
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-12-2016

Leveraging PLC Ladder Logic for Signature Based IDS Rule Leveraging PLC Ladder Logic for Signature Based IDS Rule

Generation Generation

Drew Jackson Richey

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Richey, Drew Jackson, "Leveraging PLC Ladder Logic for Signature Based IDS Rule Generation" (2016).
Theses and Dissertations. 2943.
https://scholarsjunction.msstate.edu/td/2943

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2943?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Template C v3.0 (beta): Created by J. Nail 06/2015

Leveraging PLC ladder logic for signature based IDS rule generation

By
TITLE PAGE

Drew Jackson Richey

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Electrical and Computer Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

August 2016

Copyright by
COPYRIGHT PAGE
Drew Jackson Richey

2016

Leveraging PLC ladder logic for signature based IDS rule generation

By
APPROVAL PAGE

Drew Jackson Richey

Approved:

Sherif Abdelwahed
(Major Professor)

Thomas H. Morris

(Committee Member)

David A. Dampier

(Committee Member)

James E. Fowler

(Graduate Coordinator)

Jason M. Keith

Dean
Bagley College of Engineering

Name: Drew Jackson Richey
ABSTRACT

Date of Degree: August 12, 2016

Institution: Mississippi State University

Major Field: Electrical and Computer Engineering

Major Professor: Dr. Sherif Abdelwahed

Title of Study: Leveraging PLC ladder logic for signature based IDS rule generation

Pages in Study: 80

Candidate for Degree of Master of Science

Industrial Control Systems (ICS) play a critical part in our world’s economy, supply

chain and critical infrastructure. Securing the various types of ICS is of the utmost

importance and has been a focus of much research for the last several years. At the heart of

many defense in depth strategies is the signature based intrusion detection system (IDS). The

signatures that define an IDS determine the effectiveness of the system. Existing methods for

IDS signature creation do not leverage the information contained within the PLC ladder logic

file. The ladder logic file is a rich source of information about the PLC control system. This

thesis describes a method for parsing PLC ladder logic to extract address register

information, data types and usage that can be used to better define the normal operation of

the control system which will allow for rules to be created to detect abnormal activity.

ii

DEDICATION

This thesis is dedicated to my wife, Kristen, and my three boys: Hayes, Dillon and

Owen. Without your encouragement and support I would have never reached my goal.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Thomas H. Morris for being patient with me and giving of

his time to assist me with this project. Thank you to Dr. Sherif Abdelwahed for being willing

to serve as my Major Professor and for holding me accountable to my timeline. Thank you to

Dr. David Dampier for being willing to serve on my graduate committee.

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ACRONYMS ... viii

CHAPTER

I. INTRODUCTION ...1

1.1 Background ..1
1.1.1 PLC Based Industrial Control Systems ...2
1.1.2 PLC Controllers ...3
1.1.3 PLC IO ...4
1.1.4 HMI ...5

1.1.5 Other Control System Devices ..7
1.1.6 Ladder Logic ...7
1.1.7 ICS Protocols ...8

1.2 Motivation ...9
1.2.1 Problems with ICS Security ..9
1.2.2 Risks of Poor ICS Security ..11
1.2.3 Types of ICS Attacks ...12
1.2.4 Sources of ICS Attacks ..16
1.2.5 Attacks on ICS ...18

1.3 Contribution ...21

1.4 Organization ..22

II. LITERATURE REVIEW ..23

2.1 Survey of Current ICS Security Methods ..23
2.1.1 Network Architecture ..25

2.1.1.1 Firewalls and Network Segregation ..26
2.1.1.2 Network DMZ ...28

2.2 Intrusion Detection Systems ..29
2.2.1 Anomaly-based IDS ..32

v

2.2.2 Signature-based IDS ..33

2.3 Defense-in-Depth ..36
2.4 ICS Specific IDS Techniques ..38

III. IDS SIGNATURE CREATION USING LADDER LOGIC44

3.1 Overview ...44
3.2 Address Register Usage ...44
3.3 Invalid Register Values ...45

3.3.1 Division by Zero ..45
3.3.2 Math Overflow ..46
3.3.3 Negative Value ..46
3.3.4 Invalid Address ..47

3.4 Testbed: SLC 500 and RS Logix 500 ..47

3.5 Converting Graphical Ladder Logic into Text ..51
3.6 IDS Rules Identified via Ladder Logic ...52
3.7 SLC 500 Ethernet Packet Format ..53
3.8 Ladder Logic Parser Program and Snort Rule Creation57

3.8.1 Division by Zero Rule Creation ..58
3.8.2 Math Overflow Rule Creation ...59
3.8.3 Negative Value Rule Creation ...61
3.8.4 Unused Address Rule Creation ...63

IV. TESTING AND EVALUATION ..65

4.1 Test Environment/Equipment ..65

4.1.1 PLC Configuration ..65
4.1.2 HMI Interface ..65
4.1.3 IDS Monitoring PC ..66
4.1.4 Network Layout ...66

4.2 Analysis of Ladder Logic ..67
4.3 Validation ..70

4.4 Implementation ..71

V. CONCLUSION ...73

5.1 Summary ..73
5.2 Future Work ...74

REFERENCES ... 76

vi

LIST OF TABLES

 1.1 Three Potential Sources of ICS Attack ...17

 2.1 Order of Importance: Confidentiality, Integrity, & Availability24

 3.1 Logix 500 Address Types ...50

 3.2 Command/Response Packet Byte Descriptions..55

 4.1 Rule Count for PLC Major Faults in Sample Ladder Logic Programs69

 4.2 Rule Count for Address Faults in Sample Ladder Logic Programs70

vii

LIST OF FIGURES

Figure 3.1 SLC Hardware ..48

Figure 3.2 PLC Ladder Rung and Text Representation ...52

Figure 3.3 Example Ethernet Command (top) & Reply (bottom) Packet54

Figure 3.4 Logix 500 DIV Instruction ...59

Figure 3.5 Logix 500 MUL, ADD & SUB Instructions ..60

Figure 4.1 Test Network Diagram ...66

viii

ACRONYMS

ACC Accumulator

ADD Addition Instruction

AI Artificial Intelligence

CI Computational Intelligence

COTS Commercial Off the Shelf

CPS Cyber Physical Systems

CTD Count Down

CTU Count Up

DCS Distributed Control Systems

DHS Department of Homeland Security

DIV Division Instruction

DOS Denial of Service

DMZ Demilitarized Zone

DPI Deep Packet Inspection

DTMC Discrete-Time Markov Chains

EMIDS Embedded Middleware-level Intrusion Detection System

FBI Federal Bureau of Investigation

HIDS Host-based Intrusion Detection System

HMI Human Machine Interface

ix

ICS Industrial Control Systems

IDS Intrusion Detection System

IO Input/output

IP Internet Protocol

IT Information Technology

JIT Just-In-Time

MAC Media Access Control

MTU Master Terminal Unit

MUL Multiplication Instruction

NIDS Network-based Intrusion Detection System

OPC Object Linking and Embedding for Process Control

PLC Programmable Logic Controller

PRE Preset

RFID Radio Frequency Identification

RTO Retentive Timer On

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SCARA Selective Compliance Assembly Robot Arm

S-IDS Sequence-aware Intrusion Detection System

SUB Subtraction Instruction

TOF Timer off Delay

TON Timer on Delay

VM Virtual Machine

1

CHAPTER I

INTRODUCTION

1.1 Background

Industrial Control Systems (ICS) arose out of the need to monitor and control

processes. The first industrial control systems were comprised of simple mechanical

switches, racks of electrical relays that created the logic and a human operator was

usually the brains of the operation using a board of pilot light indicators and sight glasses

as feedback to make important decisions about the operation of the system. These

systems proved to be impractical because they were expensive, difficult to wire and

making changes required a lot of process downtime. As technology improved, industrial

control systems advanced as well.

 ICS is a term that encompasses a variety of different control topologies [1]. ICS

can be complex SCADA (supervisory control and data acquisition) or DCS (distributed

control systems) systems that are distributed across a large area or they can be simple

PLC (programmable logic controller) controlled standalone pieces of equipment that only

provide local control such as a conveyor line or robot cell.

SCADA systems often provide control for systems that could be separated

geographically by miles, yet typically have a central supervisory station. These systems

can often be found controlling and monitoring our nation’s critical infrastructure systems

like the electrical power transmission and distribution system, water systems and railway

2

services. SCADA systems are made up of master terminal units (MTU) and remote

terminal units (RTU). The RTU, also referred to as the remote telemetry unit, is a field

device that provides input and output capability for a specific remote location. The RTUs

communicate with the MTU through either a wired or wireless connection. The MTU is

the master device that takes input from the RTU to make decisions about what needs to

happen in the process. It relays this information to the RTU to allow it to carry out the

specified function. Since SCADA systems play such an important role in critical

infrastructure systems, much research has been done in an attempt to make existing

systems more secure and create new systems that are secure by design.

PLC based systems are typically smaller in size and less distributed than SCADA

systems. A PLC might be found controlling a manufacturing line in a factory or

controlling a single assembly or test station. PLCs have found their way into SCADA

systems as well due to the lower cost and versatility of the equipment. In some instances,

they are used as field devices instead of the more application specific RTUs [2].

1.1.1 PLC Based Industrial Control Systems

PLCs evolved out of the need to replace large, complicated racks of electro-

mechanical relays that were once used to implement binary logic for hardwired control

systems. These relay racks were common in large industrial facilities for years, but were

difficult to maintain and debug. As technology advanced, PLCs were designed to replace

the logic of contacts and coils. The first PLC was created in the late 1960’s and was

called the Modicon. This name stood for MOdular DIgital CONtroller [3]. The “contact

and coil” terminology carried over to the ladder logic that was used to create the logic to

control the PLC. The PLC has evolved a great deal from a simple relay replacement and

3

now can control large, distributed systems using logic that mimics some of the most

advanced computer programming languages. PLC control systems, at a minimum,

consist of a processor, chassis (rack) and IO cards.

1.1.2 PLC Controllers

The PLC Controller or processor is the brain of the control system. Much the

same way that a computer processor controls the functions of a personal computer, the

PLC processor turns on outputs by making decisions based on inputs. PLC controllers

used to be large, bulky systems like the Allen Bradley PLC 2, but now systems like the

Allen Bradley Micrologix systems can offer much more processing power and memory in

a smaller physical package [4].

The type of processor to use is usually defined by the functionality required and

the budget. PLC manufacturers have learned there is a need for low-cost, simple control

solutions as an alternative to the higher priced, more complicated and expandable

systems. Sometimes a standalone, single station assembly machine only requires

minimal control functionality, whereas a large conveyor line or distributed control system

would require a processor that is expandable, has advanced communication options and

has the memory and processing power to service hundreds of IO (input/output) points.

More complicated control systems sometimes require more than one processor in

a PLC rack. The software can be written in a way to take advantage of the multiple

processor architecture. In addition, control systems sometimes use multiple processors

that are in separate racks. The processors communicate over the appropriate protocol

using what is referred to as messaging.

4

There are many different types of PLC manufacturers throughout the world and

each one has its own hardware architecture, ladder logic design software and

nomenclature for addressing input and output registers. For instance, Allen Bradley

refers to inputs as “I” and outputs as “O”, but Mitsubishi PLCs use “X” for inputs and

“Y” for outputs [5]. The internal registers are just as varied. The type of PLC

manufacturer to be used is sometimes determined by the geographic region. Allen

Bradley has a large presence in the United States, Siemens has a large presence in Europe

and Mitsubishi can be found in Asian countries.

1.1.3 PLC IO

The type of IO (inputs/outputs) available on a given type of PLC is even more

varied than the selection of processors. Card options range from simple discrete on/off

contact cards to highly specialized cards that communicate using a proprietary protocol.

An input card converts a voltage on the input contact and converts it into an

electrical signal that can be processed by the PLC processor. A simple discrete input card

could be used to monitor a 24VDC signal from a float switch in a water tank or a

mechanical limit switch in a silo. More sophisticated input cards might be used to

monitor a 0-10 VDC analog signal that corresponds to the flow rate of a liquid through a

pipe or a 4-20 mA analog signal that reports the temperature of a chemical tank. Other

types of input cards might receive serial data from a barcode scanner.

An output card converts an electrical signal from the processor to a voltage on the

contact of the card. Output cards can provide discrete or analog data. A discrete output

might provide 24VDC to turn on the coil of a solenoid that in turn turns on a valve of

water used to cool a plant. An analog output might provide a 0-10VDC control signal

5

used to proportionally open a control valve. At 0 VDC the valve might be closed. At 5

VDC the valve might be half-opened and at 10 VDC the valve would be fully open. This

proportional control is sometimes required when simple on/off functionality won’t

suffice. More complicated output cards might be used to send out serial data or

communicate with a database over a network connection.

Distributed IO can be incorporated when PLC control is required over a large

area. Often distributed IO is used when time, budget or system complexity makes it

unreasonable to run multiple hardwired signals to the remote location. Distributed IO can

provide remote monitoring and control capability at points at a great distance and

communicate to the processor via Ethernet or wireless. The ease of installation and

implementation has made distributed/remote IO a popular choice for many control

system integrators.

1.1.4 HMI

The HMI (human machine interface) of a control system provides the operator

with information regarding the system and provides an interface that the operator can use

to interact with the control system. A typical HMI is made up of pushbuttons, indicators

and often a graphical representation of the process. An HMI might report information

such as temperature values or flow values that have been received by an analog signal

and scaled to engineering units that are meaningful to the operator. The operator can use

this information to make decisions about the process. An HMI might have pushbuttons

that allows the operator to turn valves on and off or it might have a dial that allows the

operator to incrementally adjust the speed to a motor.

