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CHAPTER I 

INTRODUCTION 

1.1 Nonequilibrium surface growth problems 

Surfaces can be smooth, such as mountains viewed from space, but the same surfaces 

can be rough when viewed from earth. This implies that the morphology depends on how 

we look at the objects. Studies have been done not only to understand the morphology 

of various interfaces but also in the dynamics of how the morphology develops in time. 

Some surfaces are formed because of deposition, erosion, etching, while some form due 

to propagation through inhomogeneous media. Many questions concern the formation 

growth and dynamics of such interfaces. 

Growth processes have been topics of considerable recent interest. There have been ef-

forts in the study of rough surfaces by using both continuum equations and discrete growth 

models [2, 34]. The existence of an evolving interface is one of the main characteristics 

of a growth process. The interface is studied for reasons like the dynamics of the moving 

interface has the complexity of a non-equilibrium growth process. Also the characteri-

zation of the surface structure of growth processes is of practical interest because of its 

applications in a wide variety of areas in science and technology. They also play an impor-

1 
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tant role in a number of physical, chemical and biological phenomena. For these reasons, 

many studies have been done on the problem of surface structure and surface growth [11]. 

Scaling is one of the modern concepts used to study various surface growth processes 

[11]. Many measurable quantities obey simple scaling relation, which in turn defnes a 

universality class. The universality class tells how the surface scales or behaves. These 

growth models, have a continuum growth equation for the coarse-grained height h���� � ��� 

where the equation describes the lateral surface coordinate � and time � . The typical model 

is the Family model [10]. The growth processes consist of the deposition of particles on 

a given substrate which generates either a non-conservative noise or a conservative noise, 

which is responsible for the rough or smooth surfaces respectively. Models of interface 

motion can be distinguished in terms of universality classes. Usually by measuring the 

˘ � � time evolution of the average of the square width   of the interfaces, the dynamic 

!exponent is obtained [11] which determines the universality class. The surface properties 

of various types of deposition models like random deposition, ballistic deposition, etc. 

have been studied. 

1.1.1 Random Deposition 

Random deposition (RD), as shown in Fig.1.1, which is the simplest of the growth models. 

Starting from a randomly chosen site over the surface, a particle falls vertically until it 

reaches the top of the column in which it was dropped, where it sticks to become a part 

of the aggregate [2, 11]. There are no correlations in the random deposition model as 
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Figure 1.1 The RD model. Particles A and B are dropped from random positions above 

the surface and are deposited on the top of the column underneath them. 

the columns grow independently. Since there are no correlations in the RD model, the 

� 
correlation length is always zero, which implies that the interface never saturates and the 

�˜ ˜roughness exponent is not defned. Both and will be defned later in this thesis. In 

order to study the RD model, a differential equation is used to describe the growth by the 

following equation [2] 

� h� � � � � �� � (1.1)�� �� 
where � � � � ��� is the number of particles per unit time arriving on the surface at position 

� and time � . The right hand side can be broken into two terms because the particles are 

deposited at random positions. 
� h� � ������  � � � ��� � (1.2) 

where F is the average number of particles arriving at site � and   � � � ��� is the random 

fuctuations in the deposition process. 
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1.1.2 Ballistic Deposition 

There are many types of surfaces depending upon the types of deposition. Ballistic de-

position (BD) is one of the simplest model for surface growth, as shown in Fig.1.2. A 

particle is released from a randomly chosen height above the surface which is at a distance 

larger than the maximum height of the interface. The particle follows a straight vertical 

trajectory until it hits the surface and it sticks wherever it hits. This growth rule can lead 

to overhangs and voids in the surface. 

Figure 1.2 The BD model. The nearest neighbor sticking rule is shown, illustrating two 

possible ways of sticking for the newly deposited particle. The frst position for A to stick 

is on A’ and for B it will stick on B’. 

1.1.3 Restricted solid-on-solid model or KK model 

The restricted solid-on-solid model was frst introduced by Kim and Kosterlitz (KK) [17] 

to investigate the growth exponents for higher dimensions. The algorithm which desribes 
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the growth is done by randomly selecting a site on the interface and permit the growth 

by increasing the height of the interface by one, h�i � h � � with the restriction of the �i 

��� � 
restricted solid-on-solid on neighboring heights h =0,1,..., N�� which is obeyed at all 

stages. The interface initially is fat and grows with no vacancies or overhangs. This 

model exhibits very good scaling properties. 

1.1.4 Kardar-Parisi-Zhang universality 

This is studied in section 2.2. 

1.2 PDES introduction: 

When the dynamics of a complex system is not easily understood by analytical meth-

ods, direct simulations can be used to answer most of the questions. Parallel Discrete Event 

Simulations (PDES) [12, 36, 5], sometimes also called distributed event simulations, are 

used to understand systems like surface growth, epidemiology, fnancial markets, queuing 

systems, to mention only a few. To obtain results in a timely fashion, simulations of such 

systems require use of distributed architectures, namely PDES. In a discrete event sim-

ulation model the simulation changes its state only at discrete-points in simulated time. 

Between events the state of the system remains unchanged. The dynamics can be synchro-

nized if the events occur at random instants of time. In a PDES implemented on a number 

of processing elements (PE), each PE carries a subsection of the full system. The system 
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which is modeled, also called the physical system, is composed of a number of physical 

processes which interact at discrete points in simulated time. These are mapped onto log-

ical processes as shown in Fig.1.3, one per physical process, that manage state updates 

of the assigned physical processes. Since the logical processes are not synchronized by a 

global clock, they can be made to preserve causality by incorporating the so-called local 

causality constraint [12, 5]. Monte Carlo simulations are one example of discrete event 

simulations. The traditional Monte-Carlo algorithms were believed to be inherently se-

rial; i.e the corresponding algorithm could make an update attempt only one site at a time. 

But Lubachevsky came up with a brilliant approach for parallel simulation [31] for these 

complex systems. The concepts of local simulated times (or virtual times) and a causality 

preserving scheme are incorporated to parallelize the apparently non-parallel dynamics. 

Thus the local simulated time is advanced on each PE, without causality violations. The 

way in which the local causality constraint is implemented gives two categories of PDES; 

The conservative scheme [36, 5, 31] and The optimistic scheme [15, 39]. In this thesis, the 

systems modeled with short-range interactions are studied for the conservative scheme. 

