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This research studies lateral transshipment of critical medical items that have low 

demands. Due to the high prices of medical items and their limited shelf lives, the 

expirations contribute significantly to the current prohibitively high cost of the 

healthcare system. Lateral transshipment between hospitals in a medical system 

provides opportunities to reduce the expiration costs. This paper studies the decision 

rule for lateral transshipment in a two-hospital system and extends the rule for the 

multiple-hospital cases. The decision rule takes the myopic best action by assuming 

no transshipments will be performed in the future. Numerical experiments 

demonstrate significant cost savings and the decision rule has a small gap from the 

upper bound of the total saving. The savings are more considerable when the 

difference of demand rates at different locations is large and the life time of the 

medical item is not too long or too short.   
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CHAPTER I 

INTRODUCTION 
 
 

1. Health Care Industry: Current Situation 

The high cost of health care in United States has some consequences on social 

life such as the rise in number of uninsured people, which has reached 47 million in 

the U.S. (California Health Care Foundation, 2005). Between 2000 and 2006, 

employment based health insurance premiums have seen an 87 percent increase while 

cumulative wage growth was only 20 percent and cumulative inflation was 18 percent 

(The Henry J. Kaiser Family Foundation, 2006). The impact of rising health care costs 

on social life has also been observed by different surveys. Those surveys revealed that 

one out of four American families had a problem in paying medical care costs in 2006 

(ABC News/Kaiser Family Foundation/USA Today, 2006), while 42 percent told they 

were very worried because they could not afford health care services (The Henry J. 

Kaiser Family Foundation ,2004). 

The Organization for Economic Co-operation and Development estimated that 

total health care spending per capita was $5,711 in 2003 (OECD, 2006) and $6,700 in 

2005 (Catlin et al., 2007) in United States. When this measure is compared with other 

countries such as Australia, Belgium, Canada, France, Sweden, and Switzerland for 

years 1970, 1980, 1990 and 2003, it is observed that the total expenditure is 

significantly higher in United States. Additionally, during years 1970, 1980, 1990 and 

2003; 7%, 8.8%, 11.9% and 15.2% of U.S. national income was spent on health care 
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respectively (OECD, 2006). The percentage of GDP spent on health care cost in 2003 

was at least three percent more than the other countries’ spending on health care 

analyzed in the same study (OECD, 2006). It is projected for U.S. that in the next 

decade this percentage will account for 20 percent of GDP (Borger et al., 2006). 

Another way to look at the spending in healthcare is to compare it with the total 

spending in other industries. In 2003, health care expenditure was 4.3 times that of 

national defense (California Health Care Foundation, 2005). 

Reducing health care systems’ cost will help to alleviate the pain in this area. 

Among all the cost categories that contribute to the total cost, inventory cost is one of 

them with the largest share. Estimations indicate that inventory investment account 

for 10% to 18% of net revenues in health care industry (Holmgren and Wentz, 1982; 

Jarett, 1998). It must be kept in mind that health care industry carries a lot of items 

with an expiration date which makes the burden even worse. Inventory management 

of perishable items needs special attention because expired goods are not just 

downgraded but they become worthless. This makes expiration dates one of the most 

important issues because once it passes, the product cannot be sold. To meet the 

challenges and opportunities perishable products bring, health care systems put 

special emphasis on inventory control policies and logistics practices. As an example 

of an opportunity in health care industry, any cost saving in inventory investments 

will lead to increased profitability (Nicholson et al., 2004). Although the problem of 

perishable inventory management in pharmaceutical industry is addressed rarely, for 

medical items such as blood, numerous studies can be found in literature.  

In the healthcare industry, 60% of the inventories are critical supplies 

(Nicholson et al. 2004). Because of their importance to save people’ lives, healthcare 
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providers have to keep a high availability for critical supplies such as pharmaceutical, 

surgical supplies, and blood. The items must be immediately available when they are 

required, so the items must be kept in the on-site inventory.  At the same time, the 

medical items typically have a limited lifetime. When they pass their expiration dates, 

they must be discarded with no or little salvage value. For slow moving items, the 

high availability requirement and the limited lifetime cause a high percentage of 

expired items. This results in increased cost of medical inventory investments and 

affects the cost of whole healthcare system. Table 1 shows some expensive medical 

items along with their shelf lives and therapeutic indications. 

