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A finite element solver has been developed for performing analysis and sensitivity

analysis with Poisson’s equation. An application of Poisson’s equation in fluid dynamics

is that of potential flow, in which case Poisson’s equation reduces to Laplace’s equation.

The stiffness matrix and sensitivity of the stiffness matrix are evaluated by direct

integration, as opposed to numerical integration. This allows less computational effort

and minimizes the sources of computational errors. The capability of evaluating

sensitivity derivatives has been added in order to perform design sensitivity analysis

of non-lifting airfoils. The discrete-direct approach to sensitivity analysis is utilized

in the current work. The potential flow equations and the sensitivity equations are

computed by using a preconditioned conjugate gradient method. This method greatly

reduces the time required to perform analysis, and the subsequent design optimization.

Airfoil shape is updated at each design iteration by using a Bezier-Berstein surface

parameterization. The unstrucured grid is adapted considering the mesh as a system

of inteconnected springs. Numerical solutions from the flow solver are compared with

analytical results obtained for a Joukowsky airfoil. Sensitivity derivatives are validated



using carefully determined central finite difference values. The developed software is

then used to perform inverse design of a NACA 0012 and a multi-element airfoil.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Design sensitivity analysis investigates methodologies to calculate the derivatives of

system output with respect to the system input. Sensitivity analysis has become a

mature field, but in the past, due to the lack of sufficient computer power, it has been

difficult to perform such a task on a large scale problem. Based on the information

provided by sensitivity derivatives, this type of analysis may be particularly useful for

complex systems (e.g., ships, aircrafts and automotive vehicles).

Engineering systems of practical interest are usually characterized by complex

interactions occurring between various disciplines. Sometimes it is possible to decouple

the problem into the separate disciplines, some other times it is impossible or it may

lead to misleading results. In those cases in which decoupling is not possible, sensitivity

analysis represents a powerful tool, since it allows the designer to quantify the impact of

each discipline on the overall performance of the system. In multidisciplinary systems,

sensitivity analysis and design has been termed Multidisciplinary Design Optimization.

It provides the sensitivity of the design with respect to any set of independent variables

(regardless of which discipline the variable originates from), so that one can effectively

analyze and interpret the response of the system performance to these variations.

The motivation of the current work is to develop an efficient analysis and sensitivity

analysis procedure to be used for the aforementioned purposes. As previously noted, large

scale problems that utilize high-fidelity analysis (e.g., Reynolds’ Averaged Navier-Stokes

1
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Equations) become prohibitively expensive. However, lower-fidelity analysis offers an

efficient computational alternative that may lead to a qualitatively better understanding

of the problem, may be used to perform numerous design or parametric studies, or gauge

the impact of various disciplines in multidisciplinary systems.

1.2 Brief Survey of Sensitivity Analysis and Optimization

Sensitivity analysis and optimization has been used by engineers for several centuries.

In mechanics, most of the fundamental solutions or equations are derived from energy

principles, which are nothing more than using variational methods to arrive at a

stationary point. However, these solutions may only be easily found analytically for

regular geometries or highly simplified analysis.

With the advent of digital computer more realistic geometry and high-fidelity

analysis could be investigated. Sensitivity analysis for these systems then required the

development of supplementary numerical techniques, and from which the continuous

(variational) and the discrete formulations were born. Additionally, these formulations

could be cast into both adjoint and direct approaches.

The first discipline to embrace numerical analysis, as well as sensitivity analysis

and design optimization, was solid and structural mechanics. Analysis of structures

was adopted as routine, primarily by the aeronautical industry, in the early mid-50’s

[3]. By the late-50’s and early-60’s, sensitivity analysis and optimization of structural

components became common place [4], [5]. Aerodynamic design began to emerge in the

late-60’s, [6] [7], however, it was not until the mid-70’s that its use with low-fidelity

models became routine [8] [9]. Moreover, these low-fidelity models primarily focused on

isolated airfoils and wings, and used finite-difference evaluation of derivative information.

Then, in the mid-80’s, Sobieski [10] challenged the aeronautics community to include

shape sensitivity analysis of the geometry with the use of high-fidelity models. This plea

ignited intense studies and research, which still continue today.
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Detailed reviews of sensitivity analysis and design for structural systems has been

reported in [11] [12] and for aeronautical systems in [7] [13]. The reader is urged to seek

these sources for a complete survey of research activities in these disciplines.

1.3 Objectives of the Present Work

The primary objective of the present work is to develop an efficient analysis and

sensitivity analysis method for Poisson’s equation. Poisson’s equation has physical

significance in numerous disciplines. For example, Poisson’s equation can be used to

model the irrotational flow of an ideal fluid, conductive heat transfer, ground water flow,

torsion of constant cross-sectional members, transverse deflection of elastic membranes,

electrostatics and magneto statics.

The current work uses the irrotational flow of an ideal fluid to demonstrate and

validate the analysis, sensitivity analysis, and design capabilities developed. For the

irrotational flow of an ideal fluid (potential flow) the dependent variable can represent

either the stream function or the velocity potential. The velocity potential formulation

was chosen to facilitate the three-dimensional analysis. Furthermore, sensitivity analysis

for this system of equations is performed via a discrete-direct formulation.[1]

The analysis and sensitivity analysis of Poisson’s equation is accomplished by the

finite element method. This discretization results in a symmetric, positive-definite

system of equations, which is solved for the dependent variable. Since this system is

symmetric and positive-definite, direct methods such as Cholesky LU decomposition

may be used for solving the algebraic equations. However, the memory requirements

of direct methods become prohibitive for large scale problems. Hence, in current work,

these equations are solved via iterative techniques such as Jacobi iteration, Gauss-Seidel,

and preconditioned conjugate gradient.

The secondary objective of the present work was to demonstrate that with the

developed analysis and sensitivity analysis capabilities, design optimization was possible.
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In the present study, design optimization consisted of the inverse design of surface

geometry, whereby a target pressure distribution was matched. The objective function

is thus the sum of the squares of the difference between computed and target pressure;

which represents a least-squares function. A modified Gauss-Newton (Levemberg-

Marquardt) method was used for numerical optimization.



CHAPTER II

FUNDAMENTAL EQUATIONS AND DISCRETIZATION METHOD

2.1 Fluid Dynamics Equations

As previously mentioned, Poisson’s equation has application in many disciplines.

In the current work, the use of Poisson’s equation as it pertains to incompressible,

irrotational flow of an ideal fluid will be used for demonstration and validation.

