 26.2 
'( ,Distance C C ) 0.1629 0.1718 0.1744 0.1601 0.1657 0.1669 

Figure 4.1 1998 field investigation data set of the South China Sea. The test sample 
locations are extracted from the layer at a depth of 150 meters. 
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Original field 

                                                        Reconstruction field 

   

 

       Function 1  Function 3 Function 5 Function 7 Function 9 

Figure 4.2 Vertical comparison: compare original scalar fields with reconstructed 
scalar fields. The function values are mapped onto a rainbow colormap, 
where each function value is mapped to a color value interpolated between 
blue and red. The black points indicate critical points.  

(2) Lateral Comparison Method: Lateral comparison estimates the difference 

between reconstructed fields by different interpolation methods. Given a set of sample 

data (Figure 4.1) from field study, one does not know the ground truth but only estimates 

it from reconstructed fields using different interpolation methods. In this case, the 5 

standard functions are not needed. The data-level error and feature-level error are shown 

in Table 4.3. 
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Multiquadric reconstructed field  MQS Reconstructed Field 

Figure 4.3 Lateral comparison: compare two temperature fields reconstructed by MQS 
method and Multiquadric method. 

Table 4.3 Comparison between Multiquadric Method and MQS Method 

RMS m1 m2 | m m |1 2 Dis tan ( ,ce C C )1 2 

0.023 46 40 6 0.073 
* m1  is the number of critical points in field F1 (reconstructed by Multiquadric method); 

m2  is the number of critical points in field F2 (reconstructed by MQS method); C1  and 

C2  are the sets of critical points of F1  and F2 , respectively. 

As indicated in Figures 4.2 and 4.3 and Tables 4.1 and 4.2, no matter what kind of 

comparison, vertical comparison or lateral comparison, is used, the amount and position 

deviation of the critical points (the black points in the figures) are considerable though 

the RMS error appears to be fairly low. The average position deviations between critical 

points are as high as 0.1669. The feature-level errors show that the locations of critical 

points are uncertain, depending on which interpolation methods are used.  
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This case study reveals that the feature-level errors could be significant and that 

they need to be revealed to users.       

4.2 A framework for feature-level uncertainty visualization 

In many cases, locations of features matter more than the data-level uncertainty. 

For instance, the locations of warm eddies are important in ocean fishery, and the 

locations of hurricane eyes or the peaks in pressure field are important in weather 

analysis. The case study in section 4.1 reveals that significant deviations of the features 

may exist in the data with seemingly low data-level uncertainty, and thus indicates a 

pressing need to measure the feature-level uncertainty.  

It is believed that the feature-based technique is desirable when the size and 

complexity of the data increases [3]. Visualizing the feature-level uncertainty instead of 

the data-level uncertainty of the whole data may provide a solution to the uncertainty 

visualization of the large scale data. Feature tracking methods are proposed to map the 

evolving features over time. Two features are considered the same feature at different 

time slices if they share the same tracking path [28], [44] or the biggest similarity [42]. 

This inspires us to evaluate the uncertainty related to features by comparing the deviation 

of those feature pairs in different data sets. 

4.2.1 Method overview 

The impact of uncertainty on the features is quantified as feature-level uncertainty 

which is measured by feature deviation. The feature deviation is obtained through a three-

step procedure — feature identification, feature mapping, and uncertainty representation. 

Given a set of data members, e. g. multiple simulation runs, this method first identifies 

the features within all the data members and the mean field given by averaging all the 
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members. Second, feature tracking is implemented to map the features of each data 

member to that of the mean field. The mapped features are then assumed to have the 

same feature with slight position deviation in each of the individual data members. 

Finally, the feature-level uncertainties are expressed as the deviations of the features.  

Figure 4.4 The pipeline for feature-level uncertainty visualization.  

The features that we currently study are vector field critical points. They are 

intuitive features closely related to physical features [3]. Scalar fields can be analyzed 

through their gradient fields. 

Section 4.2.2, 4.2.3, and 4.3.4 discuss feature extraction, feature mapping, and 

uncertainty glyph design respectively; Section 4.2.5 demonstrates results; Section 4.2.6 

concludes this chapter with possible improvements. 

4.2.2 Feature extraction 

The computation of critical points in a vector field can be found in [27]. 