Together with inventory management of perishables, the logistics of these 

systems is very complicated to manage due to high product values and the need of 

supplying high levels of service. Pharmaceutical industry is referred in literature as 

being “on or near the cutting edge of logistics practices” (Loar, 1992) along with food 

and chemical industries. Inventory pooling via lateral transshipments is an efficient 

strategy to reduce system costs or individual location costs used by the authors. In 

lateral transshipments, items are transferred between two facilities which are both in 

the same echelon. 

 
 
 

 

 

 

Figure 1.  
 

Lateral Transshipments 

 

Transshipments 

Replenishment Location 1 

Replenishment Location 2 

Distribution 
Center 



 4

Table 1  
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 In most of the cases, lateral transshipments are required due to emergency 

situations such as stock-outs (Axsater, 1990). For example, in case of a stock-out a 

retailer may request a lateral transshipment from another retailer. However, if the 

retailer prefers to order items from the distribution center, this will be a replenishment 

since goods will be transferred between two different echelons. 

Lateral transshipment of the critical medical items that have low demand rate 

and limited lifetime can result in cost savings by reducing the chance of expiration. 

Assume one location has two near-to-expiration items. Another location has one new 

item and needs one more to replenish its inventory. Laterally transferring an old item 

from the second location to the first one and replenish the inventory of the first 

location with a brand-new item can reduce the chance of expiration compared to the 

case of replenishing the second location’s inventory directly with a new item. 

 
 

2. Problem Statement 

This study considers the inventory problem of an expensive and slow moving 

critical medical item in a healthcare system with two locations (i=1, 2). The demand 

at each location is reasonably assumed to follow a Poisson process with the rate of λi. 

The three conditions to validate a Poisson process is well met in this problem setting: 

large population size, low arrival rate from each source (patient), and independent 

arrivals from sources. In addition, memoryless property is satisfied via the first two 

conditions. Since the population size is large and each patient has a low arrival rate, 

an arrival from a specific patient does not have any effect on the overall system. 

To keep a high availability at each location as discussed in Introduction, each 

location is assumed to keep an inventory of two units of this item. A new item is 
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assumed to expire and have no salvage value in T days if it is not used. When one unit 

is consumed or expired, a new order for one unit is immediately placed and a brand 

new unit, which costs v, arrives. Lead time is assumed to be zero because 

replenishment lead time is negligible compared to T and 1/λi. At any moment, the 

inventory status at location i can be described by the ages of the two units, 1
ia  and 2

ia , 

where 0≤ 1
ia ≤ 2

ia < T. 

 
 

3. Objectives of Research 

For general critical medical items, very little study has been conducted to 

reduce the waste caused by expired items. This paper will study how to reduce the 

number of expired items in a medical inventory system with two locations by using 

the concept of lateral transshipment. The work can be easily extended to the system 

with more than two locations. In the literature, transshipment is typically used to 

reduce lead time and shortage (Minner et al. 2001, Grohovac and Chakravarty 2001) 

because the transportation lead time from another demand point could be shorter than 

the lead time from the central distribution center. In this paper, we will derive and 

evaluate a decision rule to transship medical items from one demand point to another 

demand point in order to reduce the possibility of expiration.  
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CHAPTER II 

LITERATURE REVIEW 
 
 

1. Perishable Inventory Management 

This topic is mainly related to two research areas in the literature: perishable 

inventory management and inventory pooling via transshipments. The inventory 

research of perishable items, with fixed or stochastic lifetime, goes back to early 70’s 

(e.g., Frankfurther 1974). Under periodic review, when the shelf life of the 

perishables is one period, the problem can be simplified into generic newsboy 

problem. Van Zyl (1964) pioneered the research on perishable items with multiple 

period shelf lives. His formulations are generalized for m-period lifetimes by Nahmias 

(1975) and Fries (1975) under zero lead time assumption. Optimal order quantity is 

also provided when the shelf life is two periods and the lead time is L periods 

(Williams and Patuwa, 1999). Later, Williams and Patuwa (2004) investigate the 

same model to find out the impact of ordering, holding, shortage and outdating costs 

on the optimal ordering quantity. As the unit shortage cost becomes larger, more 

items are ordered. For the other three cost drivers, an inverse relationship is identified. 