6

HMIs typically can be found as two types of hardware: dedicated panels and

computers. A dedicated HMI panel is a piece of hardware that was created for a specific

task. The panel has a processor and operating system that is designed only to run the

HMI program. The memory and communications of the panel are usually customized for

the runtime application. When a panel is used, a programmer will design an HMI

program using the manufacturer’s development software and a compiled program will be

loaded onto the panel. When the panel boots up, this program automatically executes.

The panel is very limited in functionality aside from runtime program.

Computers can also be used as a control system HMI. Computer HMIs can be

created using standard programming languages like Microsoft’s Visual Basic .NET [7] or

it might use a PLC manufacturer specific development environment like Rockwell

Software’s FactoryTalk View Studio SE [8]. The advantage of using a manufacturer

specific software package is that the communication channel is usually already built into

the package. Also, these software packages are usually streamlined for machine

monitoring and control. However, it is sometimes advantageous to write a customized

program using a standard programming language like .NET. Communication with other

computers, databases and interaction over the Internet or often more easily accomplished

using customized code. When taking this approach, a third-party communication channel

is sometimes used like an OPC server (OLE for Process Control). PLC manufacturers

usually provide this capability as well. OPC channels are available through Rockwell

Software’s RSLinx communication package.

7

1.1.5 Other Control System Devices

There are many other types of control system devices that might be found on a

typical control system network.

 Robots – Robotic arms range in size from small pick and place SCARA
(selective compliance assembly robot arm) robots to large robots that can
pick up payloads of hundreds of pounds like engine blocks in an
automotive assembly plant. Many robot manufacturers provide an
interface to communicate to PLCs using their native communication
protocol. This interface could be a hardware card that slides in the PLC
rack along with the processor or the interface might be a software add-on
that is imported into the ladder logic program.

 Drives – Drives are used to control all sizes of motors. Drives are
sometimes standalone and don’t interact with a PLC network, however
often they are tightly integrated with the PLC control system. Many PLC
manufacturers provide instruction blocks in the ladder logic that are
specific to drive communications. Since position feedback is so critical,
drive communications is typically done over fiber optic.

 Meters- There are a wide range of meters that can be found on a PLC
network. These meters might be scales that provide weight information,
thermometers that provide temperature feedback or specialized test
equipment like hipot testers or resistance meters.

 Data Collection Devices – Some PLC systems are highly integrated into
the plant data collection system. Many auto manufacturers are required by
the government to record and store assembly data for several years after
the product has been shipped. Since this data is so critical, the collection
of data is often interlocked with the manufacturing process. For instance,
a seat might be prevented to advance to the next station on an assembly
line until the torque data is collected at the current station. Torque data
and other traceability data such as barcode information often travels
through the PLC network. Torque controllers, barcode scanners, RFID
(radio frequency identification) and barcode printers can often be found
connected to a PLC. Much like the other devices mentioned, the
manufacturer usually provides a method for these devices to communicate
with the PLC.

1.1.6 Ladder Logic

Ladder logic is the programming language used to define the functionality of the

PLC. As previously mentioned, ladder logic was created to mimic the relay logic

8

electrical diagrams that were replaced by the PLCs. Ladder logic is made up of rungs

that contain contacts, coils and instructions. Typically, inputs are represented as contacts

(either normally open, NO, or normally closed, NC). Discrete outputs are represented as

coils. More sophisticated functions can be achieved using instruction blocks. A ladder

logic program is sequential in nature. An output or instruction at the end of a rung will

not be executed until the NO and NC contacts in front of it are all closed.

Each PLC manufacturer has its own ladder logic syntax and programming

software. Some standardization has been achieved through the IEC 61131-3 standard,

however rarely can a ladder logic program be used across two PLC manufacturers. In

fact, it is often difficult to use the same ladder program when switching between PLC

models of the same manufacturer.

1.1.7 ICS Protocols

Communication between the PLC, HMI and other devices is accomplished

through a predetermined protocol that can be sent and received by all devices. A protocol

is the defined system for communication that include their own rules, formatting and

timing. Protocols are sometimes dependent on the type of physical medium on which

they are transmitting. There are protocols specific to wireless, serial, and Ethernet among

others. Protocols are also highly manufacturer dependent.

Some protocols commonly used for industrial control systems include DNP3,

PROFIBUS, Modbus and Ethernet/IP. These protocols are not that different than ones

found in the IT environment because they just define a way for data to be organized in a

packet, however different levels of importance are placed on the reliability,

9

confidentiality, integrity and availability of these protocols when comparing between the

control system and IT worlds.

1.2 Motivation

Industrial control systems were once an island unto themselves, isolated from the

outside world. In recent years, corporate managers have realized the value of the data

that resides in the control systems on the manufacturing floor. Production totals, down-

time and alerts are now piped over the network into enterprise systems, into the office

environment and out to the Internet. It is not uncommon to find HMIs or computers used

for troubleshooting PLC networks connected to both the ICS and the corporate plant

network so engineers in the office or at home can view and troubleshoot issues with the

control system. As these control systems become more open and connected, they also

become more vulnerable.

1.2.1 Problems with ICS Security

Even though great strides are being made to improve upon the security of new

control system architectures, there are many PLCs in the U.S. manufacturing sector that

are several hardware/firmware revisions old and the likelihood of them being upgraded is

low. Typically, the “if it’s not broke, don’t fix it” mentality applies to many

manufacturing sectors. There are numerous reasons that lead to this line of thinking, but

the fear of causing additional downtime and the lack of financial resources are two

reasons that typically rank high. This lack of maintenance results in a large number of

vulnerable PLCs that rely completely on the perimeter security of the network.

10

The task of securing a factory’s network perimeter is usually the responsibility of

the plant IT (information technology) department. Most IT professionals have a good

understanding of what it takes to secure an office network, but they typically lack the

control system background necessary to properly secure the manufacturing side of the

network. There are many differences between office networks and control system

networks that require a different security approach to be applied. One key requirement

for a control system network is low latency. In order to control motors and robots in real-

time, throughput is critical and the communication lag must be minimal. Proper

networking architectures and routing must be employed to ensure network efficiency.

Oftentimes, IT personnel make the mistake of not properly isolating the office network

traffic from the manufacturing network traffic. This not only introduces additional traffic

onto the time sensitive network, but it also increases the risk of unauthorized access to the

control system network. It is typically not acceptable to completely isolate the

manufacturing network from the outside world because many engineers and managers

want the option of remote access to make changes to the system if a problem arises or to

have automated alerts of production numbers and system errors [8]. The manufacturing

network must have access to the outside world to provide these capabilities.

Another key requirement for a control system network is ease of access. At first

glance, this appears to be synonymous with a lack of security, but if handled correctly,

access can be granted in both a simple and secure manner. The number one rule in

production environments is to keep the product flowing. In order to do this, maintenance

must be able to quickly resolve errors as they arise. Maintenance personnel must be able

to promptly go on-line with a PLC processor in order to address errors at any hour of the

11

day. Production downtime would increase if complex security measures were put in

place that prevented this from happening. Even if complex security measures were put in

place initially with good intentions, history has shown that these measures would soon be

bypassed after an engineer gets interrupted at home a few times. In an automation

environment, simple works best.

1.2.2 Risks of Poor ICS Security

The severity of a control system attack is realized when the financial and safety

implications are taken into consideration. An intruder making changes to data tables in

the PLC could result in actuators moving when an operator is in an unsafe position or

could cause equipment damage. Set-point values can be changed to produce product that

must be scrapped because it’s out of tolerance. Any loss time in a production

environment takes a financial toll on the organization. Extended production loss can

have a cascading effect on the supply chain for the goods being produced. Many

companies adhere to a Just-In-Time (JIT) manufacturing philosophy that is a sharp

contrast to the warehousing methodology. With JIT, there is no buffer of warehoused

components that can be drawn from if the factory production halts. Components are

produced and are utilized in the finished product within hours in an effort to be more

efficient and save money. Many foreign automakers use this production strategy to gain

a financial edge on the competition. For instance, a set of seats rolling off the production

line for a vehicle is only a truck ride away from being installed into a vehicle just a few

hours later. JIT requires much coordination between scheduling, inventory tracking and

production [9]. If any of these pieces of the system fail, then production stops. In the

previous example, if seats are not delivered to the automaker, then no vehicles can be

12

produced. This cascading effect results in thousands of people standing around with

nothing to do and financial losses on the order of millions of dollars.

In some instances, an attack on a control system might cripple a custom piece of

equipment that takes weeks to replace. A more tragic consequence of an attack would be

if a human casualty occurred. A safety violation of this magnitude would result in

production being shut down until a lengthy investigation could occur. In either instance,

the financial ramifications would be extensive.

If the network perimeter security is breeched, the only obstacle standing between

an attacker and a disruption of this magnitude are the security mechanisms inherent to the

control system. The lack of authentication and encryption in many of today’s control

system protocols make them an easy target for a malicious attack.

1.2.3 Types of ICS Attacks

Attacks against industrial control systems can be categorized into four major

categories: reconnaissance, response and measurement injections, command injection and

denial of service [10]. Each of these four categories of attacks require a different level of

knowledge about the system under attack and each one have varying degrees of impact

on the industrial control system.

Reconnaissance attacks are typically the first step taken when attempting to

circumvent the security of an ICS. Reconnaissance is the gathering of information to

determine the network architecture in order to learn information about devices on the

network such as the IP or MAC address of a PLC to target. This can be done using

downloadable software tools such as Nmap and Wireshark to analyze the network. Port

scanning is useful in determining what communication ports are available on a network

13

[11]. Nmap can be used to not only identify open ports and IP addresses, but even some

known network vulnerabilities. Wireshark can sniff packets from the network and the

packets can be analyzed to find a target of interest. Identifying a PLC is typically not that

difficult if some basic vendor information is known. Oftentimes, vendors will have

certain ports that they prefer to use and this information can be found in the knowledge

base on the vendor’s website. For instance, if port 2222 is commonly used for PLC

communications [13], then Nmap or Wireshark can be used to identify the presence of

this port on the network. Once a potential PLC is identified, packets can continue to be

intercepted and analyzed. An attacker might choose to collect information coming to and

from the PLC over an extended period of time in an effort to profile the system. Profiling

the system allows an attacker to identify which PLC registers are frequently written or

read. The values for these registers can also be analyzed for patterns. These patterns can

help the attacker identify what type of process the PLC is controlling. Over a period of

time, the attacker could become familiar enough with a system to identify critical values

and the acceptable limits for those values. This is valuable information that will aid in

planning an inconspicuous attack that will disrupt production.

The second category of attacks, response and measurement injection, takes

advantage of one of the basic characteristics of ICS. A typical PLC operates by scanning

through its ladder logic program, top to bottom, left to right. The amount of time it takes

to completely cycle through the ladder logic is called its scan time. The scan time of a

program is typically in the milliseconds range. Part of the scan time includes the polling

of all local and remote IO. The remote IO can consist of devices such as remote sensors,

other controllers on the network or possibly HMI terminals. Devices can either provide

14

information to the PLC when the PLC requests the information, on a specific interval or

when a value state change occurs. These devices are polled on an interval, related to scan

time, by sending a packet to the remote device requesting current state information. Once

the remote device receives the packet, it responds to provide the PLC with information.

Devices that are not polled may send information asynchronously when a state change

occurs at the device. For instance, a temperature transducer might only send a packet to

the PLC when the temperature reading changes from one value to another.

Since many ICS network protocols don’t have authentication built in, it is almost

impossible for a PLC to validate the source of the remote IO information. Once

reconnaissance has been done to identify the typical flow and format of response packets

from remote devices on the network, it is not difficult to craft or modify response packets

that contain erroneous information. Injecting data can result in critical data being

modified or possibly causing the PLC to enter into an error state. A more complicated

attack might involve providing the plant operator with bad information via the operator

interface which might, in turn, lead him/her to make an uninformed decision that could

cause harm to the system. The lack of authentication that is inherent in most control

system protocols and the fact that most ICS protocols drop duplicate response packets

make them very susceptible to response and measurement injection attacks.

A third category of attack is command injection. This is very similar to the

response injection attacks described above however instead of the packets from remote

devices to the PLC being altered, with command injection the packets from the PLC to

the remoted devices are altered. Again, this is possible in ICS networks because of the

lack of authentication that was described above. Through command injection attacks, a

15

hacker has the ability to send erroneous information to a physical device that could cause

an actuator to move when it is not supposed to or could cause a variable speed device

such as a motor to move at a faster rate than which it was designed. This could pose a

danger to the operator, the equipment or the process itself resulting in downtime,

financial losses, casualties or fatalities.

Command injection could also alter certain characteristics of a control system

such as control set points or recipe files. In some PLCs it is also possible to reconfigure

devices or possibly modify the actual PLC ladder logic that controls the system.

 The fourth category of attacks, Denial of Service (DOS), attempt to interrupt the

normal operation of an industrial control system. DOS attacks can be physical attacks on

some portion of the system such as cutting communication wires, forcing a valve to stay

in a certain position or physically destroying a device. DOS attacks can also target the

communication channels within an ICS. The simplicity of this attack is that it doesn’t

require taking down the entire network, rather blocking communication with one critical

device on the network could result in adverse conditions. This could be accomplished by

flooding a device with packets requesting information at a rate faster than the device can

respond. The device would be so busy trying to service the false incoming packets that it

would be unable to service the legitimate ICS packets. Sometimes flooding a device with

packets will overwhelm the device and cause it to go offline until power is cycled. This

type of attack requires very little information about the control system itself, therefore

denial of service attacks against ICS are very common.