For a scalar field, its gradient field can be used to extract critical points so that the 

features of scalar fields and vector fields are analyzed in the same way. A vector field V 

can be constructed out of scalar field f  using the gradient operator 

:V f ( f / x, f / y)         . The maxima of f  appear as sinks and minima appear as 
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sources in its gradient field V . Figure 4.5 illustrates an example of the critical points 

extracted from the gradient field of a temperature field.   

(a) (b) (c) 

Figure 4.5 Topology extracted from the gradient field of a temperature field.(a) Color-
mapped temperature. (b) Gradient field represented with arrows. (c) 
Gradient field with extracted vector topology.  

4.2.3 Feature mapping 

Feature tracking is a way to investigate feature evolution of time-varying data. 

Some feature-tracking methods correlate features by measuring their positional distance 

or overlapped area while others utilize an intermediate data field derived from two 

neighboring time slices and trace paths along critical points within it [28], [44], [45]. 

Theisel’s Feature Flow Field (FFF) method [44] is especially interesting to us because it 

provides a generic approach to feature tracking. Independent of underlying grids, the FFF 

method captures the temporal evolution of a feature using stream object integration in a 

derived Feature Flow Field. The concept of FFF has been successfully applied to tracking 

critical points [46], extracting Galilean invariant vortex core lines [47], simplification 

[48], and comparison [49]. 
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Feature Flow Field (FFF) [44] is adopted to couple critical points of different 

fields by tracing streamlines within it. It is used to identify the same feature that appears 

in different data members at different positions. The uncertainty of this feature is then 

expressed as the deviation between all of its counterparts in different data members.  

4.2.3.1 Feature flow field construction 

The main idea of the FFF approach is to introduce an appropriate vector field f 

in space-time, such that a feature tracking in a 2D time-dependent vector field V 

corresponds to a streamline integration in f . Consider tracking critical points in a 2D 

( ,  , )u x y t  
time-dependent vector field, which is given as V x y t( ,  , )     . V can be 

 ( ,  , )  v x y t  

constructed by applying a linear interpolation of V1  and V2 : 

( ,  , )    t V  x y) 1( , )  tV2 x y  V x y t  (1  ( , ) . 

To get FFF f , one searches in space-time for the direction in which both 

components of V  locally remain constant. This direction is perpendicular to the gradients 

of the two components of V . This leads to 
 u   v det(v v, ) y tx x      

( ,  , )   grad u  g ( )   uy  vy  det(  ,  x f x y t ( ) rad v v v ) . Figure 4.6a illustrates that a       t 

      det(v v, )   tut   v x y  

feature is tracked by integrating a streamline within a Feature Flow Field. Let two vector 

fields, V0  and Vi , be two slices of a time-varying flow. A streamline which starts from 

one feature a  in vector field V  reaches another feature a in vector field V . a  and a0 0 i i 0 i 

are therefore recognized as one feature that evolves over time between V0  and Vi 
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4.2.3.2 Feature-level uncertainty measurement 

Given k  data members  V i, (  1,..., k) , a mean field V  is first computed as the i 0 

average of them. V0  is then paired with each data member Vi . Feature mapping is 

implemented for each data pair V0  and Vi . With the FFF method, features of different 

vector fields could be correlated.  

(a) (b) 

Figure 4.6 Feature-level uncertainty measurement. (a) Feature deviations detected by 
tracing critical points within FFF between a data member V1  and the mean 

field V0 . (b) Feature-level uncertainty measured by the deviations 

(indicated by arrows) of features (indicated by dots) in all the data 
members V n(  1,..., k) from the features in the mean data field V .n 0 

Figure 4.6 demonstrates how to measure feature-level uncertainty related to a 

feature. For a data member V1  and the mean field V0 , we trace a streamline from a 

critical point a0  in V0  until it reaches a critical point a1  in V1 . After tracing critical points 

between all the pairs, the feature-level uncertainty is measured by the distances between 

a i(  1,..., k)  and a . Figure 4.6 illustrates the feature mapping between a pair of data. i 0 

Figure 4.6b shows a straightforward representation of the uncertainties related to 

individual features by arrows. Given a data member Vn (1  n k) , it is possible that the 

streamline starting from a0 reaches the boundary of the FFF or ends at V0 instead of 
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reaching a critical point in Vn . In these cases, we assume that the mapped critical point 

an for a0  in this data member exists outside the domain. Therefore, we set its distance 

from a0  a large value — the maximum distance found between a0 and all the mapped 

critical points ai . 