Among all four cost drivers, the unit ordering and the shortage costs are the most 

effective factors influencing the reordering point and order quantity. Nandakumar and 

Morton (1993) derive a myopic heuristic for perishables with finite known lifetimes 

while considering lost sales.  
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When perishable inventory systems are under continuous review policy, lead 

times are assumed to be either zero, constant or exponential. Weiss (1980) determines 

the optimal ordering policy for a model with zero lead time and limited shelf life 

when continuous (s,S) policy is implemented. Schmidt and Nahmias (1985) consider 

positive lead times for an item with constant shelf life. The demand is generated 

according to Poisson process and sensitivity analyses are performed for different 

system parameters such as constant lead time period and shortage cost. Tekin et. al 

(2001) suggest a new ordering policy which considers the remaining shelf lives of the 

perishables in addition to (Q, r) values for inventory systems with fixed lifetimes and 

positive lead times, L. For models with exponential lead times and exponential shelf 

lives, Kalpakam and Sapna (1994) investigate a system with Poisson demand where 

ordering policy is (s,S) and outstanding replenishment orders cannot exceed one at 

any point in time. Liu and Yang (1999) relaxed this restriction for the same inventory 

model and allow backordering. 

In a perishable inventory system, the optimal reorder point depends not only 

on the inventory level of the system but also on the age of the perishable products 

(Nahmias 1982).  The total cost of the system typically includes fixed ordering, 

inventory holding, shortage and outdating costs (Ravichandran 1995). Chiu (1995) 

presented a method to find a continuous (Q,r) ordering policy by minimizing the total 

expected cost per unit time with an approximation for the expected decay of the 

current order at the size of Q. The ordering policy may also be influenced by customer 

types (Katagiri and Ishii 2002). Some customers are only interested in the newest 

items and are given a higher priority while others are assigned a lower priority 

because they are willing to buy older items in return for a price discount.  
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Among all the critical inventories, the blood inventory, which has a lifetime of 

about 21 days, has been intensively studied in the literature. Jennings (1973) proposed 

inventory control policies for the blood inventory management at the levels of 

individual hospitals and regional blood banks. Goh et al. (1993) suggested a two-stage 

model for the blood inventory management. First stage holds the fresh items while the 

second stage has relatively older items. If the units in the first stage are not demanded 

until a predefined time, they will be transferred to the second stage. In the second 

stage, these items will become useless if they are not requested until another specified 

time. On the other hand, Brodheim et al. (1975) worked on the optimal delivery 

policies for scheduled blood deliveries to hospital blood banks. Although the research 

subject is blood inventories, the model can also be extended to other types of 

perishable items such as food inventories.  

 
 
2. Inventory Pooling via Transshipments 

Similar to medicines in the healthcare industry, spare parts or repairable items 

could also be expensive and slow moving (Cohen et al. 1986 and Axsater 1990) in the 

manufacturing setting. The concept of inventory sharing via lateral transshipment is 

introduced to reduce lead time under emergency situations such as stock-outs. In a 

single echelon, N-location continuous-review (S-1, S) inventory system with a single 

slow moving expensive item, inventory pooling with a least cost transshipment rule 

can result in 19% to 80% cost saving for individual locations and 68% cost 

improvement for the overall system (Kukreja et al. 2001). In a supply chain with one 

distribution center and N retailers, retailers are eager to pool their inventory since they 

can support each other to be less vulnerable in cases of stock-outs.  However, the DC 
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is reluctant to have retailers to pool inventory in this system because its own inventory 

becomes less important (Grahovac and Chakravarty 2001). Lee (1987) proposes three 

sourcing rules for inventory sharing: random sourcing, comparison of stock levels and 

choosing the location with the maximum stock level or considering the location which 

has fewest outstanding orders and largest on-hand stock.  

Evers (2001) investigated the “all or nothing” rule for transshipments in a two-

location network and proposed a simple but efficient heuristics considering the 

service levels required by customers. The minimization of overall expected costs 

provides critical values which will determine transshipment usage. Minner et al. 