16

1.2.4 Sources of ICS Attacks

A malicious attack on a control system could be initiated by a variety of people,

however three groups should be looked at more closely: Remote hackers, contractors and

operators. Each group has very different motives, knowledge of the system and resources

to harm the system.

The group that typically comes to mind when computer security is discussed is

the outside entity commonly referred to as a hacker. These individuals are driven by

many reasons that can range from sport to terrorism. The motivation of the attacker also

plays a part in the level of effort invested in information gathering and the goal of the

attack. A random hacker is at a disadvantage because their knowledge of the system is

typically limited. The attacker might be hundreds of miles away from the target and

possibly have no prior information as to the type of facility or manufacturing processes.

However, a skilled hacker is more resourceful in the area of attack tools and techniques

and typically has previous experience that can assist in compromising security. It is

important to remember that a control system is typically protected by only its perimeter.

The perimeter security is made up of components such as firewalls that are present in

most any type of network. That being the case, it is not uncommon for an experienced

hacker to possess the capabilities to breech an inappropriately secured perimeter. Once

the outer ring of protection is circumvented, the attacker has free reign over the

unprotected control system.

The next group of potential attacker is the contractor. It is common for most

manufacturing facilities to have contractors in and out on a daily basis. The larger the

organization, the more contractors come and go. Contractors not only have physical

17

access to many critical areas of the plant, but they are sometimes granted remote access

as well to support the plant systems. In many cases, contractors have a good

understanding of how systems in the plants work and the data that is passed back and

forth across the networks. They also are knowledgeable of which areas of the plant are

most vulnerable and could cause the lengthiest downtime. Contractors, specifically

programmers and machine builders, have the computer skills and equipment necessary to

exploit a control system. The contractor’s ability to utilize additional tools such as

network sniffers is only limited by the amount of effort they choose to put into an attack.

A contractor could be motivated to attack a system for a variety of reasons like sport and

revenge, like in the Maroochy Water Services incident [14].

The last group of attacker is the plant operator. This group can be motivated to

cause harm for several different reasons: disgruntled, want time off, or accidental by

bringing in a virus from home. The operator certainly has physical access to the

operation and has an extreme understanding of the process. The tools available to the

operator would be limited without them drawing attention to themselves. Table 1.1

shows a comparison of these three types of potential sources of attack.

Table 1.1 Three Potential Sources of ICS Attack

Type Motivation System

Knowledge

Skill Level

Outside Hacker Sport or Terrorism Minimal High

Contractor Sport, Revenge Medium to High Medium

Operator Disgruntled High Low

18

1.2.5 Attacks on ICS

PLC security received international attention in the summer of 2010 with the

discovery of Stuxnet. Stuxnet was a very sophisticated, highly engineered worm with a

very small foot print that successfully attacked an Iranian air-gapped ICS responsible for

enriching uranium. The worm targeted Microsoft Windows machines running Siemens

software and replicated itself across networks and USB drives. Its apparent intended

target was the Iranian nuclear program. The worm not only allowed the authors to spy on

the industrial control systems it infected, but it also had the potential to adjust the speed

of centrifuges in an attempt to cause physical damage and disrupt the nuclear program.

Through elaborate reconnaissance and social engineering, the worm’s authors

were able to determine that Iran’s nuclear program’s control systems used the Siemens

Simatic S7 PLC and Siemens WinCC HMI software and orchestrate its delivery to the

nuclear facility on a USB drive. This allowed the worm to specifically target those

systems by taking advantage of a hard-coded database password in the system as well as

replace a key communication DLL that intercepted traffic between the WinCC HMI and

the Siemens S7 PLC.

Stuxnet was unique because it was the first piece of malicious code that

intentionally targeted an industrial control system. Inspection of the code revealed that

the authors knew a great deal about control systems and had very specific information

regarding the Iranian nuclear program [15].

In 2011 another piece of malicious code that targeted control systems was

discovered called Duqu. Duqu was officially labeled a remote access Trojan (RAT) and

appeared to share some of the same code as Stuxnet. However, unlike Stuxnet, Duqu was

19

not self-replicating and there didn’t appear to be any ICS-specific attack code contained

in the executable. Duqu’s primary function was to steal information regarding the

infected system. This information stealing might have been a reconnaissance effort to

develop a Stuxnet like attack in the future that targets the system specifically. Once a

system is infected, the attacker can control other systems through a peer-to-peer

command and control (C&C) protocol [15].

In 2012 another variant of Stuxnet surfaced called Flame. Researchers discovered

that Stuxnet and Flame shared identical segments of code. Flame was unique because it

was considered large for malware. Much like Duqu, Flame’s major purpose was

information collection and not destruction. Flame utilized a very effective and

sophisticated spreading technique by using Windows Update [16].

Another remote access Trojan that targets ICS is Havex. Much like Duqu,

Havex’s primary function is to steal information regarding the infected system. Once the

information is collected it communicates with a C&C server. Havex specifically targets

systems that use the older DCOM-based (Distributed Component Object Model) version

of the Open Platform Communications (OPC) communication protocol. A newer OPC

standard was released in 2006 and Havex does not appear to target the newer standard

[17] [18].

OPC is often used to establish communications between two devices that don’t

share the same native protocol. For instance, some PCs require the use of OPC to

communicate with a PLC or other device. An OPC server resides on the PC and each tag

specified in the OPC server defines a communication path to a specific address register in

the PLC. Havex can profile a system by collecting the tag information which can provide

20

information such as address registers and their possible uses and addresses for connected

devices

One of the most recent examples of an attack against a critical infrastructure ICS

is the December 23, 2015 hack of Ukraine’s power grid. This was a well-crafted plan

that ultimately left more than 225,000 residents in the dark. Multiple agencies in the US,

including the DHS and FBI, helped Ukrainians investigate the attack. Fortunately, the

Ukrainian power distribution companies had multiple system logs in place that helped

reverse engineer the attack. The investigation has shown that this was a well-planned

attack that started reconnaissance operations many months ahead of time. The initial

attempts to gain information about the plant was done through macro-enabled Microsoft

Word documents sent via e-mail to various plant employees. This phishing campaign

installed a program called BlackEnergy3 onto their systems and gave the hackers

backdoor access to the system. Months of reconnaissance allowed the hackers to map out

the network and gather passwords; all key to the subsequent attack.

The actual attack consisted of several steps. The operators were locked out of

their SCADA terminals to prevent them from interfering with the attack. The hackers

then opened up various breakers that cut power to thousands of households. To delay

their presence being discovered, the hackers initiated a denial of service attack on the

telephone system to prevent customers from calling in to alert the power company that

something was wrong. The hackers then replaced the firmware on several serial-to-

Ethernet converters to prevent corrective commands from being sent to reclose the

breakers. After they had successfully interrupted power distribution, then the hackers

used malware called KillDisk to overwrite the master boot record and erase files from the

21

operator workstations to delay recovery. The attackers were also able to disable the

emergency backup generators at the power plant which left the plant itself in the dark. In

the end, over thirty Ukrainian substations were offline for about three hours [19] [20].

1.3 Contribution

The attacks mentioned in the previous section make it clear that threats against

ICS are increasing. The insecure by design components that make up industrial control

systems are vulnerable and, until wholesale design changes are implemented, require

other security mechanisms to be in place in order to secure our manufacturing facilities

and critical infrastructure installations. There is much research in the area of ICS security

and great steps are being made to improve our ICS systems. New methods are needed to

take information that is currently available and utilize this information to provide better

security for industrial control systems.

This thesis includes three major contributions. First, a method for leveraging the

information contained in PLC ladder logic code to create signatures for a network

intrusion detection system (NIDS) is explored. There are two major categories of

signatures that can be derived from analyzing ladder logic code: address register usage

and invalid register values. Each of these two categories can be broken down into

distinct classes of rules. Second, a Microsoft Visual Basic .NET ladder logic parser

program was developed to automatically extract information from an Allen Bradley SLC

500 ladder logic program and create Snort IDS rules [21]. These rules were tested and

the parser program’s functionality was proven accurate and reliable. Although this

software was written to target a specific PLC manufacturer and model, it could easily be

modified to accommodate other ladder logic files that are similar in design. Third, the

22

research that led to the development of the ladder logic parser program gives insight into

the packet format of the Allen Bradley Ethernet protocol as well as identifies some of the

vulnerabilities that still exist in some older, yet highly deployed, models of PLCs.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter II provides a

literature review. The literature review is broken into a survey of current ICS security

methods, anomaly-based intrusion detection systems, signature-based intrusion detection

systems and industrial control system specific intrusion detection system techniques.

Chapter III discusses the process for creating Snort IDS rules leveraging the information

contained in PLC ladder logic. A brief explanation of address register usage and invalid

register values such as division by zero, math overflow, negative values and invalid

addressing is covered. After this overview of what can be extracted from PLC ladder

logic, then the hardware and software used for testing are discussed. The method for

extracting information from the ladder logic and using that information to create IDS

rules, along with examples, are discussed in detail. Chapter IV provides an explanation

of the testing, evaluation and validation process. Chapter V offers general conclusions

and opportunities for future work.

23

CHAPTER II

LITERATURE REVIEW

 As discussed in Chapter I, industrial control systems are the backbone of many of

critical infrastructure processes and play an important role in producing the goods and

services that stabilize our economy. The ICS vulnerabilities that were discussed along

with the ever increasing threats of worms and viruses such as Stuxnet and DuQu have

increased awareness toward securing industrial control systems. This chapter takes a

look at the current methods that exist for ICS security and a survey of the current state of

intrusion detection systems for ICS and current research that is taking place.

2.1 Survey of Current ICS Security Methods

Industrial Control Systems once resided as isolated systems that had no

connectivity outside of the local process. With the expanse of the Internet and the wide

acceptance of TCP/IP based devices, most ICS hardware vendors have started to abandon

some of the early proprietary protocols and communication mediums to transition to

more open protocols over Ethernet that allow for interconnectivity between various types

of control hardware. This evolution has resulted in ICS systems that are becoming

increasing more like traditional information technology (IT) networks. This transition

has allowed these once isolated ICS systems to share information with managers in the

front office or to the world.

24

The more ICS become like IT networks, the more applicable standard IT security

solutions become. Although the characteristics of ICS and IT are becoming more similar,

great care needs to be taken when securing ICS because of what they control. Traditional

IT security focuses on protecting data. ICS security ultimately protects lives, financial

losses and harm to our environment.

The three basic tenants of information security – confidentiality, integrity, and

availability - apply to ICS security; however, they apply in a different order than in the

IT realm. These well-known tenants are defined below:

 Confidentiality – guarantee that information is not disclosed to
unauthorized entities

 Integrity – guarantee that the information is complete, valid and from a
trusted source

 Availability – guarantee that the information is available when needed in a
timely manner

In the Information Technology world, confidentiality ranks highest, followed by

integrity and availability [23]. In the ICS world, the order of importance reverses as

shown in the Table 2.1.

Table 2.1 Order of Importance: Confidentiality, Integrity, & Availability

Order of Importance IT ICS

Confidentiality Availability

Integrity Integrity

Availability Confidentiality

25

 The once isolated ICS can no longer be protected with physical security like

locked doors and fences. The demands for information flow and external access has

resulted in the typical insecure-by-design hardware components of the ICS to be

accessible to the outside world. Insiders are no longer the only threat to protect against.

Now industrial control systems must protect against the disgruntled insider, but also a

plethora of external threats that seek to infiltrate the system [23]. This has resulted in

many different approaches to protecting an ICS network. The following sections will

give a brief overview of the current ICS protection techniques.

2.1.1 Network Architecture

Network design considerations are integral for providing a secure network for

industrial control systems. A common practice is to separate the ICS network from the

office network. The office network has a constant flow of information related to internet

browsing, email and other in-house communications that take bandwidth away from the

low latency dependent ICS network. The management of network hardware is another

thing to consider. It is not uncommon for a corporate IT manager to push out updates or

other network maintenance routines that could negatively impact ICS devices.

Separating the office network from the ICS network provides a clear line of responsibility

between the IT department and the control engineering department. This line of

responsibility will allow the IT administrators to focus on securing and maintaining the

office networks while the control systems engineer or industrial security administrator

can protect the ICS network while not affecting the performance of the control system.

As previously discussed, it is not always practical to have the ICS network totally

isolated from the IT network. The connection of these two systems must take into

26

consideration a number of things such as how many physical connections will be

provided, who or what systems will have access to the ICS, what path does the ICS have

to the outside world, what ports will be open, etc. This isolation and access control can

be achieved through network architecture design using boundary protection devices such

as: gateways, routers, data diodes and firewalls among others.

2.1.1.1 Firewalls and Network Segregation

Firewalls are devices, systems or software that control the flow of packets

between different networks. Firewalls are embedded into most internet routers found in

homes around the world. Their complexity can range from simple port blocking firewalls

found in home internet routers to very expensive systems that give very granular control

over the network traffic entering or existing a network. Traditionally these devices can

be found separating a network from the Internet, however they are increasingly used

more and more to separate sub networks within an organization. Firewalls provide the

ability to compartmentalize information within an organization to prevent unauthorized

access to sensitive information.

Firewalls can be found in many different forms, however there are two categories

that should be mentioned: Packet Filtering Firewalls and Stateful Inspection Firewalls.