4.2.4 Uncertainty glyph design 

Glyph design addresses the central problem of how uncertainty information is 

processed into knowledge. For the detected deviations of a critical point, a quantitative 

glyph is designed to indicate uncertainty level related to the critical point. The new 

uncertainty glyph is inspired by both graduated circular glyph [13] and elliptical glyph 

[62]. 

4.2.4.1 Graduated circular glyph 

Sanyal et al. [12] identified that glyphs altered by size are effective in depicting 

uncertainty in 2D datasets. They introduced a graduated circular glyph that encodes the 

deviation of each ensemble member from the ensemble mean. A glyph that has a dense 

core with a faint periphery indicates that ensemble members have a few outliers and 

mostly agree. A mostly dark glyph indicates that large differences exist among individual 

members. The size of a glyph indicates the variability of a location with respect to other 

locations on the grid. Consequently, graduated glyphs provide a straightforward way to 

visualize uncertainty locally and globally. For more details on graduated glyphs, we refer 

the reader to [13]. 

4.2.4.2 Elliptical glyph  

A glyph that can be used at different levels is the elliptical glyph [62]. It depicts 

the covariance between multiple real-valued random variables Xi . In probability theory 
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and statistics, covariance measures how much two variables change together. The 

covariance matrix ∑ generalizes the notion of variance to multiple dimensions. 

i j, Cov Xi j i i j j ))]  where E Xi ) is the expected value of    ( ,  X )  E[(X  E(X ))(X  E(X ( 

Xi , and the ellipse axis length is   eig() . Ellipse axis directions are given by 

d eigvec( ) . An elliptical glyph can be applied to visualize tensors, but can also show  

a simplified representation of the spatial distribution of a set of 2D or 3D data [24].  

4.2.4.3 2D graduated elliptical glyph 

Before using the graduated ellipse, we considered using arrows to indicate the 

uncertainty by showing directions and distances of individual deviations. Nevertheless, it 

is found that arrows, though showing the deviations in an authentic way, could cause 

severe information overload when the number of ensemble runs increases. Contrarily, the 

graduated ellipse possesses the elliptical glyph’s ability to depict the overall deviation of 

a feature and the graduated glyph’s intuitive way to depict inner deviation of individual 

ensemble members. 

a0 ( ,x0 y0 )Let  be a critical point in the mean data field V0 . Its counter-parts in 

Vi ai ( ,xi yi )data members  are (i 1,..., k) . A graduated elliptical glyph consists of k 

nested ellipses and is placed at the location of a0 . The nested ellipses share the same 

orientation and axis ratio.  The detail of rendering each nested ellipse is as follows: 

First, sort ai  according to its distance from a0 , d  (x  x )2  (y  y )2 , ini i 0 i 0 

descending order. Next, assign the outmost ellipse E with axes A  and B  computed 

according to the relative locations of towards a0 , (x  x y,  y ) . Let variable X  beai i 0 i 0 

xi  x0 , and Y  be yi  y0 . The lengths and directions of A  and B  are given by 

( (X ,Y ))  and eigvec , , respectively. ( (  ))  is the Covariance Matrix eig ( ( X Y ))   X ,Y 
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of X and Y . Then, the rest of nested ellipses are produced by fitting them into ellipse E . 

Let the biggest distance among di be D . Each nested ellipse is given axis lengths 

| |   /  and | B | d D . Finally, in a way similar to producing a graduated circular A d D  /i i 

glyph [13], assign saturation level si  for the i th glyph as si  (i 1) / (k 1)  and overlay 

the ellipse so that the smaller one is over the larger one. The graduated elliptical glyph 

shows the overall deviation of a feature and the inner distribution among the feature 

deviations of individual data members. When placed across an image, the overall size and 

orientation of the glyphs indicate the variability of features while the very shape of and 

color distribution within an individual glyph give a quick statistical summary of uncertain 

deviations of a feature. 