(2003) extended Evers’ research by allowing partial transshipments and including 

stock-out cost instead of explicitly including a service level and demonstrated a better 

performance. The original and the improved heuristics were compared by a 

simulation. Considering more complicated transshipment policy and allowing a 

retailer to reject a transshipment request from other retailers, Zhao et al. (2006) 

examined the efficiency of transshipment on a very large decentralized network 

consisting of infinite number of retailers, in which the decisions of a particular dealer 

has no effect on others’ decision making, and on a two-retailer network in which the 

decisions of a retailer may have an impact on the other’s actions. Hu et al. (2005) also 

utilizes dynamic programming as Zhao et al.(2006), but their focus is to show the 

effect of transshipments on overall inventory cost in a periodic review (S,s) system. 

An exhaustive review of inventory pooling can found in Wee and Dada (2005). They 

analyze a two echelon stochastic optimization problem under five different 

transshipment rules. Retailer only (RO) rule allows only retailers to be the source of 

the transshipment and retailer first (RF) rule relaxes this assumption: When all 
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retailers are out of stock, transshipments can be sent from warehouse. On the contrary, 

warehouse first (WF) rule identifies warehouse as the source as long as it has positive 

inventory. Warehouse only (WO) rule does not permit transshipments in the retailer 

level and nopooling rule (NP) does not share inventory within the system. Given the 

complexity of finding the optimal transshipment policy for multi location and multi 

echelon inventory systems, research has shifted towards development of heuristics. 

Luo and Wang (2005) examine N-location network and suggest a genetic algorithm 

based heuristics for maximizing total profit for all locations.  

Except Grahovac and Chakravarty (2001), above cited works consider 

transshipments to satisfy actual customer demand on a specific location after a 

demand occurs. There is another stream of research focusing on the use of 

transshipments before demands are materialized. This kind of transshipments helps to 

reallocate the inventory throughout the supply chain at the beginning of each period 

(Agrawal et al. 2004).  

Latest research on the transshipment theory tends to explore decentralized 

networks in which each member is an independent decision maker trying to maximize 

its own objectives other than the entire system’s goals. Dong and Rudi (2004) studied 

the impact of transshipments on the resulting profits of the members of a supply chain 

with a manufacturer and N retailers. Zhang (2005) extended the work by relaxing the 

assumption of retailers facing normally distributed demands and supposing general 

demand distributions. Sosic (2006) considered a decentralized system in which 

transshipments among the retailers are permitted and examined regarding the effect of 

retailers’ decisions on the stability of the grand coalition in the long term. Although 

numerous related work can be listed for centralized supply chains pooling the whole 
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inventory, such as the multi-location model proposed by Kukreja and Schmidt (2005) 

motivated by a real case, the research on the inventory transshipment in the healthcare 

industry is very limited. 

In this research, transshipment opportunities are assumed to be available when 

a demand happens or one medical item expires. Due to the finite lifetime of medical 

items, remaining lifetimes should be taken into consideration to make transshipment 

decisions. This paper will focus on a centralized system and not allow a location to 

reject a transshipment request. 
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CHAPTER III 
 

MODELLING A CRITICAL MEDICAL INVENTORY SYSTEM WITH TWO 

LOCATIONS 

 
1. A Critical Medical Inventory System with Two Locations Without 
Transshipments 
 
 
1.1 Long-Run Analysis 

When transshipment is not allowed, the inventory at each location evolves 

independently. Therefore, we just need to analyze the inventory at one location i. In 

the long-run analysis, one replenishment (0th replenishment) is assumed to happen at 

t=0 (i.e., 01 =ia ). Define n
iX  as the duration between the (n-1)th and nth 

replenishments at location i and )(xF n
i  as its cumulative distribution function . The 

replenishment can be caused by a patient demand or an expiration of one existing 

unit. Random number 1
iX , which is in the range of [0, 2

iaT − ], has a cumulative 

distribution function )(1 xFi  as 

.
0

1
1

2

2
1

TxT-a
T-ax

     e(x)F
i

i
xλ

i

i

≤≤
<≤

⎩
⎨
⎧ −

=
−

     (1) 

If the first patient request arrives before 2
iT-a , its arrival time is the inventory 

replenishment time. If the first patient request arrives after 2
iT-a , one item will perish 

at 2
iT-a , triggering a replenishment. Because (x)Fi

1  is not a continuous function 
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at 2
iT-a , In order to conduct the long-run analysis, we first establish the following 

lemma. 

