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Figure 2.7

Nilsson Diagram for Neutrons [21]
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nation for superconductivity; however, it was quickly adopted into nuclear structure theory

by Bohr, Mottelson, and Pines. [23] Bohr et al used the BCS framework to explain the

large energy gap systematically visible between the 0+ and 2+ levels in even nuclei.

The nuclear pairing interaction is not quite the same as the electron spin coupling men-

tioned above; however, similar physics govern both. Casten defines the pairing interaction

as

〈j1j2J |Vpair|j3j4J ′〉 = −G
(

j1 +
1

2

)(

j3 +
1

2

)

δj1j2δj3j4δJ0J ′

0

. (2.18)

j1, j2, j3, and j4 correspond to the initial and final individual angular momenta of two

paired nucleons. J and J ′ are the initial and final total angular momenta of the nucleons.

The delta functions force the pairing to be zero unless the initial and final individual and

total angular momenta are the same, eliminating this interaction from odd nuclei. The G

term is the strength of the pairing force. It has values Gp = 17
A

MeV for protons and

Gn = 23
A

MeV for neutrons. Figure 2.8 demonstrates paired nucleon orbits. The nucleons

orbit in opposite directions until at some point they collide. This collisions sends them into

time-reversed orbits of equal energy and total angular momenta. The experimental effect

of this scattering is that the energy gap (See Figure 2.9) for even nuclei is much larger than

the expected twice the average energy spacing of low levels. [24]

Figure 2.9 shows calculated energy levels for odd and even nuclei with and without

the pairing interaction. The immediately noticeable features are the compression of levels

for odd nuclei and the huge energy gap in even nuclei. These two features come from the
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Figure 2.8

Paired nucleons in time-reversed orbits2

transformation from particle-hole pairs to quasi-particles. The measure of the size of the

gap is expressed as

∆ = G
∑

i,j

UiVj. (2.19)

Ui and Vj are referred to as the emptiness and fullness factors, respectively. They are

defined as

Ui =
1√
2

[

1 +
ǫi − λ

√

(ǫi − λ)2 +∆2

]
1

2

(2.20)

Vi =
1√
2

[

1− ǫi − λ
√

(ǫi − λ)2 +∆2

]
1

2

(2.21)
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Equations 2.20 and 2.21 can be inserted into Equation 2.19 and then solved for ∆. These

factors are govern the distribution of holes and particles as functions of particle excitation

energies ǫi. For energy levels much lower than the Fermi level λ, Vi → 1 and Ui → 0. For

energies above the Fermi level the relationships are reversed. This leads to the introduction

of quasi-particles: artificial constructs that simplify the many-body quantum mechanical

problem of the nucleus. The concept is akin to the phonons of thermodynamics and the

holes of semiconductor physics. Instead of keeping track of every single particle-hole pair

as they are excited or de-excited, the problem is simplified by pretending that instead single

quasi-particles are created or annihilated. Within this framework, quasi-particle energies

can be written as

Ei =
√

(ǫi − λ)2 +∆2. [24] (2.22)

The theoretical minimum quasi-particle energy is immediately apparent. As ǫi → λ,

Ei → ∆. However, as quasi-particles are somewhat artificial constructs, this is not neces-

sarily the minimum possible excited state energy. As shown in Figure 2.9, odd and even

nuclei have very different energy spacings at lower levels. For even nuclei every nucleon

is already paired from the start; therefore, any initial excitation involves breaking a pair

and promoting one of the nucleons up a level. In the quasi-particle framework this looks

like the creation of two quasi-particles: the particle that got promoted and the hole it left

behind. The excitation energy of an even nucleus is given by

Ee
xij

=
√

(ǫi − λ)2 −
√

(ǫj − λ)2. (2.23)
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It is apparent that as ǫ→ λ Ee
x → 2∆ giving the energy gap for even nuclei. In odd nuclei

the situation is reversed. Excitations are not defined as the energy difference between the

excited quasi-particle and the ground state but the difference between the excited quasi-

particle and the quasi-particle state closest to ground. This gives an excitation energy of