The fundamental equations of fluid dynamics are based on the conservation of mass,

momentum, and energy. The complete set of equations are referred to as the Navier-

Stokes equations. Often many assumptions are made that will reduce the complexity of

this system of equations.These assumption are used to lessen the computational expense

and, thus, provide a qualitative analysis of a given problem.

First, neglecting the viscous effects will lead to the elimination of the viscous stress

tensor. The resulting equations from this assumption are referred to as the Euler

Equations. Further, if it is assumed that the flow may be considered as incompressible,

then the density remains constant both spatially and temporally. Additionally, assuming

that the flow is irrotational (∇x(v) = 0) yields the potential flow equations.

Introducing a function Φ, called the velocity potential, the fluid velocities in the

coordinate directions may be expressed in terms of Φ as:

u = −∂Φ
∂x

,

v = −∂Φ
∂y

, (2.1)

5
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w = −∂Φ
∂z

.

Or, in a more compact form as:

v = −∇Φ. (2.2)

This definition satisfies the condition of irrotationality (∇x(v) = 0) exactly. Under the

assumption of incompressibility, the continuity (conservation of mass) equation reduces

to:

∇ · v = 0. (2.3)

Substitution of Eq. 2.2 into 2.3 yields

∇2Φ = 0. (2.4)

Hence, for potential flow the source term in Poisson’s equation is identically zero, and

the result is typically referred to as Laplace’s equation.

To evaluate this boundary value equation, conditions must be imposed on the

boundaries of the domain. The boundary conditions may be of Dirichlet, Neumann,

or Robin (mixed) type. For a Dirichlet condition the value of the dependent variable

(velocity potential) must be specified. Neumann boundary conditions consist of

specifying the gradient of the dependent variable on the boundary, which for potential

flow will represent the velocity normal to the domain. It is customary to use a coefficient,

termed pressure coefficient, that is defined as follows.

CP =
p− p∞

q∞
, (2.5)

where p is the pressure at a given point, p∞ is the pressure in the far field and q∞ is

given by:

q∞ =
1
2
%v2.
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An equivalent form of Eq. 2.5 is given by:

CP = 1− v

v∞

2
, (2.6)

where v is the velocity at a given point and v∞ is the far field velocity. The pressure

coefficient is equal one at the stagnation point where v=0 whilst is zero in the far field.

2.2 Finite Element Method

As noted, physical phenomena are typically governed by differential equations. While

the derivation of the governing equation is straightforward, the solution of these equations

may be extremely difficult, if not impossible, by classical means. This difficulty has lead

to the development of many numerical techniques to solve these sets of equations.

The three most predominant numerical techniques are the finite difference, finite

volume, and the finite element methods. The current work utilizes the finite element

method, which discretize the problem domain into a finite number of smaller domains

(called elements). An advantage of the finite element method over the other two

possibilities is, for the given problem, the ease of coding. In the FEM, the variation

of the dependent variable over each of the elements is assumed and appropriate shape

or interpolation functions are derived. By enforcing continuity of the solution at the

boundaries of the elements, algebraic relations among the undetermined coefficients may

be obtained.

Modeling physical phenomena begins with the determination of a mathematical

description of the problem at hand, for example the Navier-Stokes equations. In many

cases these models are represented by partial differential equations. A partial differential

equation for a given function u(x, y, · · · ) defined over a domain Ω with boundary Γ may
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be expressed by the form

F (x, y, · · · , u, ux, · · · , uxx, uxy, · · · ) = 0, (2.7)

where F is a function of the independent variables x, y, · · · ,of the function u, and of

a finite number of its partial derivatives. Typically the dependent variables represent

physical properties of the models, for example energy, momentum, mass, etc. Assuming

that these approximations are accurate and that the model equations represent the

underlying physical processes, these functions will closely model the behavior of physical

systems.

2.2.1 Finite Element Model for the Potential Equation

The first step in the finite element method is to obtain an approximate function

that represents the solution within an element. This function must satisfy the following

properties [17]:

1. The approximate solution should be continuous over the element, and

differentiable, as required by the weak form.

2. It should be a complete polynomial, i.e., include all lower-order terms up to the

highest order used.

3. It should be an interpolant of the primary variables at the nodes of the finite

element.

Completeness requires that the element interpolation function is capable of exactly

representing a linear polynomial.[14] These shape functions (usually identified by the

notation Ni) usually have the property of convexity, described by

m∑

i=1

Ni = 1. (2.8)
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Using these shape functions, the value of the function within an element is described by

a linear combination of nodal values and the shape functions. For example, the function

value u is approximated as

ũ =
m∑

i=1

uiNi. (2.9)

Consider the Laplace equation:

− ∂

∂x

∂u

∂x
− ∂

∂y

∂v

∂y
− ∂

∂z

∂w

∂z
= 0 in Ω. (2.10)

In order to build the Finite Element Method (FEM) for the given equation, the first step

is to multiply Eq. 2.10 with a weighting function v and then to integrate the resulting

equation over a generic element domain Ωe:

0 =
∫

Ωe

v

[
− ∂

∂x

∂u

∂x
− ∂

∂y

∂v

∂y
− ∂

∂z

∂w

∂z

]
dxdydz. (2.11)

Function v is required to be at least once differentiable with respect to x and y. The next

step is to distribute the differentiation between u and v. In order to do so, integration

by parts of Eq. 2.11 is required. Given two functions F and v, recall that:

∂(vF )
∂xi

= v
∂F

∂xi
+ F

∂v

∂xi
, (2.12)

or:

−v
∂F

∂xi
= F

∂v

∂xi
− ∂(vF )

∂xi
. (2.13)

Moreover, according to the divergence theorem:

∫

Ωe

∂

∂xi
(vF )dxdy =

∫

Γe

wFnxds, (2.14)

where nx represents the x component of the normal. The same relation holds for the y

and z direction. If F = ∂u
∂xi

, then by using Eq. 2.13 and Eq. 2.14, equation (2.11) leads
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to:

0 =
∫

Ωe

[
∂v

∂x

∂u

∂x
+

∂v

∂y

∂v

∂y
+

∂v

∂z

∂w

∂z

]
dxdydz (2.15)

−
∫

Γe

[
w

(
nx

(∂u

∂x

)
+ ny

(∂u

∂y

)
+ nz

(∂w

∂z

))]
ds.

The quantity

q = nx

(∂u

∂x

)
+ ny

(∂u

∂y

)
+ nz

(∂w

∂z

)
(2.16)

arising from Eq. 2.15 is called the secondary variable. More details will be given later.