 

Lemma 1: If the cumulative distribution function of 1−n
iX  is )(1 xF n

i
− , the cumulative 

distribution function of n
iX is 

x)(TFe(x)F n
i

xn
i

i −−= −− 11 λ (2)

 

Proof: 1- (x)F n
i = Prob{Xn>x} 

= Prob{The time between the next demand request after the (n-1)th 

replenishment  

            and the (n-1)th replenishment time > x} × Prob{ TxX n
i <+−1  } 

= x)(TFe n
i

xi −−− 1λ .  

Please note the time between the next patient request after the (n-1)th 

replenishment and the (n-1)th replenishment moment is independent from the random 

variables 11,..., i
n
i XX − .              � 

(x)Fi
1  in (1) can be derived by using (2) and the fact of 2

2
0

1
0

i

i
i ax

ax
     (x)F

≥
<

⎩
⎨
⎧

= .  

By using (2), we have Lemma 2 for the distribution function of n
iX  for given initial 

states. 

Lemma 2: For a given initial state of 2
ia  and 01 =ia ,  

If n is an even number, the cumulative distribution function of n
iX  is 
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−−−−−
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axeeee
(x)F

i

n

k
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n

k

TkxTTn

n
i
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0

2
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)12/(

                  )(1
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λλλ
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(3)

 

If n is an odd number, the cumulative distribution function of n
iX  is 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−<≤−+−

≤≤−−+
=

∑

∑
−−

=

−−−−
−

−

−−

=

−−−

2
12/)1(

0

2
)1(

2
12/)1(

0

0)(1

                 )(1

i

n

k

TkxTx
Tn

i

n

k

TkxT

n
i

aTxeeee

TxaTeee
(x)F

iii
i

i

iii

λλλλ
λ

λλλ
 

(4)

 

Therefore, we have the following asymptotic property of (x)F n
i : 

Theorem 1:  When n→∞, T

x
n

i i

i

e
e(x)F λ

λ

−

−

−
−

→
1
1  in the range of [0, T] with probability 1.  

Proof: When n→∞, Tn ie λ)12/( −− , the second term in (3) for 20 iax ≤≤ , and 
xTn

i
i

e
λλ

−
−

−
2
)1(

, 

the second term in (4) for 20 iaTx −<≤  approach zero. The theorem can be obtained 

directly following T

n

k

Tk

n i

i

e
e λ

λ
−

=

−

∞→ −
=∑

1
1lim

0
.                                                                    � 

In the long-run analysis, the cumulative distribution function of the time 

between two replenishments asymptotically approaches a continuous function, which 

is independent from the initial state 2
ia .  

Theorem 2:  In the long-run, the expected duration between two consecutive 

replenishments at location i is T

T

i

n
in i

i

e
TeXE λ

λ

λ −

−

∞→ −
−=

1
1][lim .  

Theorem 2 can be easily proven by using Theorem 1. Theorem 2 implies the 

following three facts:  
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1) The long-run expected duration between two consecutive replenishments is 

independent from the initial state 2
ia .  

2) The long-run expected duration between two consecutive replenishments is 

less than the expected interarrival time of patient requests.  

3) The long-run expected duration between two consecutive replenishments is an 

increasing function in the lifetime of the medicine, T, when T > 0 because 

0
)1( 2

2

>
−

+−
= −

−−−

T

T
i

TT
i

i

iii

e
Teee

dT
dE

λ

λλλ λ  for T > 0. 

 
 
1.2 The Impact of the Initial State (The Ages of the Two Items) 

In order to analyze the system with two locations and derive a transshipment 

rule, the impact of the initial state (i.e., the ages of the two units) at any moment (not 

just at a replenishment moment) on the total long-run cost of one location has to be 

evaluated.  