The most elementary function of a firewall is to filter packets. Packet Filtering Firewalls

are routing devices that determine the flow of network packets based on the content and

type of the packet. The firewall configuration software allows a user to establish rules

about what traffic can enter and exit the network. These rules are based on packet data

such as source IP address, destination IP address, port numbers, protocol type and other

criteria that might be specific to the type of firewall. The firewall will be configured to

27

allow the specific packet to continue on or block the packet depending on the rule set.

These devices are typically low cost solutions that have a very minimal impact on the

performance of the network.

The second type of firewall is the Stateful Inspection Firewall. These have the

same functionality as the Packet Filtering Firewalls, however they have an extra level of

awareness due to the inspection of the Transport Layer (level 4) data. This allows the

firewall to keep a record of active sessions and uses that information in determining if a

packet should be blocked or forwarded. These types of firewalls are more complex and

require network expertise and a more in-depth knowledge of the system to configure.

Firewalls are one of the most utilized security features to help secure an ICS. The

boundary protection it provides not only restricts unintended access from the office

network, it also prevents unnecessary traffic from taking bandwidth away from the

critical operations of the ICS. This separation allows the two separate systems to

maintain independent security policies while maintaining a connection that can only be

bridged by authorized systems that meet the configured criteria. An added benefit of a

firewall is that it can log information flow that can be used for analysis in the event of an

intrusion.

Most firewalls are designed with the IT network environment in mind. That being

the case, there are a few drawbacks to deploying a firewall on an industrial network.

Many ICS protocols have yet to be implemented in commercial off the shelf (COTS)

firewalls. ICS vendors have operated with proprietary protocols for years and the variety

and complexity of these protocols have prevented them from being implemented by

firewall manufacturers. A second concern, as with any packet inspection operation, there

28

could be delays introduced in network traffic by the firewall. This could impede

availability and have a negative effect on the overall performance of the ICS.

Deep Packet Inspection (DPI) firewalls are now very common for many IT

protocols, unfortunately this technology is very limited for the ICS protocols. DPI for

industrial protocols would allow filters to be applied to certain fields within a protocol

packet such as commands (write vs read), objects (motor, actuator, etc.), services (get vs.

set) and PLC address register ranges. Work is being done in the area of EtherNet/IP and

Modbus to implement DPI [24] [25].

2.1.1.2 Network DMZ

A demilitarized zone (DMZ) is a network that buffers access between the

corporate or outside network and the ICS network. The DMZ sits between the two

networks with both the corporate network and the ICS network only being able to access

the shared DMZ, but not each other directly. A DMZ can be created using various router

and firewall network configurations. For systems requiring information sharing between

an ICS and a corporate network, a DMZ should be implemented. The ICS data would be

written to a historian or data collection server within the DMZ and the corporate users

would access this information from the DMZ instead of directly from the office network.

External access via the Internet could take place through the corporate network for added

security or directly from the DMZ with a firewall. A single DMZ zone is rarely

sufficient. In most circumstances, it is recommended to use multiple DMZs. Utilizing

routers and firewall devices from different manufacturers is another recommended when

segregating networks.

29

2.2 Intrusion Detection Systems

An intrusion detection system (IDS) is software or a hardware device that

monitors a system for malicious activity and produces a report or responds to the threat

by dropping the suspect packet. There are two major platforms for IDS: Host Intrusion

Detection Systems (HIDS) and Network Intrusion Detection System (NIDS). A HIDS

runs on a device (host) and monitors the state of that host to determine if malicious

activity is taking place. The HIDS can monitor the state of the file system or the network

traffic entering or exiting the system. One benefit of using a HIDS is the ease of

specifying what is and is not acceptable behavior for the host. Since the behavior is

specified at the host level, then it can be uniquely tailored for that host only. A major

disadvantage of using a HIDS is the resources it consumes that could have otherwise

been used by the host application. Oftentimes, ICS devices have limited resources such

as memory and processor power and cannot afford to share those precious resources with

a secondary process.

A NIDS monitors the traffic on a network and can analyze packet information to

determine if malicious activity is occurring against any device on the network. The

HIDS gives protection for one device only whereas the NIDS can protect multiple

devices on an ICS. A NIDS could simply look at the frequency of packets in a network or

it could perform protocol specific deep-packet inspection. Inspecting the payload of an

industrial protocol requires an in-depth understanding of the protocol which can be a

research topic in itself. A major advantage of using a NIDS is that the individual nodes

(hosts) are not taxed with inspecting logs and traffic for malicious activity. Placement of

the NIDS within a network is key and this is often a difficult task due to network

30

architecture. For maximum effectiveness, the NIDS would need to be placed so all

network traffic is visible to the IDS.

The architecture and design characteristics of ICS lend itself to be a good

candidate of IDS protection [26]. [28] identifies four major differences between

industrial control system IDS and traditional I.T. system IDS:

 Physical Process Monitoring – unlike regular IT networks, an ICS has data
being exchanged that represents physical characteristics of the processes
that it is controlling. Therefore, the laws of physics apply which provides
definable behaviors for certain data sets. For instance, a water storage
tank has certain level bounds that it could never exceed and a certain level
that it could never be below. A chemical flowing through a pipe has
certain flow values that would be physically impossible to reach. These
physical restrictions help better define what is acceptable ICS behavior.

 Closed Control Loops – ICS networks lend themselves to IDS protection
because the network topology is typically static and the routine polling of
IO devices is somewhat predictable. PLC programs are very cyclic by
nature and this time-based execution makes it easier to define what is
normal and what is abnormal. This differs greatly than network that may
be seen on a typical IT network where traffic is dependent on what the
users on the network might be doing. A person checking their e-mail or
surfing the web can produce unpredictable and very intermittent network
traffic that is more difficult to profile.

 Attack Sophistication – Since ICS typically control Cyber Physical
Systems (CPS), the ramifications of an attack are quite high. An attack on
an ICS could leave millions without water or power. It could result in
irreparable damage to physical systems that could shut down entire
processes and have extreme economic consequences. Circumventing
security of an ICS could damage the environment or even result in human
casualties or fatalities. The payoff of a successful security breach is high,
therefore the sophistication and amount of effort is great. Infiltration of an
IT network comes with its own set of motivating factors: corporate
espionage, ransom of data or deletion of data; however, the sophistication
of attacks against ICS have proven to be impressive and will only continue
to increase with the rise of state sponsored cyber warfare.

31

 Legacy Technology – In the IT world, hardware upgrades come around
almost every year and the system admins are pushing out software updates
and policy changes on a weekly basis. This is not the case in the static
world of ICS. Control system hardware is very expensive to replace and
usually requires downtime. Downtime means no profits. This legacy
hardware makes it a good target for hackers that are seeking to infiltrate a
system that has known vulnerabilities and no firmware updates or patches
applied.

There are several metrics that are commonly used to characterize IDS

performance. The time it takes for and IDS to alert following malicious activity, packet

sampling efficiency and the hardware resource requirements all factor into an IDS

system’s success rate. IDS systems traditionally use the following three terms when

defining the accuracy of a system to detect malicious activity:

 False Positive – A false positive occurs when an IDS identifies malicious
behavior when none is present.

 False Negative – A false negative occurs when an IDS fails to identify
malicious behavior when malicious behavior is present.

 True Positive – A true positive occurs when an IDS successfully identifies
that malicious activity is occurring.

A perfect system would have 100% true positives every time, however this is not a

practical expectation. The balance between false positives and false negatives is a

delicate one. If a system has too many false negatives, then the system would

consistently fail to alert on malicious activity. If a system has too many false positives,

then a system administrator might become numb to the alerts because of “The Boy That

Cried Wolf” effect. Many security administrators would prefer the latter simply because

it makes for a more secure system. This would require a secondary process for

evaluating each security alert to determine whether or not it is valid. This might be done

32

via human intervention or some secondary automated security alert log file inspection

routine [28].

2.2.1 Anomaly-based IDS

Anomaly-based IDS systems, also known as behavior-based systems, flag activity

that appears abnormal by comparing the activity to an established baseline. When the

deviation between the observed activity and the established baseline exceeds a predefined

threshold, then an alarm occurs. An anomaly-based IDS has the potential to detect

malicious activity that has never been observed before and studied. Due to the nature of

anomaly-based systems, they tend to result in a higher occurrences of false positives than

other IDS techniques. They can also become very complex which can be taxing on the

performance of a system and the setup time is also often lengthy. Another disadvantage

of some of the anomaly-based IDS systems is that an intruder can train the system over

time to convince the system that the malicious activity is normal.

There are many methods used to define the baseline for “normal” behavior in an

anomaly-based system. Statistical based approaches profile normal behavior using the

frequency of events over time, standard deviation, statistical mean and other

mathematical correlations. Statistical techniques [29] [30] [31] [32] [33] include:

Markov process/Marker Model, Operational, Multivariate, Statistical Moments, Times

Series, Univariate, among others. The statistical based approach does not require prior

knowledge about normal activity.

Cognition based approaches, also known as knowledge-based, analyze audit data,

but are also influenced by a set of predefined rules and input from a training dataset.

Knowledge-based approaches include: finite state machines, description scripts and

33

expert systems. This approach can be very flexible, robust and scalable, however

defining valid data can be time-consuming [34].

Machine learning involves both supervised and unsupervised learning. A

machine learning algorithm creates models by monitoring the system over time to create

patterns for behavior. Machine learning approaches include: Baysian networks [35],

generic algorithms, neural networks, fuzzy logic and outlier detection [34]. Zamani and

Movahedi [36] break down machine learning into two categories: Artificial Intelligence

(AI) and Computational Intelligence (CI). AI techniques refer to the statistical modeling

approaches and CI methods are the biological-inspired models that address problems that

statistical approaches cannot. CI models include fuzzy logic, artificial neural networks,

evolutionary computation and artificial immune systems.

2.2.2 Signature-based IDS

Signature-based IDS systems, also known as knowledge-based, analyze

information and compare that information to predefined signatures that are indicative of

malicious activity. A signature is a pattern that identifies a known attack. After a known

attack is identified, the pattern of that attack can be studied and payload patterns that help

identify that attack are noted and a signature is created. Because of this process,

signature-based attacks have a very low occurrence of false positives because, by

definition, only patterns that match a known attack signature will create an alert.

Unfortunately, the same characteristic that makes this IDS attractive is also a

major disadvantage to this technique. Since the attack pattern behavior is for known

attacks, the system can be circumvented fairly easily by the slightest attack modification.

Because of this, the signatures must continually be updated just like virus protection

34

software must continually update the virus definitions. Great effort must be put into

writing signatures that match the pattern for malicious behavior, but also allow for

variance in the known attack.

The signatures of attack are defined through a number of different methods. Log

files from known attacks can be analyzed to develop a characteristic signature for that

attack. Known vulnerabilities in a system can be studied and signatures can be created to

thwart an intrusion. An in-depth understanding of various protocols within a network

must be gained in order to develop meaningful signatures. This is often a very expensive

and time intensive process.

Because signature-based approaches are less susceptible to generating false

alarms, this approach is very attractive and much research had been put into countering

the negatives of this technique by finding ways to minimize its vulnerability to variance

of known attacks and to reduce the amount of processing power and time it takes to

pattern match against known signatures. In [37], Uddin et al. propose a multi-layer

signature database model that uses mobile agents to transfer signatures from a large

complementary database to smaller signature databases at the point of inspection. The

key to this method is that there are multiple IDS inspection engines analyzing the code so

the workload is distributed. This proposed model is an attempt to improve the time and

computational requirements for signature pattern matching. The results of this method

were promising. The researchers were able to reduce the size of the signature database at

each inspection node which resulted in a significant decrease in the number of dropped

packets.

35

In [38], the author questions the universal claim that signature based IDS cannot

detect zero-day attacks. This theory is tested using Snort IDS and presenting it with 183

zero-day attacks and 173 known attacks. This is done by using a current Metasploit

Framework and a Snort rule set that was older than the vulnerabilities to be tested. After

testing, it was noted that the zero-day attacks had a mean detection rate of 17% compared

to 54% with the known attacks. After false positive reduction is taken into consideration

the result of the paper indicates that a Snort signature based IDS has a zero-day detection

rate of around 8.2%.

The novel approach of this thesis involves the automated creation of IDS

signatures. Many times, signatures for possible attacks are created through painstaking

analysis of network logs. [39] takes a look at automated signature creation for signature

based IDS with an Automated Signature Creator called Pancakes. This proposed method

uses a virtual machine mirror system where network traffic is logged by both the Snort

system and the anomaly-based IDS on the virtual machine system. Since anomaly-based

IDSs are often subject to false positives, a supervised verification of flagged traffic is

necessary. Using machine learning, the authors can determine which machine learning

algorithms are best for detecting malicious activity. The researches discuss the following

machine learning algorithms that were studied: Naïve-Bayes Classification Algorithm

[40], C4.5 Algorithm [42], Random Tree [43], Random Forrest [43] and Logistic

Regression [44]. They found that the Random Tree Algorithm correctly classified

malicious activity best. Once the malicious traffic is identified, signatures can be created

through an automated process.

36

2.3 Defense-in-Depth

The defense mechanisms discussed in the previous sections are only individual

bricks in the wall of defense-in-depth architecture. IT systems and ICS systems alike can

be very large and complicated systems. There are multiple points that could be targeted

by an attacker. Guarding the entry points with firewalls might aid in protection against

an outside attack, however it would do nothing for the disgruntled insider or a well-

intentioned employee that brings in malicious code on a USB drive or opens a properly

placed e-mail. For example, in 2010 the Mariposa virus was brought into a utility

company on a laptop by an employee that was unaware that his laptop was infected. The

employee’s company did not detect the virus on their system and it was not detected until

the second utility company reported malicious activity. The virus was tracked back to a

USB drive that was shared among participants at an industrial conference. Before it was

detected, it had already infected multiple systems [45]. In order to effectively protect an

ICS, security must be enforced at multiple levels using a variety of the security

prevention and detection techniques discussed in previous sections. This multi-layered

defense technique is referred to as defense-in-depth architecture and requires a holistic

approach that utilizes all defense resources in an attempt to deter all malicious activity.