The conservative scheme is highly effcient. Recent applications of conservative PDES to 

modeling complex physics systems include ballistic deposition [32]. The PDES is used to 

understand the dynamics of a complex system. Korniss and co-workers [27] introduced 

the idea of mapping the simulated time horizon and studying it as a growing and fuctuat -

ing surface. Non-equilibrium surface growth methods [2, 34, 7] are used to evaluate the 

scalability of algorithms for conservative PDES. In order to estimate the effcienc y of the 
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Figure 1.3 The mapping of physical to logical processes is shown.The nearest-neighbor 

physical interactions shown with two-sided arrows in the left part on a lattice with periodic 

boundary conditions are mapped to the ring communication topology of logical processes 

showing two-sided arrows in the right part. Communication takes place for PEs carrying 

 lattices sites when the chosen lattice site is at the border. N �
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algorithm, the concept of the morphology of the surface associated with the simulated time 

horizon must be understood. 

The virtual times on the PEs comprise a Virtual Time horizon (VTH). The VTH or local 

simulated time horizon which is a non-equilibrium surface as shown in Fig.1.4 is the main 

concept of the algorithm. Its time evolution can be simulated by applying a deposition 

rule given by the algorithm. The evolution of this simulated time horizon determines the 

scalability properties of the corresponding PDES scheme. The utilization [18, 19, 20] 

gives a measure of the algorithm effcienc y and the width of the simulated VTH provides a 

measure of the desynchronization in the system of processors as the PDES evolve in time. 

These are basically the two properties studied throughout this thesis. This asymptotic lack 

of synchronization [24, 26] is avoided by using new algorithms [18, 23]. 

1.3 Overview of previous work: 

In past studies [27], while studying the performance of the PDES, the worst-case sce-

nario, in which only one computational volume element N�� � � or load was assigned to 

each of processing element (PE) was used. It was found that the effcienc y does not go to 

zero as the number of PEs goes to infnity . Other simulations showed that when the load 

per processor is increased, the utilization gets signifcantly increased [20, 18, 24, 19]. The 

steady-state behaviour of the macroscopic landscape in the saturated phase is governed 

by the Edwards-Wilkinson (EW) Hamiltonian [9], which indicates that the density of the 

local minima never approaches zero, even when the number of PEs goes to infnity . This 
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���Figure 1.4 Time evolution of the time horizon for � � PEs and N�� � � sites per PE. 

���
The lower surface is a snapshot at � ��  , the upper surface is a snapshot at � � � . 
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proved that the computational phase of the algorithm is scalable. A method to estimate 

the utilization in the general case has been developed [18, 20]. The analogy between the 

evolution of the simulated time horizon and single-step surface growth models [35, 28, 30] 

was used in the investigation of the dynamic scaling properties of the simulated VTH in 

the general case for N � � . These 1D systems with only nearest-neighbor interactions 

and periodic boundary conditions were considered. These systems have asynchronous dy-

namics. Examples are the Ising model with Metropolis or Glauber dynamics and internet 

traffc, where the discrete events are the spin-fip and packet transmission/reception, re-

spectively. For these systems massively parallel simulations were performed i.e., parallel-

discrete event simulations (PDES). Thus the concept of the local simulated time (or virtual 

time) and a synchronization scheme was used to study these non-parallel dynamics and 

determine whether the algorithm is scalable or not [40]. The basic synchronous parallel 

scheme is explained in section 2.1. The results showed that the steady state of these sys-

tems were governed by the EW Hamiltonian. This is discussed more in section 4.3. This 

corresponds to a density of local minima that does not go to zero when the system size 

increases to infnity . This non-zero density of local minima is an important characteristic 

of the steady state universality class. 

The time evolution of the interface width, which is the measure of the desynchro-

nization in the conservative PDES, was used to probe the dynamic scaling properties of 

the simulated time horizon. The scaling of the interface width has two distinct regions, 

namely the growth phase and the saturation phase. The behaviour of different exponents, 
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˜namely the growth the exponent � � , the roughness exponent � � and the dynamic expo-

!nent � � were studied. It was found that these agreed with the KPZ universality class. The 

universal properties of the surface in the steady state were studied by constructing the full 

� �˘width distribution � � which gives the scaling function � � � � . Thus the asymptotic 

scaling properties of a general parallel algorithm for the simulated time horizon, which 

behaves as a non-equilibrium surface were studied. The basic algorithm i.e., for one load 

per PE, was found to be scalable for a one dimensional array. This means that the uti-

lization, or the density of local minima never approached zero even when the system size 

increased to infnity . For a fnite number of PEs, the interface width never grows to infnity , 

rather it saturates at some fnite value which is a measure of the desynchronization of the 

PDES. 

1.4 Thesis scope and contributions 

The simulated VTH for N � � � and N � �   are studied in this thesis. Different types 

of growth mechanics, namely variations of random deposition, are used in the conserva-

tive update algorithm for the VTH. The model studied here is with Poisson-random depo-

sition or uniform random deposition for the two worst-case scenarios i.e., for N � � � and 

N � ��  . The system of ���� processors are mapped into a closed chain of N�� N spins.N ���� 

The previous work corresponds to the general case when each processor carries many 

computational volumes along with random deposition (RD). The main interests here are 
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in the scaling function for the interface width and in the universal properties of the VTH 

interfaces. 

In the conservative scheme, for (1+1) dimensions (one space and one time dimension), 

roughness of a surface which grows laterally on a one-dimensional substrate of length 

˘ � � 
can be expressed by the square of the interface width at time � ,  � ��� 

˘ � �� � � � �� ��� 
���� 
� ����
	 i � ������� � � ��� (1.3)�� � � ��
N i 

� �where i � ��� is the height of the column at site � and � � ��� is the average over the N ��� sites. 

The angular brackets denote the ensemble average. The Family-Viseck (FV) [11] scaling 

relation is 

˘ � ���̆ �ˆˇ �� � ����� ˝˙°̨ ˜ (1.4) 

' where the scaling function 
� � � has two regimes of the width evolution 

� # ' ���&% ˙ ' )(' �'� �˝� !" (1.5) '*,+&-/. ) ')0 )� �"$ �!The dynamic exponent describes the evolution of the lateral correlation length � ���1�% ˙ �� . The width saturates when � ��� exceeds the system size, N ��� . At saturation, i.e., for 

�� 0 32� , where �42 is the crossover time, the width scales as , where ˜ is the roughness 

exponent. For times much smaller than a crossover time, or for the growth phase which 

is the initial phase for � ( �42 , the surface width increases according to 65� , where is 

˜ !the growth exponent, � � . The growth phase is characterized by the single growth 

exponent . The roughness, the growth, and the dynamic exponent are universal. 