Using relationship (2) in Lemma 1 and considering the ages of both units, we 

can have the following Lemma 3:  

Lemma 3: For a given initial state of 2
ia  and 1

ia , the cumulative distribution of 

n
iX for n=1 is 
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=
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                 1 
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If n is an even number>1, the cumulative distribution function of n
iX is 
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If n is an odd number>1, the cumulative distribution function of n
iX is  
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It is easy to verify that both (6) and (7) will approach T

x

i

i

e
e

λ

λ

−

−

−
−

1
1  when n→∞, 

which is consistent with Theorem 1. Please also note (x)Gn
i  is continuous at 1

iT-a  

when n is an even number in (6) and at 12
ii aT-a + when n is an odd number in (7). 

Based on distribution functions (x)Gn
i , we can furthermore calculate the expected 

value for n
iX  and obtain the following theorem for ∑

=∞→

n

j

j
in

XE
1

][lim  for a given initial 

state ),( 21
ii aa . 

Theorem 3: The long term impact of the initial state ),( 21
ii aa on the performance of 

location i without transshipment is:  
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The detailed proof of Theorem 3 can be founded in the Appendix A.  

Because each item costs v and has zero salvage value after expiration, 

Theorem 2 and Theorem 3 lead to the following theorem to evaluate the impact of the 

initial state ),( 21
ii aa on the total cost in long-run when there is no transshipment.  

Theorem 4: The long-run impact of the initial state  ),( 21
ii aa  on the total cost is 

featured by 
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Theorem 2 and (8) directly lead to (9). To facilitate the further analysis, we define the 

function of ),,,( 21 Taah iii λ to represent the long-run cost impact of the initial state.  
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It is easy to obtain the impact of the initial state 1
ia  on the long-term cost when a 

replenishment just happens (i.e., 01 =ia ) is that  
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2. A Decision Rule for Transshipment between Two Locations 

In this section, we consider a transshipment policy in order to reduce the cost 

incurred by expiration. When one medical item is consumed or expires at location i, a 

replenishment can be done in two ways, 1) a new item is ordered and immediately 

received at location i, or 2) an existing item at the other location j≠ i  is transshipped 

to location i and a new medicine is ordered and immediately received at location j. 

The lead time of transshipment is also assumed to be negligible compared to the long 

lifetime T and interarrival times of demands. In this paper, we only evaluate 

transshipment decisions when one replenishment is required. In other words, we do 

not consider exchanges between two unexpired items in order to simplify the analysis 

and save transportation cost. We assume that each transshipment from location i to the 

other location incurs the cost of ci.  

At a replenishment moment, the impact of a transshipment is to change the 

initial states of both locations and incurs a transshipment cost.  Assume a 

replenishment is required at location i (i.e., a demand request happens at location i or 

the older item at location i expires). Without a transshipment, 01 =ia . The initial state 

of location i is )0( 2
i,a  and the initial state of location j is )( 21

jj ,aa  at the same moment. 

The impact of this initial state without a transshipment on the long-run cost is  

),,,(),,,0( 212 TaahTah jjjii λλ +  (11)
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The transshipment policy also needs to determine which item, the older or 

newer one, at location j should be shipped to location i if it is decided to do a 

transshipment. In other words, at each replenishment epoch at location i, three 

possible actions comprise the action space, no transshipment, transshipment with the 

item of 1
ja , and transshipment with the item of 2

ja . We define the three actions as dk 

(k=1,2, and 3) respectively and their impact on the long-run cost as IM(dk). This paper 

proposes to use the myopic-best action by assuming there are no more transshipments 

in the future (see Tijm 2005 for the logic behind the policy based on the myopic-best 

actions). The myopic-best action is defined by )}({minarg
3,2,1

*
k

k
dIMk

=
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CHAPTER IV 

NUMERICAL EXPERIMENTS 
 
 

In this section, we conduct numerical experiments to examine the performance 

of the transshipment rule developed in Chapter III regarding the total cost. The 

healthcare system consisting of two hospitals is illustrated in Figure 2.  In the figure, 

Bi is the number of medicines bought by location i, Pi is the number of medicines 

perished at location i, Ai is the number of demand requests at location i, and Ri is the 

number of transshipped medicines from location i to the other location. For simulation 

purposes, for each location, we have Bi+Rj=Ri+Ai+Pi at the end of a simulation run. 

 
 

 

Figure 2.  
 