(a) (b) (c) (d) 

Figure 4.7 Feature-level uncertainty glyph design.  (a) Ellipse. (b) Arrows. (c) 
Graduated circular glyph. (d) Graduated ellipse 

Figure 4.7 gives a comparison between using a simple ellipse, arrows, graduated 

circular glyph, and graduated elliptical glyph for feature-level uncertainty. The individual 

features a i, (  1,..., k)  (which are not displayed in a final visualization) are shown as i 

well to better illustrate the design concept of each glyph. The simple ellipse (Figure 4.7a) 

only characterizes the overall deviation of a feature. Arrows (Figure 4.7b) indicate the 
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exact locations of all the deviated features while inviting visual clutters when k 

increases. The graduated circular glyph (Figure 4.7c) shows the individual deviation of a 

feature but no direction information is revealed. However, the graduated elliptical glyph 

(Figure 4.7d) summarizes overall and individual distribution of a feature in a succinct 

way. Figure 4.8 shows a set of graduated ellipse with varying color distributions, sizes, 

axis length ratios, and orientations. 

Figure 4.8 Graduated ellipses with varying orientation, saturation distribution, size, 
and axis length ratio B / A . 8 data members are used.  

4.2.4.4 3D graduated elliptical glyph 

A 3D elliptical glyph consists of k nested ellipsoids and is placed at the location 

of a0 . The nested ellipsoids share the same orientation and axis ratio.  To show the 

distribution among data members, a wedge is clipped out of it. Assign the outmost 

ellipsoid E  with axes A , B , and C computed according to the relative locations of ai 
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towards a0 , (x  x y,  y , z  z ) . Let variable X  be  x , Y  be  y , and Z  bei 0 i 0 i 0 xi 0 yi 0 

zi  z0 . The lengths and directions of A , B  and C  are given by eig( (X ,Y , Z ))  and 

( (X ,Y , Z ))  , respectively, where (X ,Y Z,eigvec  )  is the Covariance Matrix of X , Y , 

and Z . Then, similar to the manner of producing a 2D graduate elliptical glyph, the rest 

of the nested ellipsoids are produced by fitting them into ellipsoid E  and are rendered in 

blue with different saturation levels. The ellipsoids are opaque because we found in the 

experiment that transparency adds confusion and blur into the images, and is not effective 

in conveying depth information.  Figure 4.9 shows 3D graduated elliptical glyphs in 

different sizes and orientations. 

Figure 4.9 3D graduated elliptical glyphs. 

4.2.5 Results and discussion 

The method is applied to a 2D vector dataset and 3D scalar dataset. The first 

dataset includes 5 simulated hurricane wind fields (Figure 4.10). The second dataset 

contains water vapor data (Figure 4.11) from 8 WRF (Weather Research and Forecast 

Environmental Modeling System) simulation runs. The uncertainty glyphs are placed in 
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critical point locations. The results demonstrate how much features are affected by the 

uncertainty within the data. Through mapping and comparing the critical points between 

different ensemble members, the shifts between critical points become perceivable. The 

graduated elliptical glyphs effectively indicate the magnitude and overall orientation of 

the uncertain deviations of vortices. Especially in the hurricane wind data (Figure 4.10), 

the uncertain position of the hurricane eye reflects the impact of the uncertainty directly. 

A side-by-side display of different component data or the visualization of the data-level 

uncertainty may not give viewers such insight.  
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(a) (b) 

(c) 

Figure 4.10 Feature-level uncertainty of a hurricane wind field. (a) Feature tracking 
within FFF of two vector fields V1 and V2 . (b) Feature deviations (indicated 

by arrows) between two vector fields. Overlapped topology of V1  (black) 

and V2  (gray) are shown as well. (c) Uncertain location of hurricane eye 

and vortices in a hurricane wind field (5 ensemble members).   
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Figure 4.11 3D WRF water vapor data and uncertainty glyphs. 

4.3 Conclusion 

We presented a framework of feature-level uncertainty for both scalar and vector 

data, which is composed of feature extraction, feature deviation computation, and 

uncertainty representation. An elliptical glyph is designed to represent feature level 

uncertainty. The compactness of the feature-level uncertainty representation may provide 

a way to ease the perception issue of 3D visualization. The presented framework has 

potential for broader applications which include different types of features. Hopefully, 

this work will bring awareness to the existence of feature-level uncertainty. 

Although the result of this feature-level uncertainty visualization is positive, there 

are a few limitations and areas that need further study. Most notably, more features could 

be considered in the future. Second, other feature-mapping methods may be included 

depending on the feature type since the current feature-mapping method, FFF, mainly 

tracks topological features. 
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CHAPTER V 

AN INTERACTIVE CONTOUR TREE BASED VISUALIZATION FOR EXPLORING 

DATA WITH UNCERTAINTY 

This chapter presents an interactive visualization tool based on contour trees for 

exploring 2D and 3D data with intuitive and quantitative uncertainty representations. 