Assuming a finite element interpolation of the form:

u =
n∑

j=1

uiN
e
j (x, y, z) (2.17)

over the element Ωe, substituting v = Ni into 2.15 and performing some algebraic

manipulation, the finite element equation is obtained:

[Ke]{ue} = {Qe}, (2.18)

where the stiffness matrix [Ke] is given by:

Ke
ij =

∫

Ωe

[
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z

]
dxdydz, (2.19)

whilst ue is a vector of unknown and Qe is the vector of secondary variables. The

dependent variable of the problem is called the primary variable.Secondary variables

are the coefficients of the interpolation function and its derivatives in the boundary

expressions. Note that since the interpolation functions are linear, their derivatives will

be constant, therefore the element is called Constant Strain Tetrahedra (actually this

definition belongs to the mechanics of materials). In the 2D case, one must simply



11

eliminate all the terms containing a z-coordinate and w, thus Eq. 2.15 becomes:

0 =
∫

Ωe

[
− ∂v

∂x

∂u

∂x
− ∂v

∂y

∂v

∂y

]
dxdy −

∫

Γe

[
w

(
nx

(∂u

∂x

)
+ ny

(∂v

∂y

))]
ds. (2.20)

Therefore, Eq. 2.20, considered Eq. 2.19, assumes the form:

Ke
ij =

∫

Ωe

[
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y

]
dxdy. (2.21)

Moreover, Eq. 2.17 reduces to:

u =
n∑

j=1

uiN
e
j (x, y). (2.22)

In this case we obtain a constant strain triangle. Up to this point, integrations over

each element have occurred, but an integration over the entire domain is necessary to

obtain a solution. There are two possibilities for performing the integration over each

element. The first, analytical integration, was used in the present work and consists in

the analytical evaluation of Eq. 2.21. The second, numerical integration, requires the use

of Gauss-Legendre quadrature. This method transforms the function from physical to

natural coordinates, then integration is performed in natural coordinates. By doing so,

evaluation of the Jacobian is required per each element. This method leads to inevitable

numerical errors. Direct integration, whenever possible, leads to a better result. Due to

the algebraic complexity of the equation arising from analytically integrating Eq. 2.21,

analytical integration is only suitable for basic elements like bars, linear triangles, linear

tetrahedra. For more complex elements, numerical integration is necessary. In order to

assemble the global equations over the entire domain, the following conditions must be

satisfied:

• Continuity of primary variables at the connecting nodes;

• Balance of secondary variables at the connecting nodes.
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Continuity of primary variables ensures the uniqueness of the solution at a node. Balance

of secondary variables guarantees the equilibrium of point sources at the node connecting

several elements.

2.3 Element Library

In the construction of the element interpolation (shape) functions, the three

aforementioned requirements of continuity, completeness and interpolation in section

2.2.1 must be satisfied. The current work utilizes triangular elements in two-dimension

and tetrahedral elements in three-dimensions. These elements were chosen over other

element types due to their inherent ability to discretize complex geometries easily and

efficiently. An advantageous feature of the finite element method is its ability to increase

the order of spatial accuracy by either reducing the characteristic length/size of the

elements (called h-refinement) or increasing the order of the interpolation function

(called p-refinement). Triangular and tetrahedral elements were used in the current work

because are easily adaptively refined. Moreover, these are the simplest geometric entities

possessing area and volume respectively (tetrahedron has, obviously, both). Linear

interpolation functions were chosen for sake of simplicity. More details on convergence

analysis will be given in the next chapters.

2.3.1 Triangular Element

The interpolation functions for a triangular element are easier to derive in a non

dimensional area coordinate system. Given a general triangular element in Cartesian

coordinates, shown in Fig. 2.1, area coordinates Li defined based on the area ratios

given by

L1 =
Area(P23)
Area(123)

(2.23)
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X

Y

x1,y1
x2,y2

x3,y3

Figure 2.1: Triangular Element.

and illustrated in Fig. 2.2. The approximation of the geometry may be expressed similar

to the approximation of the dependent variable as

x = L1x1 + L2x2 + L3x3

y = L1y1 + L2y2 + L3y3 (2.24)

1 = L1 + L2 + L3

The last expression stems from the constraint that the three sub-element areas must

sum to the total area of the triangle. Additionally, this expression ensures that the

property of convexity is satisfied. The three equations above may be solved for the areas

coordinates, as

A = det




1 x1 y1

1 x2 y2

1 x3 y3




; (2.25)
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1

2

3

L2

L3

L1

P

Figure 2.2: Triangular Element Area Coordinates.

which represents the area of the triangle and and the coefficients a,b,c may be expressed

as

ai = xjyk − xkyj , (2.26)

bi = yj − yk, (2.27)

ci = xk − xj . (2.28)

In the above, i,j,k= 1,2,3, and cyclic permutation will uniquely specify all coefficients.

The interpolation (shape) functions then become simply the area coordinates

N1 = L1; N2 = L2; N3 = L3. (2.29)

It can be clearly seen that the interpolation functions have the following properties:

N e
i (xe

j , y
e
j ) = δij ; (i, j = 1, 2, 3);

3∑

i=1

N e
i = 1,

3∑

i=1

∂N e
i

∂x
= 0,

3∑

i=1

∂N e
i

∂y
= 0. (2.30)
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which satisfies the aforementioned requirements for convergence. The element stiffness

matrix for a linear triangular element, using the definition given in Eq. 2.25 and 2.30,

may be obtained by differentiation to yield

∂N e
i

∂x
=

bi

2A
,

∂N e
i

∂y
=

ci

2A
, (2.31)

where A is the element area computed from Eq. 2.25. On substitution of Eq. 2.31 into

2.21, the element stiffness matrix will assume the form:

Ke
ij =

1
2A

(be
i b

e
j + ce

i c
e
j). (2.32)

As seen, the element stiffness matrix for the linear triangular element is symmetric, and

will be symmetric for any order triangle [17]. Moreover, the stiffness matrix is positive

definite, but not necessarily diagonal dominant. The latter property may lead to stability

problems in the solution process.

2.3.2 Tetrahedral Element

In a tetrahedral element, the state of displacement of a point is defined by three

displacement components, u,v, and w, in the directions of the three coordinates x,y,z.

This displacement field may be written as

u =




u

v

w




. (2.33)

For a four node tetrahedral element, as shown in Fig. 2.3, a linear variation may be

defined as

u = α1 + α2x + α3y + α4z. (2.34)
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xi,yi,zi

xj,yj,zj
xm,ym,zm

xp,yp,zp

Figure 2.3: Tetrahedra Element.