A Two-location Network with Transshipments 

 
 

B1 

Hospital 1 Hospital 2

B2 

A1 A2 P1 P2 

R1

R2
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The demand arrival process is assumed to be a Poisson process. The 

parameters used in the experiments are listed in Table 2. Different data sets mean 

different arrival rates at the two locations. In the first data set, first location’s arrival 

rate is more than 6 times of the second location’s arrival rate whereas this ratio is 5 in 

the second data set and 2.5 in the third set. For each data set, numerical experiments 

are conducted for various medicine lifetimes. 

 
 

Table 2 
 

Parameter Values for Numerical Experiments 
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Without transshipment, there is no interaction between the two locations and 

the total cost is computed by v(B1 + B2) for a simulation run. The transshipment 

decision rule defined by (12) chooses the myopic lowest cost option among three 

actions. For a centralized network with transshipment as illustrated in Figure 2, total 

number of medicines bought by the system will be calculated by Bi+Bj = Ai+ Pi+ 

Aj+Pj. The total cost under the transshipment policy is determined by two terms: the 

costs stemming from buying new medicines and the costs stemming from the 

transshipments. Transshipment costs are typically low compared to the medicine price 

and can be calculated by i
i

i Rc∑
=

2

1
. Please note that the myopic-best decision rule does 

not lead to the optimal transshipment policy in long-run. 

Simulation is used to evaluate the performance of the decision rule by 

comparing it to the case without transshipment and to the case providing an upper 

bound for maximum saving. The upper bound is achieved by assuming the two 

locations are consolidated into one location with arrival rate λ1+ λ2 and holding four 

units in inventory. In order to evaluate the performance of the decision rule defined by 

(12), the total cost obtained from this simplified one-location system is compared to 

the total cost of the two-location network under the transshipment policy without 

considering any transshipment costs (i.e., let c1=c2=0 in (12)). Since no transshipment 

cost is incurred in the upper bound case, it is fairer and consistent to define zero 

transshipment costs to evaluate the gap between the performances.   

The numerical experiment results are listed in Table 3. For each data set, the 

first column displays the total cost in millions without transshipment while the second 

column shows the total cost in millions under the transshipment policy considering 
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the transshipment costs (c1=$20 and c2=$30). The third column is the percentage of 

improvement brought by the transshipment policy. The fourth column is the upper 

bound percentage of improvement brought by assuming there is only one location. 

The fifth column is the percentage of improvement brought by the transshipment and 

assuming the unit transshipment costs are zero (c1=c2=$0). 

As shown in Table 3, the total cost under the transshipment policy is 

significantly lower than the cost under no transshipment policy. The relationship 

between saving caused by transshipment and lifetime T is illustrated for data set 1 in 

Figure 3. The dashed line represents the percent of improvements under different T 

values while the solid line shows the amount of savings. This figure visualize that 

both the percent of improvements and the saving amount curves have bell-like shapes. 

It is interesting that the benefit of the transshipment policy is small if T is too small or 

too large. The benefit of transshipment increases in T to a certain point and then 

decreases in T. Before the peak point, when the T value is very small, although the 

transshipment policy is able to decrease the total cost, it cannot avoid many 

expirations of the medicines due to short lifetime. After the peak point, the T value 

becomes large enough to provide sufficient time for a medicine to have a customer 

arrival regardless of its location. This will result in reduced total number of perished 

items. The same pattern in the realized improvements is observed with other two data 

sets. The third data set, however, has a much larger peak position (T=810) because 

arrival rates are low in it. Since the advantage of transshipping is not significant when 

the arrival rates are very low, transshipment policy in the third data set is not as 

effective as the other data sets. Please note that the upper bounds of saving that can be 
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achieved for different T values are also relatively smaller in the third data set than the 

first two sets. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  

 
Saving and Percent of Improvement of the Transshipment Policy for Data Set 1 

 
 

Figures 4, 5 and 6 are plotted to compare the saving caused by the 

transshipment rule and the upper bound of the saving. Please note transshipment costs 

are not counted when we calculate upper bound. For a fair comparison, we also 

consider the case in which the locations are allowed to make transshipments without 

any transshipment cost.  
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Table 3 
 

 Numerical Results with the Sensitivity Analysis on T 
 

 
 
 

 
 

 

 

 

 

 

 

Figure 4.  
 