CHAPTER II 

METHODS 

2.1 Parallel discrete event simulation surface growth algorithms 

For a large class of interacting systems, as the system evolves in time, the value of 

the local state variables change at discrete instants, synchronizing or not synchronizing 

depending on the dynamics of the system. The instantaneous changes in the local con-

fguration are called discrete events. Simulations of discrete event systems are discrete 

event simulations. For synchronous dynamics parallel simulations are conceptually sim-

ple. Asynchronous discrete event simulations are diffcult to parallelize. Parallelization of 

discrete event simulations is called Parallel Discrete Event Simulations (PDES). 

The PDES algorithms are basically composed of a set of local simulated times, also 

known as virtual times, as shown in Fig.2.1, and a synchronization scheme. 

For the PDES scheme to be applied effciently , the virtual time horizon should progress 

at a non-zero rate on average, and the spread of the time horizon should be limited as 

the number of Processing Elements (PEs) increases. The synchronization mechanisms in 

PDES traditionally fall in two main classes: conservative and optimistic. In PDES, the 

computational task is divided among N ��� processing elements where each processor has 

13 
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�����Figure 2.1 Time evolution of the virtual time horizon for � � PEs and N�� � � sites 

���
per PE. The lower surface is a snapshot at � ��  , the upper surface is a snapshot at � � � . 
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its own dynamics. When there are interactions among the individual elements of the sim-

ulated systems, the PEs coordinate with other PEs during the simulation. However, there 

are cases when some neighbors might belong to the domain of another PE, then message 

passing is required in order to preserve causality. In the PDES scheme, update attempts 

are self-initiated [4] and are independent of the confguration of the system [5,6]. Here a 

less conventional approach is used to analyze the effcienc y and scalability of the class of 

massively parallel conservative PDES schemes, by studying and mapping computationally 

onto a non-equilibrium surface growth model [27, 25]. 

2.1.1 Conservative rule 

The main idea in conservative schemes is to strictly avoid the probability of any causality 

error occurring. At each update attempt � , on each PE the simulation algorithm randomly 

selects one of the N � sites. If the selected site is an interior site, the update happens and 

the random time increment is added. This increment is usually sampled from the Poisson 

distribution with unit mean. If the selected site is at the border, the PE can update only 

if its local time is not larger than the local time of its neighbor PE that interacts with 

that border. When N � � � , the rule requires that each PE updates only if its local time 

is not larger than the local time of both its left and right neighbors. In the conservative 

PDES scheme [6], an update is performed by a particular PE only if the resulting change 

in the local confguration of the simulated system is guaranteed not to violate causality, 

otherwise the PE idles. The evolution of the time horizon exhibits kinetic roughening and 
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is governed by the Kardar-Parisi-Zhang � � equation, which plays a very important 

role in non-equilibrium surface growth. 

2.1.2 Optimistic rule 

Unlike the conservative mechanism, the optimistic approach [15] allows causality errors 

to occur. At each � , the simulation algorithm allows each PE to make updates, regardless 

whether these events are certain. When the conservative rule would force a PE to wait, the 

optimistic rule may allow causality to be violated. However, when such an event occurs, 

a causality error is detected and a rollback mechanism is invoked to undo the effects of 

all events that have been processed prematurely. They are then re-executed in order. The 

optimistic rule will not be studied further in this thesis. 

2.2 Surface width and utilization 

2.2.1 The basic conservative scheme for N � ��� 

The algorithm steps for conservative N � � � PDES in one dimension are summarized by 

the equation [27, 14] 

� � � � � ��� �� i �� � � �� � �� ��i � � � � � � i � � � � �� � � �� i � �� �� � i � ���� i � � �   i � � (2.1) 

� �with the boundary condition � � % . The   i � ��� are taken from a Poisson (exponential) � �distribution independently at every time � and site � , and independent of   i � ��� � . Here � 
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is the Heaviside step function. The index labels the PE. The total number of active sites

per PE is given by

�� �� ���
	� �� ���� �� �� �� ��

becomes,��

�� (2.2)��

and hence the utilization which is �� ��

(2.3)��
����

�� �� �� �� ���� ��

Both the utilization and the width of the time horizon are quantities which characterize the

fuctuations of the growing surf

��
aces.

�
These fuctuations can be classifed into universality

classes which have distinct statistical properties. The local slope is . Since

if on PE updates and�� �� �� �� �� �� ��

�� we have�� ��

��
�� �� ���� �� �� �� �� �� �� ��

(2.4)

with the constraint

density of minima, or the

� generated by the boundary conditions. The average���
utilization can be written as

(2.5)�� �� ��

In order to have some insight into

coarse graining by taking an average on

�
the evolution of the surface, performing a naive

and replacing with a smooth represen-

tation

��
we get����
	��� �� ������˘�ˆˇ˝˙ �°˛  ˜

�� �� ���� �� �� !#" �� ����
(2.6)

�
� � � �

�
i

� � � i � � � i � � � � � i � � � i � � �

 ' � � � � �  � � � � � �
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In the continuum limit, for the coarse-grained feld: 
���
�

� � � 
� � � � � � � � � � � � � (2.7)� � ��

where is the coeffcient of the non-linear term containing the details of coarse-graining 

procedure. The above nonlinear partial differential equation is the Burgers equation [4]. � � � � � Through � � � � , we obtain the Kardar-Parisi-Zang (KPZ) equation for the coarse-

grained surface height fuctuations [16, 3] 

�� � � � 
� 
� 

� 
� 
� � � 

� 
� 

� � ��� � ��� � � (2.8) 

For the fuctuations to be captured, to the above equation is added noise terms. The noise 

terms are conserved for Eqn.2.7 and not conserved for Eqn.2.8. This suggests that the 

evolution of the simulated time horizon is KPZ-like and exhibits kinetic roughening. One 

of the main objectives is to identify the universality class of a model in surface science. 

In one dimension, a steady state for the surface fuctuations in the long time limit for 

�
any fnite size system, is governed by the Edwards-Wilkinson (EW) Hamiltonian �� 
	 

�

� � � 2 � ����� [2, 9, 8]. 

An ideal system consisting of identical processing elements is considered. They are 

arranged, so the system is one-dimensional and has periodic boundary conditions. Each 

PE has N � lattice sites or spin sites per processor. At a particular time the algorithm can 

pick and update any of the N � sites. There are also constraints on the communication 

between the PEs depending upon the value of N�� . In this thesis, we restrict ourselves to 

the cases N � � � and N � �   . Larger N � will be mentioned only in the last section. 
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The state of the system depends on the processing element operations, however update 

attempts are not synchronized by a global clock. In the simplest case there is one spin site 
� " 

per PE, N � � � , the system is a closed spin chain, and a spin-fip attempt at the 
˛ 

PE 
��� ��� " " 

depends on the two nearest-neighbor spins located on the � � � � and the � � � � PEs 

as shown in Fig.2.2. The update is not made until any information is received from these 
˛� " 

neighbors to the PE. 