By using the four conditions on displacement at the nodes, four equations of the following

type may be written

u = α1 + α2xi + α3yi + α4zi, (2.35)

from which the coefficients αi may be evaluated. Consider now a generic tetrahedron

(see Fig. 2.3). It is possible to show [18] that the volume of the tetrahedral cell is given

by:

6V = det




1 xi yi zi

1 xj yj zj

1 xm ym zm

1 xp yp zp




, (2.36)

where V represents the tetrahedral volume. Moreover, it is possible to relate the

displacements field over the tetrahedral element to the nodal displacements as

u =
1

6V

[
(ai + bix + ciy + diz)ui + (aj + bjx + cjy + djz)uj

(am + bmx + cmy + dmz)um + (ap + bpx + cpy + dpz)up

] (2.37)
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where the coefficients a,b,c,d are:

ai = det




xi yi zi

xj yj zj

xm ym zm




; bi = −det




1 yi zi

1 yj zj

1 ym zm




; (2.38)

ci = det




1 xi zi

1 xj zj

1 xm zm




; di = −det




1 xi yi

1 xj yj

1 xm ym




(2.39)

The coefficients for j,m and p are obtained by cyclic permutation. Similarly to the area

coordinates defined for triangular elements, the above is equivalent to a volume system

for tetrahedral elements.

The interpolation functions may be expressed in terms of the coefficients, as follows:

Ni =
ai + bix + ciy + diz

6V
. (2.40)

Differentiating Eq. 2.40 with respect to the coordinate directions, and on substituti into

Eq. 2.32 yields the element stiffness matrix for a linear tetrahedral element

Ke
ij =

1
6V




(b21+c21+d2
1)

6
(b1b2+c1c2+d1d2)

6
(b1b3+c1c3+d1d3)

6
(b1b4+c1c4+d1d4)

6

. . .
(b22+c22+d2

2)
6

(b2b3+c2c3+d2d3)
6

(b2b4+c2c4+d2d4)
6

. . . . . .
(b23+c23+d2

3)
6

(b3b4+c3c4+d3d4)
6

. . . . . . . . .
(b24+c24+d2

4)
6




(2.41)

Once again, the element matrix is symmetric.



CHAPTER III

SENSITIVITY ANALYSIS FOR THE FUNDAMENTAL EQUATIONS

3.1 Continuous and Discrete Approaches

In order to perform a sensitivity analysis, sensitivity derivatives are needed. Two

approaches are possible to calculate them. The continuous approach calculates the

derivatives directly, based upon the continuous governing equations, by using the method

of material derivatives or generalized calculus of variations. In this method, the equations

are differentiated before discretization.

The discrete approach takes analytical derivatives of the discretize equations with

respect to shape variables, namely the co-ordinates of the grid points. In this method,

differentiation is performed after discretization. [1]. The present study will utilize this

procedure in order to evaluate sensitivities.

For discrete aerodynamic shape sensitivity analysis, the objective function and

constraints may be expressed as:

F = F (u,X, ηk) (3.1)

and

Cj = Cj(u,X, ηk) (3.2)

Here u is the state vector on which the objective or constraint is defined. The equations

that define u are called the state equations. At this point, one of two discrete formulations

may be used to determine sensitivity derivatives; the direct differentiation method and

18
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the adjoint differentiation method [1]. The gradient of the function, ∇F , may be

evaluated numerically. There are many tools available in order to evaluate sensitivity

derivatives. One may use ADIFOR (or ADIC), but this means dealing with long and

unreadable codes, or one may try to evaluate sensitivities analytically, but this is not

always possible [1]. Another way is to evaluate derivatives numerically. A Finite-

Difference (FD) approximation of the derivative yields

df

dx
≈ f(x + h)− f(x− h)

2h
. (3.3)

This expression for the derivative has a truncation error of O(h2). The advantage of FD

is that any existing code may be used without modification. The disadvantages are:

• computational time required;

• possible inaccuracy of the derivatives.

The second disadvantage is due to the truncation, cancellation and subtractive errors.

The choice of the correct step size h is vital, though it is not known a priori. Moreover,

it may change from point to point and/or from one design variable to the next one. One

of the most effective means for evaluating sensitivity derivatives is the Complex Taylor

Series Expansion (CTSE) [1]. In the CTSE method a series expansion is still performed,

but using complex numbers as follows:

f(x + ih) = f(x) + ih
df

dx
− h2

2
d2f

dx2
− i

h3

6
d3f

dx3
+

h4

24
d4f

dx4
(3.4)

Solving this equation for the imaginary part of the function yields

df

dx
≈ Im[f(x + ih)]

h
(3.5)
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This expression still has a truncation error O(h2). Thus, by using CTSE, both the

function and its derivative are obtained, without subtractive error. The main advantages

of CTSE are:

• very little modification of the original code is required;

• the derivative is not sensitive to the step size selection, and requires step sizes that

avoid excessive truncation error, without regard to the cancellation error.

Therefore,CTSE was chosen in order to evaluate the grid sensitivity ∂X
∂η , where X(ηk)

represents the grid.

3.1.1 Direct and Adjoint Methods

The direct differentiation method establishes sensitivity of state variables by directly

differentiating the discretized matrix equation with respect to the design variables. Call

F the function to be differentiated. Then:

∇F =
∂F

∂ηk

+
∂F

∂X

∂X

∂ηk

+
∂F

∂u

∂u

∂ηk

(3.6)

The sensitivity of the state vector is obtained from differentiating the state equation

w(X, u(X)) = 0:
∂w

∂ηk

+
∂w

∂X

∂X

∂ηk

+
∂w

∂u

∂X

∂ηk

= 0, (3.7)

or:
∂w

∂u

∂u

∂ηk

= − ∂w

∂X

∂X

∂ηk

− ∂w

∂X
. (3.8)

This equation needs to be solved for ∂u
∂ηk

.