Percent Improvements of Transshipment Policy and Upper Bounds for Data Set 1 
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Comparing three lines in Figures 4, 5 and 6, we can see the myopic-best 

decision rule work well regarding its gap from the upper bound. The optimal 

transshipment rule cannot improve the performance much for data set 1 and 2 

compared to the decision rule (12), especially when T is large. For data set 3, the 

optimal transshipment rule may have more savings compared to the decision rule  

(12). In other words, the decision rule (12) works well when the arrival rates at the 

two locations are significantly different. Beyond these three data sets, we test more 

arrival rates and observe similar results.  

 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 5.  
 

Percent Improvements of Transshipment Policy and Upper Bounds for Data Set 2 
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Figure 6.  
 

Percent Improvements of Transshipment Policy and Upper Bounds for Data Set 3 
 
 

We also conduct numerical experiments on different arrival rates λi beyond 

the three data sets. If the arrival rates of the locations differ from each other greatly, 

the benefit of the transshipment policy is large. Intuitively, in such a case, older 

medicines should be transshipped to the location whose arrival rate is higher. As the 

arrival rates become closer, the improvement achieved by the transshipment policy is 

expected to be smaller. Figure 7 depicts such a pattern with the same cost parameters 

shown in Table 2 and T = 270 days. The arrival rate for the first location is fixed at 

0.01 units per day, while the second arrival rate takes values between 0.001 and 0.05 

units per day. The detailed results are available in Table 4. When the two arrival rates 

are the same, although the percent improvement is relatively small, the transshipment 

still causes a significant cost saving. Once the arrival rate of the second location 

exceeds the rate of the first one, the improvement starts to increase because of the 
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differentiation of the arrival rates but it never reaches the highest improvement 

achieved when λ2 is small due to smaller expiration chance.  

 

 
Figure 7.  

 
Sensitivity Analysis on λ2 
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Table 4  
 

Results for the Sensitivity Analysis for λ2 
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CHAPTER V 

EXTENSIONS AND CONCLUSIONS 
 
 

The transshipment decision rule (12) can be easily extended to the case with 

more than two locations.  In a three-location network, for example, there are five 

possible actions. Assuming that an item at location 1 is just used or expires, the long-

run relative costs of the five possible actions are 
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Here, cij is the unit transshipment cost from location i to j. The decision is to 

choose the action with the least long-run relative costs. The number of actions at any 

decision moment for a network with N locations is 2N+1, which is polynomial and 

computationally tractable.  

This research studies lateral transshipment of critical medical items that are 

slow moving. To keep high availability, the healthcare providers are assumed to hold 

two units in the inventory and replenish it immediately when one unit is used or 
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expires. The low demand and limited life time cause expensive medical items to 

expire frequently. Lateral transshipment between hospitals can help to reduce 

expiration and therefore reduce the total cost. In this study, the decision rule for lateral 

transshipment in a two-hospital system is investigaed. The decision rule is derived 

based on a myopic comparison of long-run relative costs among possible actions 

assuming no transshipment in the future. The numerical experiments demonstrate 

significant cost savings achieved by the proposed transshipment decision rule. The 

developed myopic-best decision rule works well regarding the gap from the upper 

bound of the total savings. The sensitivity analysis of the life time of the medical item 

and demand arrival rates shows the savings are more significant when demand rates at 

locations are more different and the life time of the medical item is not too long or too 

short. The decision rule can be easily extended to the case in which there are more 

than two locations.  

This paper only studies the myopic-best decision rule because it is difficult to 

derive the long-run performance and the impact of initial states for the system 

implementing the developed transshipment rule. In other words, it is hard to obtain 

the long-run relative value of actions based on the current transshipment rule. 

Therefore, the developed transshipment rule is not optimal and may be improved. 

Numerical experiments also show that there is still some space for improvement, 

though not very large, for some data sets based on the gap of the current saving 

percentage from the upper bound percentage. One possible extension to this research 

is to establish a continuous-time Markovian Chain by approximating the problem with 

limited state space.  
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PROOF OF THEOREM 3 
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Based on (5), (6), and (7), we have  
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If n is an even number>1, the cumulative distribution function of Xn is  
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for n>1, the first and the second terms, no matter n is odd or even, are independent 
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