�In this conservative PDES scheme each PE has its own local simulated time for 

its portion of the problem, and generates the time for the next update attempt. Update 

attempts are simulated as independent random processes. These may be either Poisson 

processes in which the random time interval between two successive attempts is exponen-

tially distributed with unit mean, or uniformly distributed update processes. A processor 

is allowed to update its local time if there is no causality violation, otherwise it remains 

idle. The time step � is the index of the simultaneously performed update attempts. 

The simplest case for the communication rule between PEs is where the update attempt 
˛� " 

is allowed when the local simulated time of the PE is less than both of its nearest-

neighbors, otherwise the PE idles (waits). This is the rule for N�� � � where it is one spin 

site per processor. In particular, the virtual time development is given by the equation 2.1. 

The periodicity condition requires communication between the frst and the last PEs. 

� � �Initially � � � for each site. In other words, the virtual time interface is initially fat. 

� �The simulated time of the frst update attempt is determined by � � � � � � � �� ̂ � � � � , 
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k−1 k k+1 

Figure 2.2 Short range connections in PDES for a linear chain. 

˛� " 
where    ˆ� � are the random time increment, randomly chosen independently on each 

PE and at each parallel step � . For every parallel step, each PE must compare its local 

simulated time to the local simulated times of both its nearest-neighbors, it must check: 

� � �� min  � � ��� � � � ��� � . If the local time is a minimum compared with its neighbors, 

then the change of state of the site is performed and its local simulated time is incremented 

� �by the random amount, � � � � � � �� �   � �� . Otherwise, the change of state is not �� � ˆ� � 
� �performed and the local simulated time remains the same, � � � � � � � ��� i.e. the PE 

waits. The comparison of the nearest-neighbor simulated times and waiting if necessary, 

ensures that information passed between PEs does not violate causality. 

2.2.2 The basic conservative scheme for N � ��  

The second least favorable arrangement is when there are two computational volume el-

ements or loads per PE. The system can be mapped onto a closed spin chain where each 

processor carries two spin-sites, each of which is a border site. The communication rule 
˛ " 

between PEs is that the update attempt is allowed when the local simulated time of 



�

� � �  �
�
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21 
� � �PE is less than that of its randomly chosen nearest-neighbor. Initially � � � for each 

site, the virtual time is initially fat. The simulated time of the frst update attempt is deter-

� � � � 
�mined by � � � � � �� ̂ � � . Here the Poisson random number   � �� � � � ˇ �� ,� � � � � 

˛��� � " " 
�and � � � � ˜ is the random time increment. At � , each site , randomly selects a 

neighbor which is either at the left or at the right border, the update attempt is successful 
˛� " 

when the PE’s local simulated time is less than the local simulated time of its chosen 

neighbor, i.e. � � ��� � ��� � ��� , where - is the randomly selected neighbor ( - � " � � for

"-the left border site, � � � for the right border site). The deposition here can be either 
˛ " 

on a local minima or sometimes with random probability on a local slope. When the 

site is on a local slope, then it compares its local simulated time with its randomly chosen 

neighbor, and makes an update attempt if its local simulated time is less than that of its 

chosen neighbor. The change of state of site is performed and its local simulated time is 

� �incremented by the random amount, � � � � � � � ��� � ˆ�  � ��� . Otherwise, the change of 

� �state is not performed and the local simulated time remains the same, � � � � � � � ��� 

i.e., the PE waits. Furthermore the choice of which neighbor to check remains unchanged 

if the PE waits. Hence the PE waits until its randomly chosen neighbor’s time is greater 

than or equal to its own time. 

The algorithm steps for conservative N � �   PDES in one dimension are still to be 

performed using a coarse-grained approach. The initial steps are written as 

� � � �� � � � � �� � � � � � � � � � � � � � �� �  � � � � � � �� i � �  ˆ� (2.9)�� � �� ���� 
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22 
� � � �

where is the probability that the PE selects the right element and is the probability 

that the PE selects the left element. The update conditions to satisfy are summarized as 

� � �N ��� � 
' � ��� � � ˇ  � � ��� � � � ��� � (2.10) 

� ' �� � �N �   � ��� � ��� (2.11) 

" " 
where � � � when the left border is chosen and � � � when the right border is 

chosen. 

2.3 Scaling for surface growth 

One important quantity to study is the average width of the time horizon, which char-

acterizes the roughness of the interface defned as the root mean square fuctuations in 

height 

˘ � �  � � �	��� � � � 
���� 
� ����
	 � � ��� � � � ��� ˜ � � (2.12)
N i��� 

where 

� � � )� ��� � N � i � � (2.13)� ��
������ i 

) )+) � Here   denotes the ensemble average, i.e. an average over many independent simula-

tions. 

The width of the interface is measured as a function of time to monitor the growth 

process quantitatively. The interface width at a particular time is averaged over � in-
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dependent simulations. This is done using trivial parallelization on a massively parallel 

machine at either the ERC or at off-site machines. 

A typical plot of the time evolution of the surface width for N � � � has two regions 

separated by a crossover time � , as shown in Fig.2.3. 

˘ � In the initial growth phase, the width increases as a power of time � � ��� � � 5 ,(� � . Here � is the frst crossover. The exponent is called the growth exponent, and 

characterizes the time dependent growth of the roughening process. Its value depends on 

the type of growth, being different for different universality classes. A plot of the time 

evolution of the surface width having three regions separated by two crossover times � % 

and � is shown in Fig.2.4. There are two clear regimes of growth. The frst regime is due (to relaxation from the initial fat interface, � � % . We will see that � % is approximately 

independent of . 

The corresponding second cross-over time, � , marks the end of the growth phase and 

the transition to the saturated phase. This crossover time � grows with . The growth 

phase does not continue forever, but is followed by a saturation phase during which the 

����˘ �average width reaches an average saturation value . 

Fig.2.5 shows different curves corresponding to the time evolution of the width ob-

tained by simulating systems of different sizes . This shows that � grows as increases. 



 

24

-3 

-2 

-1 
lo

g(
<w

2 >)
 

t1 

-3 -2 -1 0 1 2 3 4 

-4 

-5 
log(t) 

Figure 2.3 Growth of the interface width with time for the N � � � PDES model. Two 

distinct regimes can be seen. A power law growth appearing as a straight line on the log-

(log plot for � � % , and saturation where the interface width is approximately constant, 

� �&% . The lines are guides for the eye. The data will be presented quantitatively later in 

this thesis. 
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Figure 2.8 The width is divided by 
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corresponding to a vertical shifting of the curves 

which saturate at the same value of the ordinate 
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 . The times are scaled by = 

so the crossovers to saturation occur at the same scaled times. This graph courtesy 
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2.3.1 Data Scaling 

It can be seen from the Fig.2.3 and Fig.2.4, as increases the saturation width ˘ ˇ ˙°˛ in-

˘ ˇ � ˙°˛ ��� 

creases as does ��� . The dependence also follows a power law, � � � for � ��� . 