The adjoint variable formulation of the sensitivity derivatives makes use of an adjoint

variable, in order to evaluate the sensitivities. The mathematical formulation of the
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problem can be easily derived form Eq. 3.6 as follows. First augment F (ηk):

F (ηk) = F (ηk) + λT w, (3.9)

where the adjoint vector λ remains to be defined. On differentiation, Eq. 3.9 yields

∇F =
∂F

∂ηk
+

∂F

∂X

∂X

∂ηk

+
∂F

∂u

∂u

∂ηk

+ λT

[
∂w

∂ηk

+
∂w

∂X

∂X

∂ηk

+
∂w

∂u

∂X

∂ηk

]
, (3.10)

or, rearranging:

∇F =
∂F

∂ηk

+
∂F

∂X

∂X

∂ηk

+ λT ∂w

∂ηk

+ λT ∂w

∂X

∂X

∂ηk

+
∂w

∂X
+

[
λT ∂w

∂u
+

∂F

∂u

]
∂u

∂X
. (3.11)

In order to eliminate the dependency of the gradient on ∂u
∂X

, it is useful to define the

adjoint vector as:

λT ∂w

∂u
+

∂F

∂u
= 0; (3.12)

Therefore: [
∂w

∂u

]T

λ = −∂F

∂u
(3.13)

Note that all the derived sensitivity equations are linear in terms of state variable

derivatives or adjoint variables. This makes the problem easier to handle. The equations

related to the direct method must be solved for each of the independent shape variables,

whereas those derived for the adjoint method need to be solved for each of the functions

whose sensitivities are sought. Suppose there are M design variables and N functions: by

using the direct approach, one has to solve Eq. 3.6 M times, whilst, by using the adjoint

one, one needs to solve Eq. 3.13 N times. Therefore, the best choice will be based on the

number of function evaluations needed to obtain the sensitivity sought. In this work,

since there are only a few design variables (the Bezier-Bernstein control points), it is

apparent that the adjoint method works better. However, the code developed makes use
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of the direct method. Since, as aforementioned, many physical phenomena are described

by Poisson’s equation, the code can be used to handle this class of problems. By using

the adjoint method it is necessary to modify the code in order to analyze different

phenomena. By using the direct approach, this inconvenience is bypassed.

3.2 Mathematical Model

3.2.1 Linearization of Finite Element Method

Recall that the Laplace’s equation, in terms of FEM method, is recast in the following

form:

[K]{Φ} = {Q} (3.14)

In order to get the derivative of the potential Φ, one needs to evaluate the derivative of

eq. 3.14 with respect to η. This leads to:

[
∂K

∂η

]
{Φ}+ [K]

∂Φ
∂η

= {∂Q

∂η
}. (3.15)

Equation 3.15, since in the present case the term {∂Q
∂η } is always zero, can be rearranged

in the form:

[
∂K

∂η

]
{Φ} = −[K]

∂Φ
∂η

(3.16)

This system needs to be solved in order to evaluate the sensitivity of the equations with

respect to the set of chosen design variables.
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3.2.2 Sensitivity of the Stiffness Matrix

Consider Eq. 3.14. Given a design variable η, sensitivity of the stiffness matrix with

respect to η can be computed in the following way. Consider the 2D case.

Kij =
1

4Area
(βiβj − γiγj) (3.17)

where:

βi = y(j)− y(k)

γi = x(k)− x(j) (3.18)

and i,j,k are cyclic indexes.Moreover:

Area =
1
2
[J ] (3.19)

where J is the Jacobian whose expression is given by:

[J ] = [x(i)− x(k)][y(j)− y(k)]− [x(j)− x(k)][y(x)− y(k)] (3.20)

Now, by setting:

t = βiβj − γiγj (3.21)

it is possible to rewrite K as

Kij =
t

2J
. (3.22)

Therefore, the derivative of K with respect to β is given by:

∂Kij

∂η
=

1
2

∂t
∂ηJ − t∂J

∂η

J2
(3.23)
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Then:
∂t

∂η
=

∂

∂η
[βiβj − γiγj ] (3.24)

or:
∂t

∂η
=

[
∂βi

∂η
βj +

∂βj

∂η
βi − ∂γi

∂η
γj − ∂γj

∂η
γi

]
. (3.25)

In eq. 3.25 the derivatives with respect to β are given by:

∂βi

∂η
=

∂yj

∂η
− ∂yk

∂η
(3.26)

∂γi

∂η
=

∂xk

∂η
− ∂xj

∂η
(3.27)

Again, the indexes i,j,k are cyclic in nature. Concerning the Jacobian, Eq. 3.20 yields:

∂J

∂η
=

(
∂xi

∂η
− ∂xk

∂η

)
(yj − yk) + (xi − xk)

(
∂yj

∂η
− ∂yk

∂η

)
−

(
∂xj

∂η
− ∂xk

∂η

)
(yi − yk) + (xj − xk)

(
∂yi

∂η
− ∂yk

∂η

) (3.28)

By substituting 3.28, 3.25, 3.20 and 3.21 into Eq. 3.23, the final expression for the

derivative of the stiffness matrix is obtained.



CHAPTER IV

ITERATIVE SOLUTION METHODS.

The system of equations resulting from a finite element discretization of Poisson’s

equation is symmetric and positive-definite. The symmetric, positive-definiteness of

the system affords the use of direct solution methods, such as Cholesky decomposition.

These direct methods are very memory intensive and not amenable for large-scale three-

dimensional problems. However, for analyses that have a large number of right-hand-side

vectors, direct methods may offer significant CPU time savings; provided the stiffness

matrix may be assumed to be constant.

In the current work, only one right-hand-side will be associated with a given analysis,

however, the sensitivity analysis will have numerous right-hand-side vectors. From

one design iteration to the next the stiffness matrix, due to the sensitivity analysis

operated on the matrix itself, will change and, thus, a new factorization would be

required for direct methods resulting in a considerable loss of time. For this reason,

and for the intended use in large-scale three dimensional problems, the solution to the

resulting system of equations will be performed with iterative methods. The iterative

solution methods utilized for this study are Jacobi point iteration, Gauss-Seidel (GS),

and preconditioned conjugate gradient.

The following system of equations will be assumed in discussing the various solution

methods:

[K] {Φ} = {Q}, (4.1)

25
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4.1 Jacobi Point Iterative Solver

Jacobi point iteration and GS iteration only differ in the means by which the solution

vector is updated. Jacobi iteration updates the solution vector using the values of this

vector at the previous iteration. Jacobi point iteration solver can be seen as a variation

of GS. If the unknown on the right hand side of Eq. 4.3 are updated only after each

iteration through the entire field, Jacobi iteration is obtained.

Therefore, the point Jacobi iteration update formula for Eq. 4.1 will be:

Φk+1
i = Kii

−1


Qi −

n∑

j=1
j 6=i

KijΦk
j


 , (4.2)

where k represents the iteration number.

The system of equations studied in the current work are positive-definite, but this

does not guarantee diagonal dominance. Lack of diagonal dominance may cause this

method to be slow to converge or even diverge. This fact is evident in the two-dimensional

test cases used to verify the developed software. Due to the lack of diagonal dominance,

Jacobi point iteration solver has showed instability, halting after 14000 iterations.