In order to establish a defense-in-depth architecture, an organization must first

know the threats that face them as well as the exposure and vulnerabilities they have. A

vulnerability assessment will identify the current state of the security architecture and

help identify where improvement is needed. For a vulnerability assessment to be

meaningful, it must be done on all levels of an organizations. The computer network

must be looked at in its entirety from the IT side and the ICS side. Such an assessment

37

would not only take into account electronic resources, but it would also look at physical

security, such as gates and locked rooms, etc.

The assessment also extends to personnel. Social engineering is one of the

weakest links in any cyber security master plans. Most people are inclined to be helpful,

hackers know this and this makes employees a good target. When a help desk employee

receives an e-mail requesting a password be changed or a receptionist at a front desk of a

large corporation is presented with an opportunity to help someone out of a tight

situation, without the proper training, they might hand over a critical piece of information

that could result in a cyber security breach. Because of this, employee training and a

well-established security policy is a key component to any effective defense-in-depth

architecture.

In a SANS Institute whitepaper [46], Kevin Mitnick emphasized the importance

of comprehensive employee training over just a well-defined security policy by stating:

“The methods that will most effectively minimize the ability of intruders to compromise

information security are comprehensive user training and education. Enacting policies

and procedures may not be effective: my access to Motorola, Nokia, ATT(sic), Sun

depended upon the willingness of people to bypass policies and procedures that were in

place years before I compromised them successfully.”

No one security mechanism alone will effectively protect an ICS. ICS systems

are insecure by design and when connected to the external world through the corporate

network it exposes the network to a number of threats. An effective security strategy will

include network segmentation using firewalls/routers, good physical security, strong

security policies and well trained employees.

38

2.4 ICS Specific IDS Techniques

 Since ICS security is a relatively new field, many attempts have been made to

apply traditional IT approaches to ICS. Since many of the same hardware components

(routers, Ethernet, etc.) are used in the ICS world, this was an obvious assumption.

Unfortunately, this assumption has been proved to have been made in error due to the

inherent differences between IT and ICS. The availability that is required in an ICS puts

strong demands on any security feature that must analyze network traffic in real-time

without causing a noticeable delay. Since real-time events are taking place on ICS

networks, such as actuators moving, the timeliness of packets being received is of the

utmost importance. On an ICS network, the validity of the data in a packet can

sometimes have a lifespan of milliseconds. Also, the insecure by design hardware and

protocols found on a typical ICS lack some of the basic authentication features that are

helpful when securing a typical IT network. Because of this, different approaches must

be taken when applying intrusion detection techniques to ICS security. The following

paragraphs will look at some work that is being done specific to ICS specific intrusion

detection systems [47].

 In [48], three model-based techniques were developed and were implemented

specifically for the Modbus TCP protocol. This work takes advantage of the static

network topology and regularity of network traffic. The first of the models described is a

protocol-level model for Modbus TCP. This model defines what a normal Modbus TCP

packet should look like and the acceptable values contained within. This model allows

for the IDS to alert if an undefined function code is present in the packet. An undefined

function code could be an indication that reconnaissance activity is taking place. The

39

second of the models described in this work is based on expected communication

patterns. Some devices on a network always communicate with specific devices. Some

devices always listen and some devices might always send information. Careful

modeling of this routine behavior can help identify when abnormal communication

occurs on the network. The last model employed uses a machine learning approach for

detecting changes in server or service availability. The system can be monitored to alert

if a device that normal services a particular response fails to do so.

 [49] presents a model for integrating an IDS into an embedded system using

middleware called EMIDS (embedded middleware-level intrusion detection system).

They considered this approach because the middleware framework had access to both the

communication streams and application layer for the embedded device. The middleware

can then forward communication information to the IDS and alleviate the embedded

device from processing information that it might not have the processing power or

resources to handle. EMIDS uses sensors embedded into the middleware framework that

are classified as either interval-based, procedural-based or misuse-based. Interval-based

sensors monitor the frequencies of certain communications taking place and report this

information to the IDS. Procedural-based sensors collect data based on the execution

patterns and typically are positioned at the entry and exit points of an applications

functions. Misuse-based sensors are located in the applications’ source code at locations

were known vulnerabilities exist.

 [50] discusses the implementation of a SCADA power-grid testbed for intrusion

detection and event monitoring. Their testbed leveraged the facilities at the University of

Idaho’s Electrical Engineering Power Laboratory in order to produce real-world results.

40

In the prototype system a method for updating device settings was created using the Perl

programming language. This program would facilitate communications from the

operator terminal to the telnet program that communicates with the SCADA devices. The

Perl program was used to provide more secure communications between the two devices

via SSL and ssh and it allowed for the logging of commands and settings modifications.

Another component that was added was uptime monitoring using ping and telnet. The

uptime monitoring was very effective at detecting faulty devices and network paths.

Information about device access, settings modifications, uptime monitoring and other

static values such as IP address, telnet port and legal commands were detailed using

XML. A Perl program was then used to parse the XML files to generate Snort IDS

signatures. Not all of the IDS signatures could be created automatically. Rules for failed

login attempts had to be manually created. The prototype discussed in this work proved

to be useful, however the current prototype only automatically generated rules for RTUs.

The functionality discussed is currently being expanded to other devices.

 Morris, Vaughn and Dandass [51] take a look at retrofitting serial based industrial

control systems that use the MODBUS protocol to allow for IDS implementation using

Snort. Some security professionals might consider serial connections to be secure,

however a compromised PLC that has serial connectivity could compromise the serial

devices that it communicates with. The researchers used MODBUS RTU/ASCII Snort, a

software developed to allow Snort to monitor MODBUS traffic, to capture serial traffic.

The MODBUS RTU/ASCII Snort can run in passive mode (bump in the wire) where it

only listens or as an active device (inline) that intercepts packets and retransmits them to

their final destination. Once the serial traffic is intercepted it is converted to MODBUS

41

TCP/IP and transmitted to the Snort IDS via a virtual Ethernet with two virtual machines.

(The paper details the conversion from MODBUS RTU/ASCII to MODBUS TCP/IP.) In

passive mode, the first virtual machine (VM1) captures the data from the MTU upstream

direction and the second virtual machine (VM2) captures the data from the RTU

downstream direction. Since only the RX pin of the serial connection is monitored, the

passive configuration can only monitor; therefore, it is unable to block or drop packets.

In passive mode, only VM1 runs Snort to analyze the information. The inline

configuration still uses two virtual machines but each has the ability to transmit. VM1

sends and receives information from the MTU and VM2 sends and receives information

from the RTU. When traffic is captured by either VM, it is processed by Snort, then

forwarded on to the second VM so it can be passed along to the endpoint. The inline

configuration provides for the added functionality of dropping suspect packets, but at a

cost of increased processing/transmission time.

 Caselli, Zambon and Kargl [52] explore the concept of a “semantic attack” and

propose a sequence-aware IDS (S-IDS) method as a countermeasure. Some cyber-attacks

attempt to steal proprietary information or cause a disruption in the process, but a

semantic attack is classified as an attack that tries to maximize the damage to the physical

pieces of the control system. This might be causing a centrifuge to tear itself apart [53]

or cause a furnace to burn out of control [54]. Semantic attacks rely on knowledge about

the control system, the protocols used and the physical components that it controls.

Many times these attacks are carried out using valid commands that would be impossible

to detect if the IDS was only looking for malicious activity. Oftentimes, a system can be

damaged by issuing valid commands in the wrong sequence. This type of attack is called

42

a sequence attack. In an effort to better detect sequence attacks, the S-IDS is based on a

layered structure. The lowest layer is called the Reader. The Reader captures raw

packets, filters corrupt or redundant packets and generates a formatted input stream that is

used by layer 2 of the S-IDS architecture. Layer 2 is the Sequencer. This is the core of

the architecture. A predefined set of rules are applied to allow the Sequencer to organize

the information from the Reader into a sequence of events. The third layer is the

Modeler. This layer takes the sequences from the Sequencer and uses that information to

build models that represent how the system should behave over time. This work uses

discrete-time Markov chains (DTMC) to create a model for the system. The last

functional layer of the process is the Detection layer. The Detection algorithm compares

the sequence models that are being monitored with normal system behavior models that

were trained when no malicious activity was present. This S-IDS approach was tested

using real-world data from a water treatment facility and was shown to correctly identify

sequence attacks as well as keep the number of false positives low.

 This literature review surveyed some of the current approaches to securing an

industrial control system. It also highlighted the fact that no single security measure is

enough and many different approaches must be taken. The importance of IDS security

was made clear with the various papers discussed in this section and the pros and cons of

each type were discussed thoroughly. As seen in this section, much work has been done

in the area of IDS research and continued focus has been put on creating a dependable

IDS that is accurate and easy to implement in an ICS. As stated, signature-based IDSs

lend themselves well to control systems because of the static nature of the system [55].

43

Because of that, this thesis provides a novel approach to signature generation through

ladder logic analysis.

44

CHAPTER III

IDS SIGNATURE CREATION USING LADDER LOGIC

3.1 Overview

A PLC ladder logic program contains a great deal of information that can be

leveraged to produce a set of signature based IDS rules to help identify abnormal activity

on an industrial control system network. The ladder logic is made up of contacts, coils

and instructions that instruct the PLC how to orchestrate a control system. Each contact,

coil and instruction has parameters that can either be a constant value or an address

register that acts as a variable. By analyzing this information, there are two main

categories of IDS signature sets that can be identified: address register usage and invalid

register values.

3.2 Address Register Usage

 The first key piece of information that can be obtained by inspecting a ladder

logic program is the address register usage. Knowing what address registers are used in a

ladder logic program can quickly provide a lengthy set of IDS rules identifying registers

that should never be written or accessed. An attacker that had no knowledge of the

industrial control network would need to blindly guess which address registers to write

using a brute force method. If the IDS was setup to identify attempted writes to a list of

unused address registers, then this attack could quickly be identified. A simple scan of

the PLC ladder logic can provide this information.

45

3.3 Invalid Register Values

The second key piece of information that can be obtained by inspecting a ladder

logic program is invalid register values. An invalid register value is a value that, if

written into a certain PLC address register, would result in a PLC processor fault. On

some PLCs if the PLC processor faults, then all control will cease and the processes it

controls will stop or be in an uncontrolled state. There are many different types of

invalid register values that can be discussed and these will vary from manufacturer to

manufacturer and product type to product type. Some examples of invalid registers

values include: division by zero, math overflow, negative values and invalid addressing.

3.3.1 Division by Zero

A division by zero fault occurs when a variable address register is located in the

denominator of a division math instruction and that address register is inadvertently set to

a zero. Once this occurs, some PLC processors will fault and control functionality will

cease. PLC division instructions are widely used in some of the most basic process

control ladder logic programs. Their frequency of use makes them a good target for

malicious activity. It is not possible to write an IDS rule for every division instruction,

only the ones that have a constant for a numerator and an address register for the

denominator. When an address variable appears in the numerator, as well as the

denominator, it quickly becomes difficult to write an IDS rule for what would constitute a

division by zero since the numerator is no longer static. For the purposes of this thesis,

only division instructions that have a constant in the numerator are used to create an IDS

rule.

46

3.3.2 Math Overflow

A math overflow fault occurs when a value outside of the computational range of

the processor results in a register. The acceptable range is defined by the type of

processor. The Allen Bradley SLC 500, used for testing, has a 16-bit architecture,

therefore the allowable range for any integer math register is -32767 to 32767. Any value

outside that range will result in a math overflow fault. Math overflow faults can occur as

a result of a value being written directly to the register from an external source over the

network or written to a register as the result of an internal math function. There are

several commonly used math instructions that can result in a math overflow fault. Since

addition instructions and multiplication instructions are the most susceptible to overflow,

these two instructions are of focus in this paper. An attacker could easily write large

values to random address registers and would eventually cause a math overflow fault. An

IDS rule that monitored for this condition could easily prevent or draw attention to

suspicious or malicious activity.

3.3.3 Negative Value

A negative value fault occurs when a negative integer appears in an address

location that limits its values to positive integers only. Two examples of this are the

Rockwell Software Logix 500 counter and timer instructions. There are two major types

of counter instructions: count up (CTU) and count down (CTD). Both of these

instructions have custom parameters called preset (PRE) and accumulators (ACC). The

preset value is the value the counter needs to reach before the instruction becomes true.

The accumulator value is the current value of the instruction. If either of these values

contain a negative integer, the processor will fault. Similarly, the preset and accumulator

47

parameters can be found for the various types of timer instructions. There are three types

of timer instructions that are focused on in this paper: timer on delay (TON), timer off

delay (TOF) and retentive timer on (RTO). A negative value in any of the preset or

accumulator values for these instructions will result in a processor fault.

3.3.4 Invalid Address

An invalid addressing fault occurs when a reference is made to an address that

doesn’t exist. There are two types of addressing that can be found in most Rockwell

Software programming platforms. Direct addressing is when an address is explicitly

stated and constant (e.g. N7:0). Indirect addressing is when the word portion of the

address is a variable, for example N7:[N10:0]. In the example provided, the value in

N10:0 will determine what word of N7 is addressed. If N10:0 contains a value that is

outside the defined range of N7, then an invalid addressing value would occur and the

processor would fault. An error would also occur if a negative value was written to

N10:0.