˜The exponent , called the roughness exponent, is a second critical exponent which char-

acterizes the roughness of the saturated interface. The corresponding dynamic exponent 

! ˜is given by � � . In this region the surface reaches a steady-state evolution and the 

fuctuations are stationary about the mean. 

˜ !The scaling exponents , , depend on each other. There exists a way to collapse the 

data onto a single curve for all N � . This can be done by rescaling the plots with different 

˘ ˘ ˇ˝˙°˛parameters. By plotting � � ��� � � � as a function of time, the curves will saturate 

at the same value, independent of the system size . Fig.2.7 shows the variations of the 

interface width as a function of time for different system sizes for N������ . 

˘ � ���
Dividing by , which corresponds to a shifting of the curves on a log-log scale, 

will result in curves which will saturate at approximately the same value independent of 

˘ � ��� 

the system size . The curves saturate at the same value of the ordinate � � � , but at 

� ���˘ ˇ ˙°˛different saturation times according to � � � . 

Plotting the width as a function of �	�
� as shown in Fig.2.8 will cause the curves to 

saturate at the same characteristic rescaled time. In this step, by rescaling the time by 

plotting �	� ˙ 
, corresponding to a horizontal shifting of the curves, then since � � ˙ 

the 

curves now saturate at the same values of �	� ˙ 
, with all of them collapsing onto a single 

' curve called the scaling function 
� � � . 
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( (Figure 2.9 The data for � � % are excluded because for � � % , there exists no scaling, 

since the surface is growing from an initially fat interface. This data is the same as in 

˜ !Fig.2.5 with the same values of and . 
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Figure 2.10 In this fgure for uniform random deposition the data for � ( � % are excluded 

(because for � � % , there exists no scaling, since the surface is growing from an initially 

fat interface. This graph courtesy of Dr. Alice Kolakowska. 
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� �˘ � ˘ ˘ ˇ ˙°˛Therefore the observations suggest that � � ��� � � � is a function of �	� ��� as � � ��� � �� � �	�
� � where 
� � ' � is the scaling function. By substituting ˘ ˇ˝˙°˛

� � � � � � ��� , we get the 

expression known as Family-Visek scaling relation [11] 

˘ )� � � ����� ��� � ˇ ˝˙� ˛ (2.14) 

' Note that the scaling function 
� � � has a dependence on � and the linear system size 

only through the specifc combination �	� ˙ 
. There are two different scaling regimes de-

' '��pending on �	� ��� . For small values of its argument 
� � � behaves as a power law, 

' ' with the power 
� � � � ���&% ̇ 

. For large values of its argument it approaches a constant,� ˝� constant.� ' � 

˘ ˇThe saturation time ��� and the saturation width ˙°˛ with increasing system size sug-

gests that the saturation phenomenon constitute a fnite size effect. From the relationship 

˘ ˇ˝˙°˛� ��� � �� , an infnite system �� � does not saturate. Furthermore, the saturation 

value grows with as a power law with the exponent given by twice the roughness expo-

nent. 
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Figure 2.11 The variation of the interface width with respect to time is shown for three 

different system sizes for N � �   . 
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Figure 2.12 Here time is rescaled by plotting , corresponding to a horizontal shift-�	�  

ing of the curves. The curves saturated at the same v
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For a general N � , the simulated time horizon (STH) width scales with the system size 

as 

  ˘ � � ��� � � � � 5 � ����� �&% ( � ( � (2.15) 

˙ ˙ 
���� � �����  ˘ � ��� � � N � � � � 0 � ) (2.16) 

Here ��� � N � . The length of the second growth phase relative to the RD growth phase 

depends only on the number of PEs in the system. When N�� � � , the length of the RD 

) )��phase is nearly zero � � � � % ��� � and the scaling relation reduces to 

� � � �����  ˘ � ��� � � 5 � � ( � (2.17) 

  ˘ � � ��� � � ��� � ����� � 0 � ) (2.18) 

The typical distance over which a particle knows about neighboring heights, or the 

� 
characteristic distance over which they are correlated is called the correlation length, . For 

� 
non-equilibrium surfaces, the lateral correlation length between sites follows the power 

!law 
� � � % ˙ , where is the dynamic exponent [2]. For a fnite system, the entire interface 

� 
becomes correlated when reaches the size of the system, resulting in the saturation of the 

interface width. Thus at saturation 
� � � � 0 ��� ˜ for � � ˙ 

. For times much smaller 

than a crossover time ��� (see e.g., [2]), the surface width increases according to � 5 whereas 

� ˘ �
for much larger times, the surface width saturates and scales as , � . The growth 

! ˜phase is charaterized by the single growth exponent � � . 
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2.4 Steady-state scaling for utilization 

By analyzing the microscopic structure of the STH at saturation, it is possible to derive 

an approximate analytical formula for   ' � in the system of ideal PEs as ' � � � � � � !0for   [18]. It was shown that the fnite-size corrections of the density of local minima 

is of the form [27, 29] 

� 
' ��� ' ��� � ��ˇ � )  �   � (2.19) 

' ���where   denotes the utilization in the infnite limit. Krug and Meakin [29] obtained 

universal fnite size effects for the growth rate of KPZ-like processes 

� � ��� � � ˇ�� � )  ' �   ' � ��� � � (2.20) 

which can be used to estimate the utilization, or the average rate of progress, for higher 

dimensions. While the density of the local minima is based on microscopic structures, it 

is fully governed by macroscopic characteristics and the corresponding universality class. 

For the KPZ class this asymptotic value is non-zero. 



 

 

CHAPTER III 

ALGORITHM AND IMPLEMENTATION 

3.1 Algorithm and Implementation: 

A particular simulation for the surface growth has been studied. This simulation 

algorithm is a model of the actual simulated time horizon on parallel computers that a 

conservative PDES will generate. The generator SPRNG 1.0 is used to generate random 

numbers for the surface growth. Here N � is the number of lattice sites per processor, N ��� 

or is the system size or the number of Processing Elements. The effcienc y, the average 

number of processing element not waiting during the simulations, and the interface width 

is calculated by running the following code. A fo w-chart for the code is given in Fig.3.1 

The serial code is presented here, parallel codes would require MPI calls. 