4.2 Gauss-Seidel Solver

Gauss-Seidel is one of the most efficient point iterative solution methods. The update

for each solution vector always uses the most recent value of this vector. Additionally,

a relaxation factor may be used to over-relax the solution and thereby accelerate the

convergence of an already convergent system or under-relax the system to make a

non-convergent system converge. When the system lacks diagonal dominance, under

relaxation is required. The Gauss-Seidel iteration update formula for Eq. 4.1 may be
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written as:

Φnew
i = Kii

−1


Qi −

i−1∑

j=1

KijΦk+1
j −

n∑

j=i+1

KijΦk
j


 (4.3)

Φk+1
i = ωΦnew

i + (1− ω)Φold
i (4.4)

where ω is the relaxation factor. Values of 0 ≤ ω ≤ 1 represent under-relaxation, and

1 ≤ ω ≤ 2 represents over-relaxation.

The iteration is continued until the change in the change in the solution vector falls

below a pre-specified convergence tolerance ε as:

‖Φ(k+1) − Φ(k)‖
‖Φ(k+1)‖ < ε. (4.5)

Here
∥∥ · ∥∥ means the Euclidean norm of a quantity. The required number of iteration to

converge the system to the prescribed tolerance is dependent on the initial guess and the

condition number of the coefficient matrix. To converge the system of equations for a

non-lifting airfoil required over 27900 iterations, with an under-relaxation factor of 0.7.

Since the intended use of the current software is to demonstrate design optimization, a

more efficient method must be selected. It can be seen that the Gauss-Seidel method

offers improvement of the point Jacobi method. However, this improvement was not

deemed adequate for design optimization studies because the optimization process is

an iterative method by itself. If, say, g iterations are required for the optimization

process and k are required by the GS solver, the number of computation required in

order to achieve convergence will be gk. It is apparent that, for large three dimensional

geometries, this number will be excessively high.
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4.3 Preconditioned Conjugate Gradient Solver

The Conjugate Gradient method seeks the solution to Eq. 4.1 by minimizing the

potential function:

Π =
1
2
ΦT KΦ− ΦT Q. (4.6)

The task is to find Φk+1 such that: Πk+1 < Πk. In order to obtain this, a vector p1, p2,

. . . , ps is used to calculate the potential. The algorithm [20]is stated below.

• Choose a starting vector Φ(0)

• Calculate the residual r(1) = Q - KΦ(0). If r(1)=0, quit.

• p(1)=r(1)

• DO WHILE convergence is reached:

αk =
r(k)T r(k)

p(k)T Kp(k)

Φ(k+1) = Φ(k) + αkp
(k)

r(k+1) = r(k) − αkKp(k) (4.7)

βk =
r(k+1)T r(k+1)

r(k)T

p(k+1) = r(k+1) + βkp
(k).

Iterations will be performed until convergence tolerance on r(k+1) is reached. It is possible

to show that the convergence to the solution Φ can be reached in a finite number of

iterations. This means that if there exist a solution to the system of equations, it will be

reached. The problem is that the number of iterations required, N, may be large. The

number of iterations depends on the condition number of the matrix K. The condition
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number is defined as:

cond(K) =

∣∣∣∣∣
λn

λ1

∣∣∣∣∣, (4.8)

where λ1 is the smallest eigenvalue of K, λn the largest. The larger the condition number,

the slower the convergence, so it is necessary to accelerate the solution process. One

possibility is given by the use of pre-conditioning. The basic idea of the pre-conditioning

is that instead of solving Eq. 4.1,the following is solved:

KΦ = Q, (4.9)

where:

Φ = CQΦ,

Q = C−1
L Q. (4.10)

The non singular matrix KP = CLCQ is called the pre-conditioner. The matrix K =

[K]KP
−1 can have a much improved condition number [20]. The present work makes use

of a Jacobi pre-conditioner, which consists in the inverse the stiffness matrix diagonal.

Figure Fig. 4.3 shows the tremendous improvement in terms of speed obtained by using

apreconditioned conjugate gradient (PCG) solver instead of a Gauss-Seidel. The PCG

solver took only 161 iterations to solve the same problem where Gauss-Seidel required

29700 iterations. The time required to solve the same problem was, respectively, 4

minutes for the Jacobi solver and 0.5 sec for the PCG solver.
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CHAPTER V

SHAPE DESIGN OPTIMIZATION

5.1 Design Optimization Problem Formulation

The purpose of computational design optimization is to aid the designer in rationally

searching for the best design out of many possible. The main goal of the present work

is to investigate the shape sensitivities of aerodynamics quantities. Usually it is possible

to recast a problem in terms of a number of functions to be optimized, and a number

of constraints that act on these functions. The gradients of the objective functions are

called sensitivity derivatives. If:

• F is the function to be optimized;

• X is the computational mesh over which the PDE is discretized;

• ηk is the vector of design variables

then, the optimization problem is of the form

minimize: F (X, ηi)

Subject to: Cj(X, ηi) ≤ 0

where: ηL
i ≤ ηi ≤ ηU

i

where Cj(X) is the inequality constraint, ηL
i represents the lower bound on each variable,

whilst ηU
i is the upper one.

The goal of this work is to analyze the sensitivities of aerodynamic quantities. Clearly

these quantities (e.g., Φ, CP ) are implicit functions of many other quantities. The source

of implicit dependency is called the state vector, which is defined by the state equations.
31
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5.2 Geometry and Grid Representation

5.2.1 Bezier-Bernstein Surface Parameterization

There are many available methods to represent a given geometry. As aforementioned,

Bezier-Bernstein curves were used. Any point on a Bezier curve segment may be

expressed by a parametric function:

c(u) =
N∑

i=0

biBi,N (u) u ∈ [0, 1]. (5.1)

Here bi represents the N+1 vertices called Bezier control points, and the blended

functions Bi,N (u) are given by the N th-degree Bernstein polynomials:

Bi,N (u) =
N !ui(1− u)N−i

i!(N − i)!
. (5.2)

Here u is the normalized computational arclength along the curve. Bezier-Bernstein

curves satisfy the following properties:

• the curve must pass through the first and last control point;

• the tangent to the curve at each point may be controlled or specified if necessary.

The design variables are the NDV control points, which permits parameterization

of the airfoil surface. Figure 5.1 illustrates an example of Bezier-Bernstein surface

parameterization.