Section 5.1 summarizes the background, main idea, and contributions of the 

proposed method. Section 5.2 discusses contour tree simplification. Section 5.3 describes 

the contour tree layout and tree view graph design based on contour tree simplification. 

The visualization of three levels of uncertainties is discussed in section 5.4. Section 5.5 

discusses the interface design. Section 5.6 demonstrates experimental results. Section 5.7 

draws some conclusions and discusses possible areas of improvement.    

5.1 Method overview 

Many current uncertainty visualizations focus on encoding uncertainty 

information into different graphics primitives, such as color, glyph, and texture, which 

are attached to surfaces or embedded in 3D volumes [1]. These techniques may be 

subject to cluttered display, occlusion, or information overload due to the large amount of 

information and interference between the data and its uncertainty (as shown in Figure 

1.2). We believe that one promising direction to cope with this challenge is to allow users 

to explore data interactively and to provide informative clues about where to look. 

Contours, including iso-lines and iso-surfaces, are features frequently investigated 

for exploring data with uncertainty [13], [15]. For instance, uncertainty in climate 
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modeling is often represented by ensembles that contain multiple results for the simulated 

quantities. Rendering contours from all ensembles in a single image, known as spaghetti 

plots [63], is a conventional technique used by meteorologists for observing uncertainty 

in their simulations. Users are often interested in the uncertainty of the contours, e. g. 

how different are the contours of different ensemble members? This chapter focuses on 

new methods for visualizing the uncertainties in scalar fields. Though many uncertainty 

visualization techniques have been developed for scalar fields, the uncertainty related to 

global features, e. g. the topological structure of the scalar data, is barely studied. We 

classify uncertainty information into three categories: data-level uncertainty that indicates 

the uncertainty of the data, contour-level uncertainty that represents the positional 

variation of the contours, and topology-level uncertainty that reveals the uncertainty of 

the topology in the data.  

The contour tree has been exploited as an efficient data structure to guide 

exploratory visualization. Although it has rarely been used for uncertainty visualization 

before, we identify it as a desirable tool for an interactive visualization of data with 

uncertainty. First, a compact and clutter-free uncertainty visualization is achieved by 

attaching uncertainty glyphs to simplified contour trees. This provides an effective 

solution to the long-standing perception issues such as clutter and occlusion in many 

uncertainty visualizations in 3D or large 2D scenes. Secondly, a contour tree stores the 

information related to the geometry of individual contours, which can be utilized to 

compute the contour-level uncertainty. Thirdly, investigating the unstable structure of the 

contour tree reveals the uncertain topology of the data. Further, a contour tree provides a 

flexible interface that allows users to interactively select contours that interest them, e. g. 

those with high or low uncertainty. Moreover, contour tree simplification facilitates a 
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high level overview of a scalar field along with its uncertainty. Particularly, a simplified 

contour tree attached with uncertainty glyphs reduces the workload in viewing and 

analyzing 3D data or complicated 2D data with uncertainty.  

The core of this method is the use of contour trees as a tool to represent 

uncertainty and to select contours accordingly. First, a new contour tree simplification 

with efficient top-down sub-tree decomposition is proposed as an alternative to the 

traditional bottom-up simplification with branch pruning. Second, based on the new 

contour tree simplification, an easy-to-use contour tree-based interface takes the form of 

a tree view graph which is constructed by a new balanced planar hierarchical contour tree 

layout. The new contour tree layout emphasizes height information with few self-

intersections. The new contour tree display allows a user to quickly navigate through the 

level of details of the data. Further, attaching uncertainty information to the planar layout 

of a simplified contour tree is a key to avoiding the visual cluttering and occlusion of 

viewing uncertainty within volume data or complicated 2D data.  

The main contributions include (1) a planar contour tree layout which suppresses 

the branch crossing and integrates with tree view interaction for a flexible navigation 

between levels of detail for contours of 3D or large 2D data sets and (2) a new paradigm 

of investigating and visualizing uncertainty based on a contour tree that integrates the 

uncertainty representations on the data-level, the contour-level, and the topology-level.   

5.2 Contour tree simplification 

Simplification is introduced to deal with the contour trees that are too large or 

complicated to be studied or displayed directly [39], [40]. This applies to the data with 

uncertainty. Moreover, contour tree simplification facilitates a high level overview of a 
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scalar field along with its uncertainty. Particularly, a simplified contour tree attached with 

uncertainty glyphs reduces the workload in viewing and analyzing 3D data or 

complicated 2D data with uncertainty. 