Following is the table defning the variables in the code: 

Table 3.1 Variables 

N���� Number of processing elements 
N � Numvol Number of sites per processor 
� 
' 

tau Virtual time for the STH 
utilization Density of local minima 

˘ width squared The interface width calculated as Eq.(2.12) 
update counter Counter to add the updates 

39 
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Following is the code: 

#include <stdio.h> 
#include <math.h> 
#define SIMPLE_SPRNG /* simple interface */ 
#include "sprng.h" /* SPRNG header file */ 
#define SEED 988898987 
#define NPdim 10000 

double widthcalculation(double tau_new[], int NPE, double mean); 

int main() 
{ 

int update_counter,k,NPE=100,k_left,k_right,Numvol=1,Vchosen,t,tmax= 
int update=1,i,trial,max_trials=1; 
double tau[NPdim],tau_new[NPdim],utilization; 
double delta_r,delta_l,eta,width; 
double mean,sum=0.0; 

init_sprng(SEED,SPRNG_DEFAULT); /* initialize stream */ 

for(trial=0;trial <max_trials; trial++) /* number of independent run 
{ 

for(k=0;k<=NPE-1;k++) 
{ 

tau[k]=0.0; 
tau_new[k]=0.0; /* initially flat surface*/ 

} 

for(t=0;t<=tmax-1;t++) /* loop over time step */ 
{ 

update_counter=0; 
for(k=0;k<=NPE-1;k++) /* loop over lattice sites k */ 

{ 
k_left=k-1; 
k_right=k+1; 
if(k == 0) k_left=NPE-1; 
if(k==NPE-1)k_right=0; 
if(Numvol==1) 

{ 
delta_r=tau[k_right]-tau[k]; 
delta_l=tau[k_left]-tau[k]; 
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if(delta_r>=0 && delta_l>=0) 
{ 

update=1; 
} 

else 
{ 

update=0; 
} 

goto deposit; 
} 

eta=sprng(); /* random number generator for eta */ 
Vchosen=1+(int)(Numvol*eta); 
if(Vchosen==1) 

{ 
if(tau[k_left]>=tau[k]) update=1; /* update rule */ 
if(tau[k_left]<=tau[k]) update=0; 
goto deposit; 

} 

if(Vchosen==Numvol) 
{ 

if(tau[k_right]>=tau[k]) update=1; 
if(tau[k_right]<=tau[k]) update=0; 
goto deposit; 

} 
if(Vchosen>1&&Vchosen<Numvol) update=1; 

deposit: /* deposition rule */ 
if(update==1) 

{ 
eta=-ln(sprng()); 
tau_new[k]=tau[k]+eta; 
update_counter=update_counter+1; 

} 
if(update==0)tau_new[k]=tau[k]; 

} /* End of iteration over processing elements */ 

for(k=0;k<=NPE-1;k++) 
{ 

tau[k]=tau_new[k]; 
} 

sum=0.0; 
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for(i=0;i<NPE;i++) 
{ 

sum+=tau_new[i]; 
} 

mean=sum/(float)NPE; 
utilization=update_counter/(float)NPE; 
width=widthcalculation(tau_new,NPE,mean);/*function used for width cal 
/* printf(" %d \t %g\n",t,width);*/ 

if( t == 100 ) /*loop for producing virtual time horizon*/ 
{ 

for(k=0;k<NPE;k++) 
printf(" %d \t %g\n",k, tau_new[k]); 

} 
}/* End of time iteration*/ 

} 
} 
double widthcalculation(double tau_new[], int NPE,double mean) 
{ 

double sum, dsum1, var, dsum2,x; 
int j; 
dsum1=0.0; 
dsum2=0.0; 
for(j=0;j<NPE;j++) 
{ 

x=tau_new[j]-mean; 
dsum1=dsum1+pow(x,2); 
dsum2=dsum2+x; 

} 
var=(dsum1-pow(dsum2,2)/(float)NPE)/(float)(NPE-1); 
return var; 

} 
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CHAPTER IV 

RESULTS AND ANALYSIS 

4.1 Results and Analysis 

4.1.1 Scaling of growth phase: 

The cases for N ����� and N � �   are studied here explicitly. The case N � � � , is shown in 

Fig.2.5 and Fig.2.6 for different system sizes with N � � � for the Poisson and uniform 

random depositing respectively. It is characterized by the growth exponent , and Fig.2.5 

�and Fig.2.6 shows a line with the expected KPZ value   �� �� . The length of the growth 

phase goes from � % until the time for saturation i.e., the corresponding crossover time � % 

which depends only on N � and does not depend on . To collapse the data, we re-scale the 

time in accordance to � � �	� N � ˙ 
which causes the collapse. During the growth phase it 

can be seen from Fig.2.5 that the data does not collapse initially, but only after sometime 

(� does it scale. This suggests that the initial times � % before the simulations reach a&% � 
(stable growth phase with exponent should not be included. The times � � % is where 

the growth has just started, and the growth starts initially starts from a fat interface. After 
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the crossover time � % , it can be seen from Fig.2.9 and Fig.2.10 for Poisson and uniform 

random depostion respectively, that it grows as a power law. 

4.2 Flat-substrate condition: 

The previous work demonstrated in simulations with Poisson deposition [27] that the 

interface belongs to the KPZ universality class when the system size is large enough. 

There is evidence of an initial phase which does not scale, as shown in Fig.2.7. For small 

this initial relaxation from the fat interface may not allow any scaling. Fig.2.5 and 

Fig.2.6 show the evolution of the interface width for small to large for Poisson and 

� � (uniform depositions. The existence of the initial growth phase i.e., for � � % is 

seen in both the depositions, where the widths do not scale. Here � % is the characteristic 

time, after which the scaling starts and follows the Family Viseck (FV) scaling with the 

KPZ exponents. The initial growth phase, where the surface initially was fat has just 

started to grow. The � scaling for the Poisson deposition (with 2 ˜ =0.83) and uniform 

˜ � �deposition (with 2 =0.92) is shown in Fig.2.7 and Fig.2.8 for all � . The whisker-like 

structures in the growth part are clearly seen, which indicates the absence of scaling for 

� ( ( �� &%� . But when the scaling is restricted to � � % , full data collapse is achieved 

and these whiskers disappear. This initial growth phase is not a fnite size effect since � % 

does not depend on , but it depends only on the deposition type. For all , there is an 

approximately common � % . The variance for the uniform deposition is 1/12 and that is why 

https://Fig.2.10
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 =1,   , defned as the fraction of sites that ��

have heights less than or equal to the mean height 
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  , defned as the fraction �� ��

of sites larger than the mean height �   are shown. Time ��  marks the transition to the 

steady state (KPZ growth) and  is the cross-over time to saturation. 
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it has a smaller � % than Poisson deposition which has variance � . Thus the length � % of this 

initial relaxation period to the KPZ scaling is not universal. 