3.4 Testbed: SLC 500 and RS Logix 500

 The testing and vulnerabilities described throughout this paper are specific to the

Allen Bradley SLC 5/05 processor platform and Rockwell Automation’s Ladder 500

programming language. The SLC series of hardware is modular and chassis-based. A

typical system usually consists of a rack (multiple slot size options), a power supply, IO

cards and a processor. Allen Bradley offers a wide array of IO cards ranging from

discrete IO, to analog IO to specialty IO. The SLC series of hardware has several

different processors to choose from with memory and communications being the

48

determining factor as to which one to us for an application. The SLC 5/05 processor is

the only processor in the SLC line that offers Ethernet/IP communications. Ethernet

communication occurs at 10 Mbps or 100Mbps. The SLC processor is a 16-bit

architecture with memory options ranging from 16k to 64k. The SLC systems can be

configured with a maximum of 3 independent chassis for a total of 30 slots and it can

have up to 4096 individual I/O points. For testing purposes, the following hardware was

used: SLC 5/05 processor, 3 IO cards, power supply and 4-slot rack.

Figure 3.1 SLC Hardware

The SLC family of hardware was introduced in the 1990’s. Since that time Allen

Bradley has introduced more sophisticated platforms such as the ControlLogix processor,

however due to the reluctance of industry to replace hardware and the “if it’s not broke

don’t fix it mentality,” the SLC 500 market share is still quite large and responsible for

controlling large manufacturing and processing operations throughout the world.

Because of this large presence, it is still necessary to expose vulnerabilities and provide

methods for protecting industrial control systems that still use this aging hardware.

49

There are two types of faults that occur in this type of processor: minor faults and

major faults. Minor faults are typically just a nuisance fault indicating that something in

the system needs attention. This might be a warning that the processor battery is low or

something similar to that. These fault indications are usually passed along to an HMI or

a signal light to alert the operator that something needs attention. A major fault, on the

other hand, has a more dramatic impact on the process. A major fault occurs when an

error condition is present that prevents an instruction from executing. When this

happens, the current instruction is aborted and the fault is reported using status registers.

A major fault will halt all logic execution and the controller will switch from “Run

Mode” into a “Fault Mode.” Once the processor is faulted, all output functionality ceases

and the outputs are left in whatever state they were in when the error occurred.

Depending on the process it is controlling this could put workers in danger or have

serious health, economic or environmental implications. There are measures that can be

put in place to control what happens under certain instances, but this does not account for

all major fault conditions.

The SLC family processors are programmed using Rockwell Software’s Logix

500 programming package. This package is an IEC-1131 compliant ladder logic program

that offers a graphical interface for modifying and monitoring the PLC program.

Although the newer software packages have migrated to a tag based ladder, the Logix

500 programs still use an address based approach. The newer tag based ladder editors

allow a programmer to name inputs, outputs and internal registers with a meaningful

name. For example, an input from an emergency stop pushbutton might be named

“EmergencyStopPB.” The Logix 500 interface does allow a programmer to add

50

comments to provide better readability, but the basic addressing follows the format of file

type, file number, word number and bit number. The following chart shows the basic

types of files.

Table 3.1 Logix 500 Address Types

File Type Identifier Numerical File Type Example Address

BINARY B 85 B3:0/0

TIMER T 86 T4:0

COUNTER C 87 C5:0

INTEGER N 89 N7:0

FLOAT F 8a F8:0

Although this programming package has been around since the debut of the SLC

500 series of processor, it continues to be used widely today as a programming platform

for the Micrologix family of processors and other newly released Allen Bradley

processors.

 The IDS signatures generated for this thesis are developed for Snort. Snort is an

open-source, lightweight intrusion detection system that is based on the libpcap packet

sniffer and logger. Snort can be on many different types of operating systems and can

easily be deployed on most any node of a network because it has very little impact on the

host system. Snort has a built in packet decoder that can analyze multiple layers of the

TCP/IP stack. The detection engine uses pattern matching to compare the decoded raw

51

network traffic to a set of known signatures. Once a match has been found the packet can

either be logged for further analysis or an alert can be generated [56].

3.5 Converting Graphical Ladder Logic into Text

Most ladder logic programs are graphical in nature which makes them difficult to

parse; however, some ladder logic programs can be copied and pasted into a text format

that is easily searched for key information. For instance, Rockwell Software’s Logix 500

programs can be converted to a text file by highlighting the rungs of the graphical ladder

program and using the Windows copy/paste commands to paste that information into a

text file. Each ladder element is represented by a specific keyword and constant/variable

information. The keyword identifies the type of instruction for the ladder element and

the parameters that follow the keyword give more detail as to how the instruction is used.

For example, the following figure shows a single rung of ladder logic containing a

normally open (NO) contact and a division (DIV) instruction along with its

corresponding text representation.

52

SOR XIC B3:0/0 DIV 10.0 N7:0 F8:0 EOR

Figure 3.2 PLC Ladder Rung and Text Representation

The text representation in Figure 3.2 contains the following information:
SOR – Start of rung
XIC B3:0/0 – Examine if closed (normally open) contact with address B3:0/0
DIV 10.0 N7:0 F8:0 – Division instruction, 10 divided by N7:0 = F8:0
EOR – End of rung

3.6 IDS Rules Identified via Ladder Logic

There are many types of PLC instructions and they vary from manufacturer to

manufacturer. There are many basic instructions that are common across most types of

PLC ladder logic. Basic math instructions such as addition, subtraction, multiplication

and division are very common instructions that can be found in most off the shelf ladder

programming packages. The Allen Bradley SLC 5/05 processor uses these basic

functions on a routine basis in even the most elementary ladder programs. As mentioned

earlier, the SLC 500 series of processors have several vulnerabilities that can be exploited

mainly due to its 16-bit architecture and its lack of intrinsic error handling. These major

faults can result in the total halt of all control functions of the processor.

53

The following vulnerabilities can easily be detected by parsing through ladder logic and

used to create Snort IDS rules:

 Division by Zero Fault

 Math Overflow Fault

 Negative Value Fault

 Invalid Addressing Fault

These potential faults along with the detection of unused registers can provide a

significant list of signatures to be used as input to a IDS in an effort to monitor the

network and protect the industrial control system.

3.7 SLC 500 Ethernet Packet Format

In order to understand the IDS rules that are discussed in the next section, it is

important to understand the structure of a typical SLC 500 Ethernet packet. The SLC 500

Ethernet packet encapsulates an older protocol called DF1. The DF1 protocol has been

around for a number of years and was primarily used for serial and Allen Bradley’s DH+

physical layers. Once Ethernet emerged onto the industrial control network scene, Allen

Bradley encapsulated the already proven DF1 protocol into the Ethernet packet. The

documentation that is published for the DF1 protocol is very abstract, therefore much of

what was learned for the purposes of this paper was learned through experimentation

using a mock control system network.

In an effort to reverse engineer the Ethernet encapsulated DF1 protocol, a laptop

running Wireshark and Nmap was connected to a mock control system network

consisting of a PLC and HMI. Data was then recorded and analyzed. The figure below

54

shows a sample Ethernet command and reply packet. This packet depicts an integer write

(aa) of the value 10 (hex 0a) to PLC integer register N7:0.

Figure 3.3 Example Ethernet Command (top) & Reply (bottom) Packet

The Ethernet and TCP header portions of these packets have been omitted and

only the data portion is shown above. The first item to be noted is the repetition of the

shaded portion between the command and reply packet with the exception of the initial

byte (highlighted in green). This repetition and simplicity of the packet, make it easily

susceptible to a man in the middle attack or response injection. The unique portion of

each packet is highlighted with a bold border in the figure above. Since this sample

packet is representative of an integer value, only two bytes are shown at the end of the

packet (orange). A floating point value would have two additional bytes at the end of the

packet to hold the four-byte IEE 754 Floating Point value. The table below (Table 3.2)

gives a brief explanation of each byte as observed through various tests.

55

Table 3.2 Command/Response Packet Byte Descriptions

Unique Seq. Number This value links the command and reply packet.

Command Specifies the process to be performed (a2 = read, aa = write,

etc.)

Address Address to be inspected. In this example the address is

N7:0

Address Type Specifies the type of value located at the address.

(89=N=integer)

Write Value The value to be written (10 or hexadecimal 0a)

Return Value Return value at specified location. In this example N7:0 =

10 (or hex a)

The unique sequence number (light blue) is retrieved from the PLC (host) when a

client (laptop, HMI, etc.) establishes communication. This number increments with each

command/response packet exchange. This is a simple method for matching up command

and response packets.

The command portion (yellow) specifies the action that is to take place. The DF1

protocol has a lengthy set of commands, but most are very specialized commands like for

uploading and downloading programs to the PLC.

56

After exhaustive testing, the most typical commands used for routine industrial control

are the following:

a2 – protected typed logical read

aa – protected typed logical write

ab – bit level write

 The address bytes (red) refer to the file number and word number of an address

register. The left most value is the file number and the two bytes grouped to the right are

the word number. In the example above, the file number is “07” and the word number is

“00 00”. This packet is addressed for N07:00. Each file number is unique and can

represent any type of value (integer, float, etc.) This is discussed in more detail below.

Since this value is limited to one byte, then the largest file address for a SLC500 is 255.

 The address type (green) indicates the data type of the value stored in the target

register. This numeric representation could indicate the target register is an integer, float,

counter, timer, string, etc.. This was explained in detail in a previous section, Table 3.1.

 The write value (orange) is found at the end of the command packet and its byte

length varies depending on the data type being written. An integer write will have a

maximum of two bytes for the value at the end since the maximum 16-bit integer is

32,767 (7F FF hex). However, a floating point write would have four bytes for the value

at the end in order to hold the IEE 754 Floating Point Standard value.

The return value (violet) in the response packet is confirmation of that the

command was executed successfully. If a read command is issued, the return value will

contain the bytes representing the value, of the specified type, in the address register

being read. If a write command is issued, the return value will contain the bytes

57

representing the value that was written. It is important to note that the read and write

values are stored in little endian format.

3.8 Ladder Logic Parser Program and Snort Rule Creation

For the purposes of this paper a Microsoft Visual Basic .NET program was

developed to parse through ladder logic code to create Snort IDS rules for the

vulnerabilities identified in the previous section. The ladder logic code was exported to a

text file to present the VB.NET program a format that was easily traversed and Snort IDS

rules were created for each possible vulnerability.

Snort is very versatile and offers many different options for what to do with a

packet once a signature is identified. The testing done for this paper uses the alert

functionality in order to log that a rule was successful in matching a known signature. In

a real world scenario, the IDS might be setup to drop the packet to prevent a failure from

occurring. Each Snort rule was written using the payload detection rule option, byte_test.

The byte_test option tests a field against a specific value. The format of the

byte_test is as follows:

byte_test:<bytes_to_convert>,<comparison operator>,<value>,<offset>,

<relative>,<endian>

The first parameter, <bytes_to_convert>, is the number of bytes to inspect. This varies

from ladder instruction to ladder instruction depending on what is being inspected. This

value is converted to an integer value and compared to the value directly after the

comparison operator. The comparison operator is the operation to be performed (>,<,=,

etc.). The <value> parameter is what the first parameter is tested against using the

comparison operator. The <offset> parameter allows the user to specify the starting point

58

of the <bytes_to_convert> in relation to the Content portion of the rule. The <relative>

option indicates that this offset is relative to the Content. The last parameter, <endian>,

indicates the byte order of the <bytes_to_convert>.

The header information for each Snort rule in the following section indicates that

the rule will alert when any TCP/IP traffic, with payload information matching the

defined pattern, is directed to port 2222 on the PLC’s hardcoded IP Address

(192.168.0.109). Port 2222 is the standard communication port for many Allen Bradley

hardware products with Ethernet communications. The rule header information is left out

of the following section for neatness and referred to as {rule header info}. The following

substitution can be made whenever this placeholder is found throughout this paper.

{rule header info} = alert tcp any any -> 192.168.0.109 2222

The next section describes each IDS rule creation scenario that was explored for this

paper and detail how to transition from a graphical ladder element to a Snort IDS rule.

3.8.1 Division by Zero Rule Creation

 The division (DIV) instruction has three parameters: Source A, source B and

Dest. Source A is the numerator and can be either a constant value or an address register.

Source B is the denominator and can also either be a constant value or an address

register. Address registers can be of type integer or float for both the numerator and the

denominator. The Dest. parameter, or destination, is required to be an address register.

This register can either be an integer or a float, however if an integer value is specified

then the quotient is truncated after it is calculated. The graphical representation of the

Logix 500 DIV instruction is below.

59

Figure 3.4 Logix 500 DIV Instruction

Once exported to a text file, this instruction is represented as DIV 10.0 N7:0 F8:0

The Visual Basic parser program searches through the exported ladder text

looking for DIV instructions that contain an address register in the denominator

parameter. All DIV instructions with a constant value in the denominator are ignored.

An address register in the denominator acts as a variable that could be intentionally set to

a zero through malicious activity on the network. As previously discussed, if a division

by zero fault occurs all PLC control functions will cease. In order to protect against this,

the ladder parsing program automatically creates the following Snort IDS rule.