5.2.2 Mesh Movement Strategy

In order to move the mesh to the changing design surface, the method developed

by Batina [2] was used. In this approach, the grid is considered as a system of

interconnecting springs. By doing so, each grid element edge is represented as a tension

spring. The stiffness of this string is assumed to be inversely proportional to the length
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Figure 5.1: Bezier-Bernstein surface parameterization.

of its edge and may be written as:

sij =
1

[(xi − xj)2 + (yi − yj)2]
p
2

, (5.3)

where p is the parameter used to control the stiffness of the spring. Obviously, in the

3D case, the term (zi − zj)2 must be added to 5.3. The resulting set of linear equations

are solved for the displacements of each node using a Jacobi iteration:

∆Xn+1
j =

∑
i sij∆Xn

i∑
i sij

, (5.4)

where i is summed over all edges connected to node j. The positions of interior nodes

are then updated using the determined displacement. The advantage of the iterative

method is that it does not require a large amount of memory.

5.2.3 Grid Sensitivity

Grid sensitivity to the design variables must be evaluated to perform shape sensitivity

analysis. In the current work, grid sensitivity is evaluated via the Complex Taylor Series

Expansion method [1].
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5.3 Optimization Techniques

The optimization process is made up of four parts. First, FEM solver iteratively

solves for the potential flow in the entire flow field. Second, once the potential Φ

and the pressure coefficient are known, evaluation of their derivatives is performed by

direct-discrete sensitivity analysis: ∂Φ
∂η , ∂CP

∂η . The third step is to run the optimizer.

This subroutine, given a number of design variables and the sensitivities of CP and Φ,

will evaluate the updated design variable. As fourth step, a Bezier-Bernstein curve is

used to generate, the updated airfoil shape at each design cycle by simply moving the

control points. Note that only a few points are required in order to generate the airfoil

shape. Once the new grid has been generated, a new iteration will be performed until

convergence is reached. The result will be the optimized airfoil shape. Typically, there

are two different way to approach an airfoil design:

• Maximization or Minimization of a specified aerodynamic quantity;

• Matching a pre specified aerodynamic quantity (inverse design).

The code developed in this work allows to perform the inverse design. In order to validate

the sensitivities of CP , a perturbation study was carried out by perturbing one node and

comparing the fD sensitivity against those obtained by the sensitivity analysis. This

validation is presented in a subsequent section.

5.3.1 Levemberg-Marquardt for Least-Squares

In a large number of problems, the function to be minimized is a sum of squares of

non linear functions:

f(x) =
1
2

m∑

i=1

fi(x)2 (5.5)

This problem is better known as the least-squares problem. Equation 5.5 can be

minimized by using any of the general unconstrained methods [15], but in most
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circumstances it is worthwhile to use methods specifically designed for the least-squares

problems. Suppose one wants to minimize f(x). given m functions and n design vairables,

denote the Jacobian of the function as J(x) the m x n, and let Gi(x) be the Hessian matrix

of fi(x). Then

G(x) = J(x)T f(x), (5.6)

G(x) = J(x)T J(x) + Q(x), (5.7)

where Q(x)=
∑m

i=1 fi(x)Gi(x). from 5.7 it is evident to note that the Hessian consists of

two elements. One is of first order, the other is of second order.

The first order term (J(x)T J(x)) will dominate the second order (Q(x)) in most cases

(e.g., when residual are very small). This is the basic assumption of all least-squares

methods. Let xk denote the current estimate of the solution; a quantity subscripted by

k will denote that quantity evaluated at xk. The Levenberg-Marquardt method search

direction is defined as the solution of the equations

(JT
k Jk + λkI)pk = −JT

k fk (5.8)

where λk is a non-negative scalar. As regards to pk, it is possible to show [15] that, for

some scalar ∆ related to λk, it is a solution of the constrained subproblem

minimize
1
2

∥∥Jkp + fk

∥∥ (5.9)

subject to
∥∥p

∥∥ ≤ ∆.

A ”good” value of λk or ∆ must be chosen in order to ensure convergence. There are

two limiting cases:

• λk is zero, then pk is the Gauss-Newton direction;

• λk →∞,
∥∥pk

∥∥ → 0, then the method degenerates into the steepest descent method.
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Furthermore, for the Gauss-Newton or Newton’s method, the design variable is updated

as

ηk+1 = ηk + pk (5.10)

It may be seen that the optimal step length is unity, and the one-dimensional search is

not required. However, for the Levenberg-Marquardt method this is only the case when

λk is identically zero, otherwise a one-dimensional search should be performed. Due to

the inexpensive cost of the analysis and sensitivity analysis, the step length is chosen as

unity. This results in the need for more design cycles to reach the optimum, but in a

greatly simplified algorithm.



CHAPTER VI

RESULTS AND DISCUSSION

6.1 Validation of Potential Solver

The potential flow code must be validated. In order to validate the code, a comparison

between the numerical results obtained with the analytical solution for a Joukowsky

airfoil was made. Then, a convergence analysis was carried out in order to make sure

that the code would achieve the correct result as the grid size h → 0. In the FEM

method it is possible to show [17] that the error is given by:

e = chp, (6.1)

where c is a constant, h is the grid size and p is the order of the interpolation function.

So, in order to achieve the best possible value, either p can be increased or h decreased.

In this study, the order of p was kept constant.

The validation test case selected for presentation was the Joukowsky airfoil. The grid

refinement study used three different meshes in order to validate the code. As the mesh

is refined, the result converges to the analytical solution. The first test (Fig. 6.1) is a

coarse grid made up of 3760 elements and 1942 nodes: 250 iterations were required for

convergence. Figure 6.2 illustrates the CP distribution around the airfoil. The second

grid shown in Fig.6.3 was made up of 5826 elements and 3000 nodes. In order to achieve

convergence, 323 iterations were required. Figure 6.4 shows CP distribution around the

airfoil. The final mesh, shown in figure 6.5 contains 9156 elements and 4715 nodes. It

took 420 iterations in order to reach a convergent solution. Again, the following Fig.

37
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6.6 represents CP contours past the airfoil. Figure 6.10 represents the analytical result.

Next there follows a comparison between the analitycal CP for the Joukowsky airfoil and

the computational. Figure 6.7, 6.8 and 6.9 represent the initial, a refined and the finer

grid results respectively, while Fig. 6.10 reports the analytical CP distribution over the

airfoil. It can be seen that resultsd are identical.

6.2 Validation of Potential Sensitivity Analysis Solver

Next, the potential sensitivity analysis solver was validated. In order to achieve this

task, a perturbation study was performed to verify that the optimal step size was found

for the finite-difference sensitivity derivative. A NACA 0012 grid was used for the test

cases. Figure 6.11 illustrates the region near the airfoil. The entire grid was made up

of 898 elements and 478 nodes. As first, validation of the code was performed. Then,

the results obtained from the direct-discrete solver were compared with those obtained

from the finite-difference in order to validate the code. Figure 6.12 shows the values

at one node (node 21) on the airfoil surface. It is possible to see that analytical and

FD results shows good agreement when the perturbation h used for the FD code is in

the range: (10−4, 10−10). If h is less than 10−4, the FD scheme doesn’t reach sufficient

accuracy mainly due to the truncation error. If h is greater than 10−10, the effects of

cancellation error become relevant and, as one can tell from Fig. 6.12, the FD solution

becomes unstable and hence inaccurate. The comparison between the analytical and the

FD Φ sensitivity is showed in Fig. 6.13 and 6.14. Figures Fig. 6.17 and Fig. 6.18 show

the comparison between FD and analytical values for CP sensitivity.