The initial transition period � % can be determined by performing an additional simple 

measurement [19]. In the set of processing elements, there are groups of PEs which 

have heights larger than the mean height and PEs which have less or equal heights than 

˘ � the mean height. The variance for each group can be written as 
� 
��� � � � 

�˘ � ��� � ��� � � � � ��� � ��� � � � � ��� � (4.1)��� � ��� �� 
˘ � where stands for either larger heights or less than or equal heights. The variance of 

�
the can be expressed by the convex linear combination: 

� ��� �� � � ��˘ ˘ ˘� ��� � � ��� � ��� � � ��� � ��� (4.2)

��� ��� � � ��� ��� �where � ��� � � ��� � � , and , � . The simplex coeffcients, or the charac-

� �� 
teristic densities, 

� � ��� and 
� � ��� are fractions of sites that have their heights less than 

� � or equal to or larger than, respectively, the mean height � � . At � � which is simply � �� 
� � a random deposition step, the mean height � � � is the mean of the distribution from � 

which   is sampled ( � � , � � � �   for Poisson and uniform deposition, respectively). 

The correlations between the lattice sites start at � � � . Since the substrate is fat initially 

� � 
and it started to grow, the density 

� � ��� will be larger than 
� � ��� , because the depositions 

� � � )take place more often at heights with � This effect can be seen in fg:4.1 where 

� � ��� � ��� is initially greater than 
� � ��� but gradually falls and 

� � ��� rises. This implies that 

� � �' on average as the density   � � ��� rises the density of local minima  � ��� decreases. The 



�
 

 

  

 

densities are nearly equal when correlations developed from the fat surface at � � end. 

�� �� ��� � ��� 

� 
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This is at a time � % i.e.,  � ���  � ��� � �   . This is because for a distribution with 

� � � �
skewness of zero [8] the values must be   � �   � . A large number of KPZ-type depos-

tion rules have skewness zero. As Fig.4.1 illustrates, at � % the simulations attain a steady 

( (state which is seen by having a constant utilization. The growth phase when � % � � is 

�� �� � ��� � � � � � ��� � �
characterized by   � ���   � ��� , while at saturation � ��� ,   � ���   � ��� . The 

existence of this initial time interval from � � � to � � � % shows that the system retains 

the memory of the fat-interf ace initial condition. This also indicates that this time is a 

non-universal parameter which depends only on the type of deposition. 

The characteristic time scale on which the correlations are built for the KPZ dynamics 

is of the order of the system size ��� �� �� % � . The growth portion of the KPZ scaling is never 

observed initially for any time scale which is smaller than the memory scale. The growth 

portion of the universal KPZ scaling is observed when the system size is much larger than 

the memory scale i.e., 
� % � �&% . 

4.3 Surface fullwidth distribution: 

The surface width distributions have been introduced to provide a more detailed char-

acterization of surface growth processes, and they have been used to establish universality 

!classes of diverse phenomenon. The exponents and are frequently measured in experi-

ment or in simulations of discrete models in an attempt to determine the universality class 

of a non-equilibrium growth process. While this can be done in principle, there are fre-



�

49 

0.35 

0.4 

0.45 

0.5 

0.55 

0.6 

0.65 

y 

y=<f>(t)> 
y=<f<(t)> 

t0 t1 

0 1 2 3 4 5 
log(t) 

6 

��
Figure 4.2 The simplex coeffcients for 

 

 =2, 
� 

  , fraction of sites that have heights 

 

��
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quently diffculties and ambiguities due to crossover effects. Thus, it is of interest to fnd 

other more detailed descriptions of the interface of a non-equilibrium process. Thus the 

probability width distribution is used in an effort to provide signifcantly more information 

˘ � ˘ � �
than simply the   or the   , and can be used to identify the universality class. The 

width distributions are just histograms calculated from the Monte Carlo simulations in the 

saturated phase. 

In earlier work [39, 13, 37] it has been shown that the probability distribution is ob-

� ˘ � ˘ � � � ˘ � ˘ � �tained in terms of a universal scaling function � � �   � � �  � , where 

� is a universal scaling function characteristic of the universality class of a given non-

equilibrium dynamics. This universality is a consequence of the fact that a steady state can 

be considered as a critical state if the fuctuations diverge and in a critical system, the distri-

˘ � bution functions of macroscopic quantities like are characterized by a scaling function 

which is universal. Various types of studies have been done with the width distributions 

and the scaling functions in order to determine the universality class of diverse phenomena 

[19] and detailed characterization of surface growth processes [13, 37, 38, 3, 1, 33]. 

The scaling function � as defned in [13, 37, 38] is 

� � �� � � � � � --� � � � � � 

� 

� � � � ������ �   
� � (4.3)� 

A plot of the scaling function for the steady state width distribution is shown in Fig.4.3 and 

Fig.4.4. The log-linear plot is to show the power-law dependence of the curve for large 

� . All models in the saturated regime, including KPZ universality class models, governed 

by the EW Hamiltonian are characterized by the universal scaling function � of Eqn.4.3. 
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53
�A fnite-sum approximant to the above expressions converge quickly for any fnite � , 

since signifcant contributions come only from the frst � ��� � terms. 

� �� � )��� � � � � � 
����� � �   

� � � � � � (4.4) 

The scaling function for the steady-state width distribution follows the scaling function 

for the EW (one dimensional KPZ) universality class are shown in Fig.4.5-Fig.4.8 for 

N � ��� and N � �   for different system sizes . The steady state of the EW class, implies 

that the average utilization or density of local minima, approaches a nonzero, fnite value 

as refected by Eqn.2.19. This suggests that the computational phase of the algoritm is 

scalable since the utilization is fnite even for � � . 

4.4 Interface velocity: 

The interface velocity � � ��� as shown in Fig.4.9 and Fig.4.10 for N�� � � and N � �   

respectively, defned as the confgurational average of 

� � 
� � �

� � � ��� � � � � ��� � � � � ��� )
� � 

Using a continuum version with a continuum time-step increment � � , the update attempt

" 
at site can be written as 

�# � ��� ��� �   � ��� ' � � ˇ � � � � � � � � � � � !" ' � � � � 
(4.5) 

� � ��� �˘˙ � � )"$ 

https://Fig.4.10
https://Eqn.2.19
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Figure 4.5 Distributions � � � � of the interface widths at saturation for N�� � � is shown. 