This section first discusses issues of contour tree simplification in section 5.2.1; 

then introduces a new top-down simplification in section 5.2.2 as a competitive 

alternative to the usual bottom-up simplifications.  

5.2.1 Contour tree simplification criteria and de-strangulation 

Usually, a contour tree simplification is conducted in a bottom-up manner by 

successively removing branches that have a leaf node (extremum) and an inner node 

(saddle). Takahashi et al. [64] identified similar candidates in 3D data (maximum—2-

saddle, minimum—1-saddle, and 1-saddle—2-saddle) to be removed. There exist several 

criteria for contour tree simplification such as topology integrity [15], importance ranking 

[40], and strangulation avoidance. 

5.2.1.1 Contour tree simplification criteria 

Topology integrity ensures that the simplified topology is consistent with the 

original one. Takahashi et al. [57] stated that the critical points must maintain topological 

integrity by satisfying the Euler formula. They suggested connecting all the boundary 

vertices to a virtual minimum with value  . Figure 5.1 shows 2D and 3D examples of 

contour tree with virtual minimum. A 2-manifold M added with virtual minimum is a 

topological 2D sphere [57] whose Euler formula states that the number of critical points 

of a 2D sphere satisfies #{maxima}  #{saddles}+#{minima}=2. By adding a virtual 

minimum to the volume function, a volume dataset becomes a topological 3D sphere [64] 

whose Euler formula satisfies #{maxima}   #{2-saddles} + #{1-saddles}   # 
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{minima}= 0.  It is easy to prove that, for a given contour tree that satisfies the Euler 

equation, a simplified contour tree through cancellation of saddle-extremum pairs 

(saddle-maximum or saddle-minimum pairs in 2D cases and 2-saddle-maximum or 1-

saddle minimum pairs in 3D cases) satisfies the Euler equation as well. 

Figure 5.1 2D (left) and 3D scalar (middle) fields and their corresponding contour tree  
(right) with virtual minima.  Contours are shown in light blue.               

Importance Ranking is used to decide which pair should be removed before 

others. A frequently used importance measure is persistence — the absolute difference in 

function value spanned by a feature which is usually a pair of saddle and extremum [40]. 

Optionally, other measures, such as enclosed area or volume [40], can be adopted as 

importance measures. Bremer [56] referred to persistence as topological error norm to 

measure the error introduced in simplification.  

Strangulation is avoided in MS-complex simplification [30] so that any other 

critical points are unaffected after a pair cancellation. In an MS-complex, strangulation 

happens when a saddle is incident to an extremum twice. Figure 5.2a shows a 

strangulation where saddle s  is connected to u  twice. There are similar strangulation 

cases in a contour tree when an extremum u  appears to be the only upper or lower node 

incident to a saddle s  in the contour tree. We give the following statement and a short 

proof of it. 
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Statement 1. The case that an extremum u  is the only upper or lower node 

incident to a saddle s  in a contour tree indicates a strangulation in a MS-complex, where 

s is connected to u  twice. 

Proof. (by contradiction): Without loss of generality, assume u  be a maximum. It 

is the only upper node incident to s  in the contour tree. Assume to the contrary that there 

is another node v  higher than s and incident to s  in the MS-complex. Let the monotone 

ascending integral line connecting s  and u be path ( s , u ), and the monotone ascending 

integral line connecting s  and v  be path ( s , v ). Let the union of all the contours 

crossing path ( s , u ) be Cs
u . Let the union of all the contours crossing path ( s , v ) be Cs

v . 

u v s vC  C  and s C  C , thus different contour components merge at s . Therefore, thes s u s 

upper node v is incident to s  in the contour tree, contradicting the fact that u  is the only 

upper node incident to s  in the contour tree. 

5.2.1.2 De-strangulation 

Though usual contour tree simplification methods do not address strangulation 

cases, we found handling it unavoidable in practice. Removing a strangulation pair ( s , u 

) results in the dilemma of finding a local node to connect the nearby minimum v , as 

illustrated in Figure 5.2b and e. The isolated node v  cannot be reconnected to the local 

saddle w  since it is higher than w . One way to avoid this dilemma is to remove its 

closest neighbor, pair( s , v ), first as demonstrated in Figure 5.2c and f. Removing pair( s , 

v ) successfully solves the strangulation while the other parts of the topology are 

unaffected. 
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 (a) (b) (c) 

(d) (e) (f) 

Figure 5.2 Strangulation and de-strangulation. (a) MS-complex strangulation case. (d) 
Contour tree strangulation case. (b) and (e) Removing strangulation pair s 
and u  leaves no way for v  to be reconnected to the nearby saddle. (c) and 
(f) Solving strangulation by removing the pair s  and v . 