{rule header info} (content:”|aa02078900|”;byte_test:2,=,0,1,relative,little;sid:100000;)

3.8.2 Math Overflow Rule Creation

 A math overflow fault occurs when a register exceeds the allowable range for that

register type. The SLC 500 16-bit registers are limited to (+/-) 32,767 for integer

registers and 3.4e+38 for floating point registers. There are three common types of

instructions where a math overflow could occur: addition (ADD), multiplication (MUL)

and subtraction (SUB). The graphical representations of each of these Logix 500

commands are shown in the figures below.

60

Figure 3.5 Logix 500 MUL, ADD & SUB Instructions

Once exported to a text file, each of these instructions are represented as
MUL 0 N7:1 N7:2 ADD 32767 N7:5 N7:2 SUB N7:10 N7:11 N7:12

Each math command has the same parameters as the DIV function discussed

earlier. In order to identify which math command could result in a math overflow

condition, one of the Source parameters must be a constant and the other must be a

variable address register. If both of the parameters are address registers, it might be

possible to create a rule to detect a math overflow, but that is beyond the scope of this

paper. If both parameters are constant or both are address registers, then the instruction

will be ignored by the parser program. Once a math instruction is found that meets the

required criteria, then the value that creates an overflow condition is calculated and the

rule is written. For example, in the ADD instruction above Source A is a constant value

set to 32767. That means anything greater than zero in Source B will create a math

overflow fault. The ladder parsing program would automatically create the following

Snort IDS rule based on this information.

{rule header info} (content:”|aa02078905|”;byte_test:2,>,0,1,relative,little;sid:100000;)

61

3.8.3 Negative Value Rule Creation

 A negative value fault occurs when a negative value is present in a register

reserved for positive numbers. Two instances where this might be a problem is in the

accumulator (ACC) and preset (PRE) registers of timer and counter instructions. The

graphical representation of each of these Logix 500 instructions are shown in the figures

below.

Figure 3.6 RS Logix 500 TON and CTU Instructions

Once exported to a text file, each of these instructions are represented as
TON T4:0 1.0 10 5 CTU C5:0 10 0

Timer and counter instructions are very similar. The first parameter specifies the

file number of the timer or counter. By default, timers are found in file number four (T4)

and counters are found in file number five (C5), however other file numbers can be added

if required. The second parameter found in the timer instruction is not present for

counter. On timers the second parameter is the time base. This can have a value of 1.0,

0.01 or 0.001 (seconds). The time base parameter defines the units for the timer Preset

parameter. Both timers and counters have a Preset parameter. The Preset is the target for

the instruction. As long as the rung containing a timer instruction is true, the timer keeps

counting until the Preset value is reached. Each time a rung containing a counter

instruction transitions from false to true, the counter increments by one until the Preset

62

value is reached. For both the timer and counter instructions, the Accumulator value is

the current value of the timer/counter. Once the Accumulator value equals the Preset

value, then the target is reached and the instruction’s DN (done) bit will transition to

logical high.

To prevent a negative value fault, the ladder parser will create a rule for all timer

preset and accumulator registers and counter preset and accumulator registers that appear

in the ladder logic. An alert is generated if a negative value is written to any of these

prohibited registers. For the timer and counter instructions shown above, the following

four rules would be created.

Timer Preset:

{rule header info} (content:”|aa0204860001|”;byte_test:1,>,128,1,relative,

little;sid:100000;)

Timer Accumulator:

{rule header info} (content:”|aa0204860002|”;byte_test:1,>,128,1,relative,

little;sid:100000;)

Counter Preset:

{rule header info} (content:”|aa0205870001|”;byte_test:1,>,128,1,relative,

little;sid:100000;)

Counter Accumulator:

{rule header info} (content:”|aa0205870002|”;byte_test:1,>,128,1,relative,

little;sid:100000;)

Three things to note about these rules that differ from other examples to this point:

63

1. The Content portion of the rule has an additional byte listed at the end.
This byte is a “01” to address to Preset portion of the register and a “02” to
address the Accumulator portion of the register.

2. The file types for these rules, the fourth byte in the Content portion, is
“86” for timer registers and “87” for counter registers.

3. The value that is compared against in the byte_test portion is “128.” This
is because a negative number is present when the 16th bit (sign bit) of the
two bytes is a “1”. Therefore “1000000000000000” is equal to hex “80
00.” If the most significant byte only is inspected, then 0x80h is 128 in
decimal.

3.8.4 Unused Address Rule Creation

 The PLC ladder logic program defines all of the addresses that should be in active

use for controlling a system. Any read or write attempts to address registers that are not

defined in the PLC ladder program should be flagged as suspicious. An attempt to write

unused registers don’t present any harm to the system, however a brute force attack

attempted by someone with little knowledge of the system could be identified by these

unexpected write attempts. An attack or reconnaissance attempt would undoubtedly

attempt to read or write random registers.

 The ladder parser program logs every address register that is referenced in the

PLC ladder logic. Once this information is gathered, the address registers can be

organized so IDS rules can be written for entire file numbers that are not used, entire

words within a specific file that are not used or specific bits within a word that are not

used. These unused addresses can be written at the word level or at the bit level so it is

important to write rules that identify both types of write attempts. The following rules

are examples that might be generated from a typical PLC ladder program for unused

address registers.

64

Example 1: Alert if a word level write attempt is made on any integer address greater

than N77:22

{rule header info} (content:”|aa027789|”;byte_test:1,>,22,0,relative, little;sid:100000;)

Example 2: Alert if a bit level write attempt is made on any integer address greater than

N77:22

{rule header info} (content:”|ab027789|”;byte_test:1,>,22,0,relative, little;sid:100000;)

65

CHAPTER IV

TESTING AND EVALUATION

4.1 Test Environment/Equipment

Testing and evaluation of this topic required a specific hardware setup consisting

of an Allen Bradley SLC 500, an HMI interface/client PC to serve as an attacker and a

PC running the IDS software to monitor the network traffic.

4.1.1 PLC Configuration

 The PLC used for testing was an Allen Bradley SLC 500 system with a 5/05 CPU

(part number 1747-L551B/C) and 16K of memory. The processor was housed in a 4-slot

rack with the power supply. A simple RS Logix 500 ladder logic program was created to

simulate each of the rule creation opportunities discussed in this paper.

4.1.2 HMI Interface

A Microsoft Visual Basic .NET program was developed to serve as a client HMI

to communicate with the PLC. The HMI had various numeric indicators to display

information read from the PLC and input boxes to allow information to be written to the

PLC registers. This interface was used to compromise the PLC by writing values to

address registers that would halt the PLC processor by creating a division by zero, math

overflow, or negative value fault to occur.

66

4.1.3 IDS Monitoring PC

The IDS Monitoring PC was a laptop running Snort version 2.9.2. The signatures

were created for the IDS using the Microsoft Visual Basic ladder logic parser program

described in previous sections. The number of rules that were being actively monitored

were dependent on the size and type of ladder logic program analyzed by the parser

program. Each time an IDS alert was received it was logged for further inspection.

4.1.4 Network Layout

The network consisted of the three devices mentioned above connected to a

simple 4-port network hub. A hub was used to ensure that all traffic between the PLC

host and the HMI client could be inspected by the IDS PC. A network layout diagram is

shown below in Figure 4.1.

Figure 4.1 Test Network Diagram

67

4.2 Analysis of Ladder Logic

 The ladder logic parser program was developed and tested using a very simple

ladder logic program that was written to demonstrate one of each type of vulnerability

described in this paper. This proved to be very effective for development purposes. The

penetration testing that was done using the IDS rules created for the small test program

demonstrated that the ladder parser was very effective at creating Snort signatures to alert

if any of the known attacks were made against the PLC.

 Although a simple PLC program was sufficient for development and testing

purposes, it is not typical of what would be found in a manufacturing environment today.

In order to get a better idea of the potential effectiveness of the ladder logic parser rule

creation process in a real world environment, seven different ladder logic programs were

analyzed. Each of the seven ladder logic programs are actual real world examples of

programs that are in execution today at various manufacturing facilities around the

United States. For confidentiality purposes, the name of each company is not mentioned,

but referred to as Plant 1-7 instead. To show the wide variety of industry reflected, a

brief description of manufacturing facility is as follows:

 Plant 1 produces air conditioning component, compressors and entire
heating/cooling units. The ladder logic program is from a large conveyor
assembly line that assembles compressors.

 Plant 2 produces home appliances. The ladder logic program is from a
robotic work cell that cuts holes in a blow molded part.

 Plant 3 is a tier 1 supplier to the automotive industry. The ladder program
is from an assembly cell that produces transmission components.

 Plant 4 is a tier 1 supplier to the automotive industry. The ladder program
is from a conveyor line that produces seating components.

68

 Plant 5 is a tier 2 supplier to the automotive industry. This company
produces various metal components associated with vehicle suspension.

 Plant 6 is a tier 1 supplier to the automotive industry. The ladder program
is from a seating line that controls multiple assembly stations along the
conveyor line and several stand-alone assembly stations.

 Plant 7 is a tier 1 supplier to the automotive industry. The ladder program
is from an assembly machine that folds airbags before they are place into
the protective sleeves.

The data in Table 4.1 shows the various fault related IDS signatures that can be

created by parsing the ladder logic of each of the real world examples. There are a few

things that can be noted by looking at the data. First, none of the sampled ladder

programs had a division (DIV) instruction that matched the criteria required to be

vulnerable to a divide by zero fault. This is not surprising given that no process control

related ladder programs were available for parsing. A chemical plant or other process

control related system would certainly lend itself to more equations and math functions

that would probably include the use of more division operations.

69

Table 4.1 Rule Count for PLC Major Faults in Sample Ladder Logic Programs

Plant
Divide by

Zero
Math

Overflow
Negative

Error
Indirect
Address

Program
Size (Total

Rungs)
Plant 1 0 92 90 0 338
Plant 2 0 101 98 0 214
Plant 3 0 64 64 0 174
Plant 4 0 1140 990 1326 2353
Plant 5 0 378 378 0 989
Plant 6 0 1376 1360 33 2468
Plant 7 0 306 306 0 658

The second item to note is that not all ladder programs use indirect addressing.

This is something that is left to the programmer’s personal preferences. It is certainly

possible for a control systems engineer to go his entire career without using indirect

addressing, however indirect addressing has its advantages in certain applications. Out of

the seven programs sampled for this dataset, only two included indirect addressing. As

the data shows, one ladder program uses indirect addressing extensively.

The data in Table 4.2 shows the number of unused address register IDS signatures

that can be created by parsing the ladder logic of each of the real world examples. Each

of the rules can be written to cover a range of addresses at the file level, word level or bit

level. The level on which the rule is written varies depending on how the address register

is used in the ladder logic program. For example, if no individual bit references are used

in the ladder logic program, then a rule can be written at the word level to cover that

range. How the programmer chooses registers is also a big factor on the number or

unused address rules that are created. If the unused registers are consecutive, then larger

blocks of unused addresses can be covered in a single rule. On the other hand, if the

70

address usage is very sporadic, then multiple rules would need to be written to cover all

of the gaps.

Table 4.2 Rule Count for Address Faults in Sample Ladder Logic Programs

Plant

Unused
Address
Word

Unused
Address File

Unused
Address Bit

Program Size
(Total Rungs)

Plant 1 42 22 142 338
Plant 2 88 44 124 214
Plant 3 82 32 10 174
Plant 4 346 102 1744 2353
Plant 5 292 36 564 989
Plant 6 478 62 1856 2468
Plant 7 94 32 195 658

4.3 Validation

 Because of the large number of rungs in each of real-world sample ladder logic

programs and the likelihood of human error, it would be impractical to do a manual

verification of each signature that was generated. Therefore, validation of this rule

generation technique was done on a smaller scale. A PLC ladder file was created that

simulated each of the vulnerabilities mentioned in this thesis. The PLC file was

downloaded to a SLC 500 processor and each vulnerability was verified as valid by

sending a value to the address register that would cause a fault to occur.

Once each fault condition was validated by a manual attack, the sample ladder

logic program was processed by the Ladder Logic Parser program. The Ladder Logic

Parser program not only generated a set of Snort rules that directly addressed the

vulnerabilities represented in the sample test program, but also generated rules related to

the unused address ranges. The generated rules were copied over to the IDS Monitoring

71

PC for testing. Once Snort was put into monitor mode, each manual attack was initiated

one-by-one to verify that Snort alerted to indicate the rule was successful in recognizing

the packet. Other network traffic was introduced to the test network to simulate ‘normal’

traffic by using the RS Logix 500 programming software to go online with the PLC to

actively monitor the ladder file. By doing this, multiple PLC registers were being polled

in real time which would simulate traffic on a PLC network. Since each rule was written

to specifically catch each individual vulnerably, the success rate of each rule was 100%.

It is also important to note that the other polling traffic did not result in any false

positives.

Once the small test program was validated, then portions of each of the real-world

ladder logic files were checked for validity. Some of the address range rules are written

to cover large blocks of registers, therefore it is not difficult to check those by manual

inspection. Other address rules are more scattered. A sampling of the vulnerability rules

was selected and checked for accuracy. All signatures in the sampling were deemed

valid.

4.4 Implementation

 There are several key items regarding implementation of the system described in

this paper. First, Snort must be operating with a current rule set. If the ladder logic file is

ever modified, then the Ladder Parser program must be executed again with a text export

of the new ladder file and those rules must replace the old Snort rule file. If the rule file

definitions are not kept up to date, then a significant number of false positives would

certainly occur and malicious activity might go unnoticed.

72

 As with any IDS system, placement on the network is of the utmost importance.

The computer running Snort must be located where it can analyze all the incoming

network traffic to the PLC. This is not always practical where managed switches are

used.