Results of simulations (symbols) are compared to the theortical curve of Eqn:4.2 (contin-

uous curve). 
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Differentiating the above equation with respect to and taking gives at���

��

�� ˆ� �� �˘˙
(4.6)��

The number of update sites is

�˘˙
, where is the system size.�� �� ��

is non-zero only at these sites

�� �� �� �� �� �� ��

In limit of , �� is the mean of the distribution from

which is sampled. This implies thatˆ�
. In the simulations is computed�� �� ��

*,+&-/. for large . After averaging,

numerically and is obtained��

by averaging over many independent simulations. This interface velocity is plotted��

in Fig.4.3 for and Fig.4.4 is for . At , the interface velocity has its���

highest values . The interface velocity is higher for .��� N��

� � � �

� � � �� � � !"""# """$
 � � � ' � � �  � � � � � � � �
� ' � � � � � � )

� � � � ' � � � � � � � � �

�� � � � �
� � �
 � � � ' � � �

� � �

� � �
 � � )

� � � � � � � � � �  � �
� �  �

 � � � � � ) �

� � � �  ' � � � � �� � � � � �

�� � �

N � N � �  � � �

 ' � � � � �  
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CHAPTER V 

SUMMARY AND FUTURE DIRECTIONS 

5.1 Thesis Contributions 

5.1.1 Scaling done previously 

Application of the scaling technique used without considering the initial fat substrate 

condition can lead to false conclusions. The Family-Viseck scaling technique was used 

for larger N � values, neglecting the effects of the initial growth phase. The collapse for 

saturated widths was done by using an effective exponent   ˜ � � . With this scaling, 

performed for all t 0, the curves show two distinct growth regimes. 

�� !Further collapse into groups by scaling was done for , ��� �	� N ˙ for all � with =1 

showed excellent total data collapse as shown in Fig.5.5. The frst growth phase with slope 
��

  is obtained when � � �	� N � ˙ 
and the second growth phase with slope of   � . Using 

exponents ! � � ,   =1 and   ˜ � � the curves fall on the top of each other at the early 

growth phase and at saturation as shown in Fig.5.7. Though the intermediate region with 
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  � the slope appears to expand with increasing . This suggests that there is no scaling 

because there are two lines 

˘ � �  �� � � )�� ��� �� ˇ N � � ˇ�� � 

and 

�� �   � ˇ ˇ � ˙ ˛ � � ˇ�� � ) )
��

N � 

5.1.2 Attempted subtraction of Random Deposition phase 

There was an attempt to see whether a subtraction of the random deposition phase could 

make any difference to the initial scaling regimes. It was understood that the reason for not 

having perfect collapse at the initial growth phase was the random deposition. So in order 

to have a perfect collapse, scaling was done with the subtraction of the random deposition 

phase. In Fig.5.6, subtraction of the random deposition was done for the width and it is 

seen that the data collpses at the saturation phase, but when compared with Fig.5.2, which 

is the plot without subtraction, there is some difference and also the slopes have changed. 

When scaling was done for � as seen in Fig.5.7 and Fig.5.8, �	�
� % , where � % is the frst 

cross-over time which marks the transition period of the growth phase, perfect collapse of 

data is seen in the early growth phase and the saturation phase. In all these fgures   ˜ � � , 

�  � � ,   � � ��  and ! � � was considered. When the random deposition part was 

subtracted and rescaled with �	�
� % as seen in Fig.5.9, data collapse was seen, but the curves 
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did not have the above values of the exponents. Fig.5.10 is done for the second cross-over 

time. 

A rough estimate was used to see the cross-over times earlier. After studying N � � � 

and N � �   explicitly, the way to estimate the cross-over time correctly is shown in Fig.4.1 

and Fig.4.2. 

5.1.3 Scaling for N � � � and N � ��  

The growth of a non-equilibrium surface is considered. The growth is simulated from an 

initially fat substrate. Different update rules for N � � � and N � �   are used for the 

deposition. The initial growth phase, where the surface has just started to grow showed 

that there is no scaling at this time. But after some time, when the surface has grown, the 

frst cross-over time � % marks the transition period of the growth phase. The length of this 

initial phase is a non universal parameter which depends on the type of depositions and 

the model. But the presence of this initial time scale is a universal phenomenon. 

The transition time to the steady state is defned as the time when the mean interface 

velocity attains a non-zero, fnite, constant value. The interface width satisfes the FV 

scaling in the steady state. It can be seen in the form of curves falling on top of each other 

when the scaling is done for times greater than the cross-over time � % . After the steady state 

the width saturates at a fnite value. This suggests that for fnite the interface width does 

not grow to infnity , but varies as the computations evolve. Also the utilization converges to 

a non-zero value for moderate to large systems . The confrmation of the EW universality 

https://Fig.5.10
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Figure 5.7 Family-Viseck scaling is done when   �	�
� , where is the frst cross-over &% 

time for the width. The curves fall exactly on the top of each other at the early growth 
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Figure 5.8 Family-Viseck scaling is done when � � �	�
� % , where �&% is the frst cross-over 

time for the width. The curves fall exactly on the top of each other at the early growth 

phase and the saturation phase. 
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Figure 5.9 Family-Viseck scaling is done when � � �	�
� % , where �&% is the frst cross-over 

time for the width and the subtraction of the random deposition phase as an attempt to see 

the data collapse. 
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� �˘class in the steady state is given by measuring the full width distribution � � . This 

implies that the utilization approaches a non-zero, fnite value. The two main issues studied 

by computing PDES are the interface width and the utilization. In conservative PDES, it 

is showed that for any fnite values of and N � , the width never grows to infnity and 

the utilization converges to a non-zero value. This implies that the conservative update 

algorithm for fnite N is scalable in the ring communication topology. ���� 

5.2 Future Work 

In this thesis work was done for the two worst case scenerios N � ��� and N � �   . The 

fat-substrate initial condition is responsible for the the existence of the initial non-scaling 

time regime. It indicates that the length of this initial phase, � % is a nonuniversal parameter 

which depends only on the type of deposition and the model. Though the initial time is a 

non-universal parameter, the existence of it is universal. The steady state of the interface 

width for � &%� follows FV scaling, giving excellent data collapse. The conclusion is that 

the model follows the KPZ universality class both for the previously studied N�� � � and 

for N � �   . The value of their roughness exponent may depend on the deposition type. A 

similar kind of behavior is expected when the computational load per PE is more than two 

and also the system size grows to large values. 

The original work consisted of studying in depth the N � �   case. This was done, 

including unsuccessful attempts, as seen in Fig.5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10. 
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