Figure 5.3 Pair cancelation order for a case involving strangulation. Left: a sub-tree 
with strangulation. Middle: removing pair ( s2 , u3 ) to solve the 

strangulation. Right: removing the once strangulated pair ( s2 , u2 ). 

In a neighborhood containing strangulations, pairs cannot be removed in an order 

strictly according to the importance ranking. Figure 5.3 shows an exception, where the 

pair with the lowest persistence, pair ( s2 , u2 ), happens to be in a strangulation. 
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Persistence is used to measure importance in this example. The importance rankings 

among the pairs are pair ( s2 , u3 )>pair ( s1 , u1 )> pair ( s2 , u2 ). However, in order to solve 

strangulation, we remove pair ( s2 , u3 ) before we remove pair ( s2 , u2 ). Therefore, we 

first de-strangulate the pair ( s2 , u2 ) by removing its neighboring pair ( s2 , u3 ). In this 

example, the pair cancelation order is pair ( s2 ,u3 )   pair ( s2 ,u2 )   pair ( s1 , u1 ). 

5.2.2 Top-down contour tree simplification 

Section 5.2.2.1 gives a few definitions and lemmas. Section 5.2.2.2 gives a 

detailed implementation of the algorithm. Section 5.2.2.3 analyzes the algorithm. 

5.2.2.1 Reversed simplification sequence and branches 

Given a contour tree, with traditional bottom-up simplification [40], one 

simplifies it by cancelling saddle-extremum pairs with increasing persistence. After 

cancellations of a sequence S  of pairs C1 , …, Cn , the simplified contour trees after each 

cancellation are CT1 , …, CTn , respectively. The original contour tree is CT0 . The last 

cancelled pair Cn  is a minimum and maximum pair. The key to constructing a top-down 

simplification is finding the reversed sequence S ' for S . 

We define a branch as a monotone path in a contour tree graph that starts from a 

given node and traverses a sequence of nodes with a non-decreasing (or non-increasing) 

value of f until it reaches the highest node (or lowest node) in the path. Pascucci et al. 

[39] and Weber et al. [34] showed that a contour tree can be decomposed into branches 

and rebuilt by assembling the branches afterward. Each branch rooted at an interior node, 

other than the two ends of the branch, is a child branch. The interior node is therefore 

called the root of the child branch. A branch which has child branches is called the parent 

branch of its child branches. A child branch is called upward if its root is lower than its 
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(c) 

(d) 

Figure 5.18 (continued) 
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 (e) (f) 

Figure 5.18 (continued) 
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 (a) (b) 

(c) 

Figure 5.19 Brain data with uncertainty.  (a) Volume rendering with circular 
uncertainty glyphs. (b) Corresponding contours of the same iso-value in 
different brain data. (c) Left to right: data-level uncertainty, contour-level 
uncertainty, and topology-level uncertainty shown in a simplified contour 
tree. 

As shown in the above applications, the new contour tree based visualization 

provides a combined exploration of both the data and the uncertainty. Users are allowed 

to look into three levels of uncertainty in the data. With the contour tree displays, the 

workload in viewing and analyzing 3D data or complicated 2D data with uncertainty is 

significantly reduced. In addition, explicitly showing the three levels of uncertainty in a 

planar contour tree layout helps users investigate the contours with high or low 
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uncertainty more precisely. Volume rendering with circular uncertainty glyphs (Figure 

Figure 5.18d and 5.19a) are provided for a comparison purpose. With 3D glyphs placed 

within the volumetric data, the details of the data are noticeably blocked by the glyphs 

while the glyphs are overlapped with each other or appear to be blurred or buried in a 3D 

scene. Accordingly, our new visualization method provides an alternative which shows 

both data and uncertainty clearly. 

5.7 Conclusion 

We present a contour-tree-based visualization for exploring data with uncertainty. 

One contribution of the chapter is the novel usage of a topology tool — the contour tree. 