6.3 Inverse Design Optimization Studies

Inverse Design Optimization was carried out on a NACA 0012 airfoil and a Multi-

Element airfoil.
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6.3.1 Target CP Inverse Design: NACA 0012

The first picture (Fig. 6.19) represents the initial NACA 0012 airfoil CP distribution

while Fig. 6.20 depicts the same quantity for the final airfoil, after 450 design cycles.

Figures Fig. 6.21 and Fig. 6.22 show the sensitivity of Φ and CP for the final airfoil.

The initial geometry shows a symmetric pressure distribution around the airfoil whilst,

after 450 iterations, the pressure distribution has been substantially modified, as one

can from figure Fig. 6.20. Table Tab. 6.1 reports the convergence history for all the

6 design variables. Figure 6.25 depicts the target CP distribution versus computed CP

for the (deformed) NACA 0012 airfoil. Figures Fig. 6.26 and Fig. 6.27 represent how

CP changes during the optimization process both for the upper and lower airfoil surface.

Figures 6.21, 6.22, 6.23 and Fig. 6.24 report respectively the optimization history for

two design variables located on the upper surface and two design variables on the lower

one. Figure 6.28 illustrates the deformed mesh and Fig. 6.29 shows the change in the

airfoil shape at 1, 50, 100, 300 and 450 design iterations.

6.3.2 Target CP Inverse Design: Multi-element Airfoil

Here the inverse design analysis is carried out for a multi-element airfoil (MEA).

Note that the airfoil is made up of 4 elements: slat, main wing, vane and flap, but

the inverse design process only affects the main wing. Figure Fig. 6.30 represents the

initial mesh while Fig. Fig. 6.31 is the final deformed airfoil. The initial and final CP

distribution is reported in Fig. 6.32 and Fig. 6.33 respectively. Figures Fig. 6.34 and

Fig. 6.35 illustrate the sensitivity of CP and Φ for the MEA airfoil. Figures Fig. 6.36,

Fig. 6.37, Fig. 6.38, Fig. 6.39, show the convergence history for Design Variables 1,3,4,6

respectively. At last, figure Fig. 6.40 reports the airfoil shapes at 1, 500, 1000, 2000 and

2500 iterations.
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Figure 6.1: Joukowsky Airfoil, Coarse Grid.
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Figure 6.2: Joukowsky Airfoil, CP Distribution on Coarse Grid.
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Figure 6.3: Joukowsky Airfoil, Refined Grid.
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Figure 6.4: Joukowsky Airfoil, CP Distribution on Refined Grid.
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Figure 6.5: Joukowsky Airfoil, Fine Grid.
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Figure 6.6: Joukowsky Airfoil CP Distribution on Fine Grid.
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Figure 6.7: Joukowsky Airfoil, CP on Coarse Grid.
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Figure 6.8: Joukowsky Airfoil, CP Distribution on Refined Grid.
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Figure 6.9: Joukowsky Airfoil, CP on Distribution on Fine Grid.
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Figure 6.10: Joukowsky Airfoil, Analytical CP Distribution.
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Figure 6.14: NACA 0012 Analytical Sensitivity of Φ at Node 21.
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Figure 6.15: NACA 0012 FD Sensitivity of CP at Node 21.
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Figure 6.16: NACA 0012 Analytical Sensitivity of CP at Node 21.
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Figure 6.17: NACA 0012 Initial CP Distribution.
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Figure 6.21: NACA 0012 Convergence History for DV 1.
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Figure 6.22: NACA 0012 Convergence History for DV 2.
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Figure 6.23: NACA 0012 Convergence History for DV 5.
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Figure 6.24: NACA 0012 Convergence History for DV 6.
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Table 6.1: Comparison among initial, final and target value for NACA 0012 design
variables.

DV initial value final value target value
1 −4.52417930000000024E − 2 −3.03599612381197D − 002 −0.03000000000000000
2 −0.10904652200000001 −8.34369843001496D − 002 −8.5000000000000000E − 2
3 −2.90710690000000015E − 2 6.55115617904011D − 002 7.00000000000000000E − 2
4 4.52417930000000024E − 2 6.55261555036117D − 002 6.50000000000000000E − 2
5 0.10904652200000001 0.249851957384880 0.25000000000000000
6 2.90710690000000015E − 2 9.46798362304384D − 002 9.00000000000000000E − 2
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Figure 6.32: MEA Initial Cp Distribution.
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Figure 6.33: MEA final Cp Distribution.
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Figure 6.36: MEA Convergence History for DV 1.
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Figure 6.37: MEA Convergence History for DV 3.
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Figure 6.38: MEA Convergence History for DV 4.
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Figure 6.39: MEA Convergence History for DV 6.
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Figure 6.40: Airfoil Shapes at Different Design Cycles for MEA Airfoil.



CHAPTER VII

SUMMARY AND RECOMMENDATIONS.

A 2D finite element solver has been developed for performing analysis and sensitivity

analysis with Poisson’s equation. An application of Poisson’s equation in fluid dynamics

is that of potential flow, in which case Poisson’s equation reduces to Laplace’s equation.

Capability of evaluating sensitivity derivatives has been added in order to perform design

sensitivity analysis of non-lifting airfoils. Test cases have shown that as the grid size

increases, the number of iterations required to reach convergence increases consistently,

however so does the accuracy.

A 3D code has also been developed. Future development of the code will require

the capability of aerodynamic design for lifting cases. This can be easily implemented

by forcing the Kutta condition at the trailing edge of the airfoil and then updating the

potential via a Dirichlet boundary condition along a branch cut from the trailing edge to

the far field. The 3D code still requires validation. It is worth noting that due to the large

grid size required for complex three dimensional geometries, a parallelization of the code

is strongly suggested in order to perform the inverse design in a reasonable time. In fact,

most of the time is spent during the optimization process because of the iterative nature

of the optimization itself. Thus, parallelization of the code would strongly improve the

optimization process in such a large files. Additionally, it is possible to use the code to

perform optimization analysis in every field in which Poisson’s equation has application.
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