E0
xi
=
√

(ǫi − λ)2 −∆2 −
√

(ǫ0 − λ)2 −∆2. (2.24)

Since ǫ0 is fixed,E0
xi can then be any value, leading to the compression of low energy states

seen in Figure 2.9. Experimentally, the even nuclei pairing gap was one of the first proofs

of the pairing interaction. [24]

2.4 Single Particle Levels

A logical place to start is single particle levels. As the name implies, these levels

are not truly a collective mode, but they serve as an interesting comparison to certain

collective modes, especially rotational structures. The Shell Model states that nucleons

orbit in quantized shells, analagously to how electrons orbit the nucleus. As with electrons,

nuclei that are close to having a closed shell (A is close to a magic number) have higher

binding energies, making the individual nucleons harder to excite. Single particle levels

are most abundant for nuclei with low energy near a closed shell. Paired nucleons in the

ground state tend to couple to the Jπ = 0+ state. [26] For an odd nucleus, this means

that the total angular momentum in the ground state will be the angular momentum of the

remaining, unpaired nucleon. For an even nucleus it will be zero as all nucleons are paired.
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Figure 2.9

Comparison of calculated energy levels from odd and even nuclei with and without the

pairing interaction. [25]
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Single particle levels tend to appear as a somewhat random sequence of transitions.

Figure 2.10 provides a good illustration of single particle energy levels (right-hand side

above 29+). It is especially contrasts with the left-hand side of Figure 2.10, which is an

example of rotational collective motion.

2.5 Nuclear Collective Modes

Until now, the discussion of nuclear energy levels has focused more on individual par-

ticles and their behaviors. However, it is useful to shift from a microscopic viewpoint

involving valence nucleons and rotating cores to a macroscopic viewpoint of collective

motion. From this vantage point, nuclear deformations are described as deviations from a

stable equilibrium instead of excited states of quantum wave functions. In the event that

the wave functions of the nucleons undergo interference, there is the possibility for them

to add constructively. The resulting standing wavefunctions are referred to as Collective

Modes.

2.5.1 Collective Vibration

Vibrational modes are considered to be the least collective of the collective modes. The

most prevalent vibrational modes are the magnetic dipole (M1) and electric quadrupole

(E2) modes. M1 transitions typically occur in large deformation nuclei near 3 MeV. This

mode is commonly described as the “Scissors Mode” for the way the proton and neutron

distributions oscillate with respect to each other. (See Figure 2.11.) The second major type

of vibrational mode is the E2 mode. This mode allows values of ∆J from 0 to 4. Deformed

nuclei can also undergo quadrupole vibrations. There are two primary modes, commonly
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known as β and γ vibrations. During β vibrations, the nucleus vibrates along it’s axis

of symmetry. For γ vibrations the nucleus vibrates orthogonally to the axis of symmetry.

Vibrational modes rarely occur by themselves. Typically, what is observed is a mixture of

rotational bands built on vibrational modes. [27, 26]

2.5.2 Collective Rotation

One of the most common collective modes is collective rotation. This is at first intu-

itively simple to understand. Individual wave functions of nucleons orbiting in the potential

well add constructively, and each minute moment of inertia sums to create a much larger

moment of inertia for the entire system. While this at first appears simple, quantum me-

chanics quickly complicates the scenario. In the quantum mechanical construction of the

system, wave functions that differ only by a phase factor are considered indistinguishable.

This means that rotations about a symmetry axis are not permitted. Hence, only nuclei that

have at least one non-symmetric axis can undergo collective rotation. In the case of nuclei

with symmetry, the collective rotation must be perpendicular to the symmetry axis. [29]

With the nucleus undergoing collective rotation, it is possible to define a single moment

of inertia, I, and a rotational Hamiltonian,Hrot = R2/2I. In the case of pure rotation, the

nuclear energy levels become

EI =
~
2

2I J(J + 1), (2.25)

where J is the total angular momentum of the nucleus, j is the angular momentum of the

valence nucleon, and R is the total angular momentum of the core. (See Figures 1.1 and
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