Free of occlusions, the new visualization provides a promising alternative to the standard 

spatial layout of both data and uncertainty. Another unique contribution of this chapter is 

a full exploration of uncertainties in scientific data with the concepts of the data-level 

uncertainty, contour-level uncertainty, and topology-level uncertainty based on the 

contour tree. This information provides new insight into how the uncertainty exists with 

and affects the underlying data. With quantified uncertainty information attached to the 

contour trees, users can precisely select contour with specific uncertainty to display. The 

interaction design based on the contour tree is applicable to other applications. The 

experimental results demonstrate its effective applications in exploring uncertainties in 

weather forecasting and medical imaging. In addition, the rectangular contour tree layout 

with tree view interaction is another contribution which assists the implementation of our 

interactive uncertainty visualization 

As for future plans, we would like to investigate more metrics to measure each 

level of uncertainty and apply our methods to address different types of uncertainty 
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models. In contour tree simplification methods [39], [40], [64], [56], error is introduced 

in the simplified version of a contour tree. The persistence which is used as the 

importance measure can be used as the topological error norm [56]. However, this error 

norm does not reflect the uncertainty information related to the simplified branches. One 

solution is to use the integral of the uncertainty magnitude over the contour region of a 

branch as a new error norm to guide a simplification. The contour tree is an abstract 

description of a scalar field, so the use of our visualization tools may require some 

specific training. Our interactive visualization tool may be further improved based on 

user feedback. 
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CHAPTER VI 

CONCLUSIONS AND POSSIBLE FUTURE DIRECTIONS 

This thesis has conducted an in-depth investigation of feature-level uncertainties 

and developed effective uncertainty visualizations by exploiting topology tools.  

First, a framework of feature-level uncertainty visualization is presented to study 

the uncertainty of the topological features in Chapter 4. This framework works for both 

scalar and vector data in both 2D and 3D. It quantified feature-level uncertainties as 

feature deviations, solved the mapping between features by adopting tracking method 

based on Feature Flow Fields, and visualized the uncertainties with intuitive graduated 

elliptical glyphs. The 2D and 3D elliptical glyphs reveal the uncertain numbers and 

locations of the features effectively. As a result, we offered a feasible solution to 

visualizing feature-level uncertainties.    

In Chapter 5, based on contour trees, we tackled the interaction and perception 

issue of uncertainties in 3D and large 2D scalar data with a new interactive. The 

experimental results demonstrate its potential for effectively exploring uncertainties in 

weather forecasting and medical imaging. The new techniques could significantly reduce 

a user’s workload in viewing and analyzing data with uncertainty information and helps 

show a quick and accurate selection of prominent contours with high uncertainty. 

Attaching the uncertainty glyphs on contour trees solve the inherent perception issues, 

such as occlusion and clutter, of the integrated visualization with both data and 

uncertainty. Further, we conducted a full exploration of uncertainties in scientific data 
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 with the concepts of the data-level uncertainty and two feature-level uncertainties — 

contour-level uncertainty and topology-level uncertainty — based on contour trees. 

Additionally, the rectangular contour tree layout with tree view interaction provides a 

flexible interaction tool that assists users to explore their data. With quantified 

uncertainty information attached to the branches of the contour tree layout, users can 

precisely select contours with specific uncertainty to display. Therefore, the new 

visualization provides a promising alternative to the standard spatial layout of both data 

and uncertainty. 

In conclusion, this thesis innovatively explores the feature-level uncertainties and 

suggested promising directions of future uncertainty studies in exploiting topology tools. 

The presented feature-based techniques alleviate the inherent perception issues such as 

clutter and occlusion in uncertainty visualizations in 3D or large 2D scenes. The 

incorporation of the feature-level uncertainties into visualization provides fundamental 

insights into the reliability of the extracted features which otherwise would remain 

unknown with the visualization of only data-level uncertainty.  Particularly, the novel use 

of contour trees provides an effective solution for interacting with 3D or large 2D data 

sets with uncertainty.   

There are many possible directions in which one could extend this work: (1) 

Apply the developed framework of feature-level uncertainty to study uncertain data of 

various fields. (2) Test and improve the interactive uncertainty visualization through a 

domain expert evaluation.  (3) The possibilities inherent in topology tools are not 

exhausted yet. For example, the possibility of using Morse-Small complex for uncertainty 

study has not been investigated yet. Therefore, we will continue our current work in 

utilizing topology tools to study uncertainty. 
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