 The proposed method has a minimal cost in terms of processing power and

memory usage. Both of these resources would be impacted as the number of signatures

to compare against increase, however testing for this thesis project showed a very

minimal increase in memory and CPU utilization when executing Snort with the rule sets

generated from the ladder files described in this paper.

73

CHAPTER V

CONCLUSION

5.1 Summary

 Industrial control systems oversee our world’s critical infrastructure and

manufacturing environments. These systems are under ever increasing threat from a

variety of sources. Whether it be state sponsored terror, a weekend hacker just trying to

have some fun or a disgruntled employee, the insecure by design hardware that make up

these systems are an easy target. The defense-in-depth architecture is the only way to

adequately protect against such treats and the IDS plays an important role.

 As discussed in this paper, IDS has great potential in the future of ICS security

however there are many improvements to be made. Signature-based IDS is only as good

as the rules that define it. A security administrator should use everything as his disposal

to help define what is to be considered malicious activity. The ladder logic used to

program the PLCs offer a world of information regarding the registers that should be

accessed over a network and the potential vulnerabilities that are present due to the

structure of the program and the inherent traits of the hardware. It is important to

leverage the static topology of ICS networks and those programs that define them to

enhance the IDS’s knowledge of the environment in which it is deployed.

Analyzing the ladder logic and creating these rules by hand would be a futile task

due to the magnitude of most PLC programs. This thesis shows that it is possible to

74

automate the process of rule generation for certain types of PLC ladder logic programs.

In this paper a Ladder Logic Parser program was created to do just that. Although this

thesis only applies to ladder logic and functionality associated with the Allen Bradley

SLC 500 and its associated Rockwell Software’s Logix500 programming language, the

principle can be investigated for other systems.

The testing shows that this method is not only applicable to a controlled test

environment, but can also create a significant number of Snort rules that define abnormal

behavior using real-world ladder files. Using a smaller test case ladder file, the

functionality of this method was proven accurate and a sampling of the larger real-world

files were found to be thorough and valid.

5.2 Future Work

 There is much work that could be done to build upon this research. The first item

to note is that the Snort IDS in this work only had the ability to alert when a packet was

detected that would trigger a fault. Further work in this area would work to setup Snort

to drop packets that would cause the PLC processor to fault. To do this some work

would have to be done to intercept packets, process them and only forward the ones that

are deemed valid.

 As larger ladder files are parsed and more rules are generated, the increase in the

number of rules might have an impact on Snort’s ability to perform efficient and timely

pattern matching. Further work could be done to improve the rule definitions to make

them as efficient as possible to counter the increase in rule quantity.

 Another area that has merit for continued investigation is the adaptation of this

work to other, newer, ladder logic interfaces and PLC hardware models/manufacturers.

75

This work specifically looked at one type of aging hardware. Rockwell’s newest ladder

logic interface, RSLogix 5000, has the same flexibility that allows the graphical ladder

file to be copied and pasted into a text format for easy parsing. The addressing is

drastically different with a new format because they no longer use the file/word/bit

format, but have transitioned to a tag based format that represents addresses as text.

Using database files associated with the ladder file, it would still be possible to identify

the tags within the ladder file by type to allow the same kind of rule generation to occur.

The newer processors may not have the same vulnerabilities that the SLC 500 has, but

with experimentation it may be discovered that they have their own inherent set of

vulnerabilities that can protected against via automated rule generation.

76

REFERENCES

[1] Krotofil, Maryna, and Dieter Gollmann. "Industrial control systems security:
What is happening?." Industrial Informatics (INDIN), 2013 11th IEEE
International Conference on. IEEE, 2013.

[2] Stouffer, Keith, Joe Falco, and Karen Scarfone. "Guide to industrial control
systems (ICS) security." NIST special publication 800.82 (2011): 16-16.

[3] GICSP, Ernie Hayden, Michael Assante, and Tim Conway. "An Abbreviated
History of Automation & Industrial Controls Systems and Cybersecurity." (2014).

[4] http://www.rockwellautomation.com/en_IN/news/allen-bradley-history-
pages.page

[5] Mitsubishi Programming Manual. Manual number: JY992D48301. Rev J, 1999.

[6] https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx

[7] http://www.rockwellautomation.com/rockwellsoftware/products/factorytalk-view-
me.page

[8] Byres, Eric, and Justin Lowe. "The myths and facts behind cyber security risks for
industrial control systems." Proceedings of the VDE Kongress. Vol. 116. 2004.

[9] Swanson, Christine A., and William M. Lankford. "Just-in-time manufacturing."
Business Process Management Journal 4.4 (1998): 333-341.

[10] Gao, Wei, and Thomas H. Morris. "On Cyber Attacks and Signature Based
Intrusion Detection for MODBUS Based Industrial Control Systems." The
Journal of Digital Forensics, Security and Law: JDFSL 9.1 (2014): 37.

[11] Wilhoit, Kyle. "Who’s Really Attacking Your ICS Equipment?." Trend Micro
(2013).

[12] Rockwell Automation Support Center. “29402-TCP/UDP Ports Used by
Rockwell Automation Products.”

[13] Abrams, Marshall, and Joe Weiss. "Malicious control system cyber security attack
case study–Maroochy Water Services, Australia." McLean, VA: The MITRE
Corporation (2008).

http://www.rockwellautomation.com/en_IN/news/allen-bradley-history-pages.page
http://www.rockwellautomation.com/en_IN/news/allen-bradley-history-pages.page
https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx
http://www.rockwellautomation.com/rockwellsoftware/products/factorytalk-view-me.page
http://www.rockwellautomation.com/rockwellsoftware/products/factorytalk-view-me.page

77

[14] Singer, P. W. "Stuxnet and Its Hidden Lessons on the Ethics of Cyberweapons."
Case W. Res. J. Int'l L. 47 (2015): 79.

[15] https://ics-cert.us-cert.gov/jsar/JSAR-11-312-01

[16] Bencsáth, Boldizsár, et al. "The cousins of stuxnet: Duqu, flame, and gauss."
Future Internet 4.4 (2012): 971-1003.

[17] Piggin, Richard. "Industrial systems: cyber-security's new battlefront."
Engineering & Technology 9.8 (2014): 70-74.

[18] https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-176-02A

[19] Murphy, Dennis, and I. C. S. Senior. "Lights out! Who’s next?." (2016).

[20] Lee, Assante and Conway. Analysis of Cyber Attack on the Ukrainian Power
Grid. Washington: E-ISAC. 2016.

[21] http://www.snort.org

[22] Cheminod, Manuel, Luca Durante, and Adriano Valenzano. "Review of security
issues in industrial networks." Industrial Informatics, IEEE Transactions on 9.1
(2013): 277-293.

[23] Harp and Gregory-Brown. The State of Security in Control Systems Today.
Maryland: SANS Institute. 2015.

[24] Byres, Eric and Eng, P.. “Understanding Deep Packet Inspection for SCADA
Security.” Tofino Security. 2012.
https://scadahacker.com/library/Documents/White_Papers/Tofino%20-
%20Understanding%20Deep%20Packet%20Inspection%20for%20SCADA%20S
ecurity.pdf

[25] Byres, Eric et al. “Securing EtherNet/IP Control Systems using Deep Packet
Inspection Firewall Technology. Tofino Security. 2014.

[26] Hadeli, Hadeli, et al. "Leveraging determinism in industrial control systems for
advanced anomaly detection and reliable security configuration." Emerging
Technologies & Factory Automation, 2009. ETFA 2009. IEEE Conference on.
IEEE, 2009.

[27] Mitchell, Robert, and Ing-Ray Chen. "A survey of intrusion detection techniques
for cyber-physical systems." ACM Computing Surveys (CSUR) 46.4 (2014): 55.

[28] Liao, Hung-Jen, et al. "Intrusion detection system: A comprehensive review."
Journal of Network and Computer Applications 36.1 (2013): 16-24.

https://ics-cert.us-cert.gov/jsar/JSAR-11-312-01
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-14-176-02A
http://www.snort.org/
https://scadahacker.com/library/Documents/White_Papers/Tofino%20-%20Understanding%20Deep%20Packet%20Inspection%20for%20SCADA%20Security.pdf
https://scadahacker.com/library/Documents/White_Papers/Tofino%20-%20Understanding%20Deep%20Packet%20Inspection%20for%20SCADA%20Security.pdf
https://scadahacker.com/library/Documents/White_Papers/Tofino%20-%20Understanding%20Deep%20Packet%20Inspection%20for%20SCADA%20Security.pdf

78

[29] Roosta, Tanya, et al. "An intrusion detection system for wireless process control
systems." Mobile Ad Hoc and Sensor Systems, 2008. MASS 2008. 5th IEEE
International Conference on. IEEE, 2008.

[30] Valdes, Alfonso, and Steven Cheung. "Communication pattern anomaly detection
in process control systems." Technologies for Homeland Security, 2009. HST'09.
IEEE Conference on. IEEE, 2009.

[31] Valdes, Alfonso, and Stephane Cheung. "Intrusion monitoring in process control
systems." System Sciences, 2009. HICSS'09. 42nd Hawaii International
Conference on. IEEE, 2009.

[32] Rrushi, Julian, and Kyoung-Don Kang. "Detecting anomalies in process control
networks." Critical Infrastructure Protection III. Springer Berlin Heidelberg,
2009. 151-165.

[33] Gao, Wei, et al. "On SCADA control system command and response injection and
intrusion detection." eCrime Researchers Summit (eCrime), 2010. IEEE, 2010.

[34] Jyothsna, V., VV Rama Prasad, and K. Munivara Prasad. "A review of anomaly
based intrusion detection systems." International Journal of Computer
Applications 28.7 (2011): 26-35.

[35] Wang, Y., Statistical Techniques for Network Security, Modern Statistically-
Based Intrusion Detection and Protection. IGI Global. October 2008.

[36] Zamani, Mahdi, and Mahnush Movahedi. "Machine Learning Techniques for
Intrusion Detection." arXiv preprint arXiv:1312.2177 (2013).

[37] Uddin, Mueen, et al. "Signature-based Multi-Layer Distributed Intrusion
Detection System using Mobile Agents." IJ Network Security 15.2 (2013): 97-
105.

[38] Holm, Hannes. "Signature based intrusion detection for zero-day attacks:(not) a
closed chapter?." System Sciences (HICSS), 2014 47th Hawaii International
Conference on. IEEE, 2014.

[39] De Ocampo, Frances Bernadette C., Trisha Mari L. Del Castillo, and Miguel
Alberto N. Gomez. "Automated signature creator for a signature based intrusion
detection system with network attack detection capabilities (pancakes)."
International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2.1
(2013): 25-35.

[40] "An Introduction to Bayes' Theorem." Bayes' Theorem: Introduction. Web. May
2016.

79

[41] Ruggieri, Salvatore. "Efficient C4. 5 [classification algorithm]." Knowledge and
Data Engineering, IEEE Transactions on 14.2 (2002): 438-444.

[42] LaValle, Steven M., and James J. Kuffner Jr. "Rapidly-exploring random trees:
Progress and prospects." (2000).

[43] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

[44] Bishop, Christopher M. "Pattern Recognition." Machine Learning (2006).

[45] https://ics-cert.us-cert.gov/advisories/ICSA-10-090-01

[46] McGuiness, Todd. “Defense in Depth.” SANS Institute. 2001.
https://www.sans.org/reading-room/whitepapers/basics/defense-in-depth-525

[47] Zhu, Bonnie, and Shankar Sastry. "SCADA-specific intrusion
detection/prevention systems: a survey and taxonomy." Proceedings of the 1st
Workshop on Secure Control Systems (SCS). 2010.

[48] Cheung, Steven, et al. "Using model-based intrusion detection for SCADA
networks." Proceedings of the SCADA security scientific symposium. Vol. 46.
2007.

[49] Naess, Eivind, et al. "Configurable middleware-level intrusion detection for
embedded systems." Distributed Computing Systems Workshops, 2005. 25th IEEE
International Conference on. IEEE, 2005.

[50] Oman, Paul, and Matthew Phillips. "Intrusion detection and event monitoring in
SCADA networks." Critical Infrastructure Protection. Springer US, 2007. 161-
173.

[51] Morris, Thomas, Rayford Vaughn, and Yoginder Dandass. "A retrofit network
intrusion detection system for MODBUS RTU and ASCII industrial control
systems." System Science (HICSS), 2012 45th Hawaii International Conference
on. IEEE, 2012.

[52] Caselli, Marco, Emmanuele Zambon, and Frank Kargl. "Sequence-aware
intrusion detection in industrial control systems." Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security. ACM, 2015.

[53] Falliere, N., Murchu, L.O., and Chien, E.. W32.Stuxnet Dossier, Symantec Tech.
Rep. 1.4, 2011.

[54] https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-
Steelworks_Facility.pdf

https://ics-cert.us-cert.gov/advisories/ICSA-10-090-01
https://www.sans.org/reading-room/whitepapers/basics/defense-in-depth-525
https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-Steelworks_Facility.pdf
https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-Steelworks_Facility.pdf

80

[55] Wei Gao, “Cyberthreats, attacks and intrusion detection in supervisory control
and data acquisition networks,” Mississippi State University, Starkville, PhD
Thesis UMI Number: 3603432, 2013.

[56] Roesch, Martin. "Snort: Lightweight Intrusion Detection for Networks." LISA.
Vol. 99. No. 1. 1999.

	Leveraging PLC Ladder Logic for Signature Based IDS Rule Generation
	Recommended Citation

	tmp.1625165283.pdf.t_i4W

