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CHAPTER I 

INTRODUCTION 

The restoration of terrestrial ecosystems has gained increased attention as more 

ecosystems become degraded by human activities.  As restoration efforts increase, it is 

advantageous to have a set of reference conditions by which to judge both the current 

state of a degraded ecosystem and also to provide “target” ranges of natural variation by 

which to evaluate the success of restoration efforts (Aronson et al. 1995; Hobbs & Norton 

1996).  A common source of reference conditions in forested ecosystems are uncut old-

growth stands, which can offer insight into the stand structure and dynamics of a forest 

ecosystem with presumably minimal post-European human effects (e.g., Covington & 

Moore 1994; Franklin & Van Pelt 2004; Youngblood et al. 2004). 

The stand structure and dynamics of dominant species also helps drive, and is 

driven by, the disturbance regime of the ecosystem.  Old-growth stands can help 

characterize past disturbance regimes (Platt et al. 1988; Pederson et al. 2008) and can 

thus allow inferences about the past and contemporary management of that ecosystem.  

Frequent, low severity fire as a disturbance regime has a profound effect on the 

evolutionary environment and pyrophytic ecosystems are characterized by species with 

traits adapted to persist in such an environment (Bond & Van Wilgen 1996). 

Of particular restoration concern in the southeastern U.S. are pyrophytic longleaf 

pine (Pinus palustris Mill.) savannas, woodlands, and forests.  Longleaf pine ecosystems 
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once dominated the landscape across the Coastal Plain and up into the Blue Ridge and 

Piedmont provinces and are characterized by frequent fire regime (2 to 10 year fire return 

interval) and some of the highest biodiversity outside of the tropics (Peet & Allard 1993; 

Varner et al. 2003a,b; Staumbaugh et al. 2011).  Currently, however, longleaf pine 

ecosystems have dwindled to a fraction of their former extent and few old-growth 

(defined as containing age classes that pre-date European settlement of the area) stands 

remain (Landers et al. 1995; Varner & Kush 2004).   

Characterization of overstory pine stand dynamics in remaining old-growth stands 

is a priority given the utility of old-growth forests in informing restoration goals and 

management.  Spatial patterns and influences on mortality and growth are of particular 

importance due to their importance for stand resilience, including recovery after 

disturbance and resistance to elevated mortality levels (Churchill et al. 2013), and for 

ensuring regeneration of desired species (Brockway & Outcalt 1998).  Once natural 

patterns are understood, restoration management can tailor prescriptions to help achieve 

patterns and processes historically associated with the ecosystem (Palik et al. 2002).  The 

results of our long-term research in two old-growth longleaf pine stands can therefore 

offer important insight into patterns of changing stand dynamics in this ecosystem.   

In addition to characterization of longleaf pine dynamics, further examination of 

historic co-occurring tree species is essential to a full understanding of the composition 

and structure of these ecosystems and will help guide management decisions during 

restoration and management efforts.  Current restoration practices may not fully 

acknowledge the history of oak presence in pine ecosystems (Greenberg & Simmons 

1999) and the ecological importance of oaks (Hiers et al. 2014) in their efforts to remove 



 

3 

invading hardwood species. The results of this research will provide a more species-

specific understanding of what hardwood species have evolved to co-occur in longleaf 

pine ecosystems by examining trends in bark thickness, a fire-adapted trait strongly 

associated with post-fire survival (Harmon 1984; Jackson et al. 1999).   
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CHAPTER II 

LONG-TERM STAND DYNAMICS IN TWO OLD-GROWTH MOUNTAIN 

LONGLEAF PINE STANDS 

Introduction 

Old-growth forests, by serving as reference systems, can aid management and 

restoration efforts by defining the historic stand dynamics of an ecosystem (Covington et 

al. 1997; Franklin & Van Pelt 2004; Youngblood et al. 2004).  Natural spatial patterns of 

mortality, growth, and ingrowth are a crucial part of stand dynamics and the patterns 

found in old-growth stands can offer insight into the history of these processes (Oliver & 

Larson 1996).  Characterizing these patterns and processes is instrumental in 

understanding the dynamic ecological processes within an ecosystem (Zenner & Hibbs 

1999; Silver et al. 2013). 

Though the ecological importance of tree mortality in forests is well accepted 

(Franklin et al. 1987), the impact and implications of mortality on stand-level spatial 

structure, and resulting forest resilience, are less well understood.  Often a major goal of 

mortality studies is to predict the survival of individual trees (Dixon et al. 1984; Fowler 

& Sieg 2004; Sieg et al. 2006; Varner et al. 2007).  However, understanding the effect 

mortality has on stand-level spatial structure is critical in achieving restoration and stand 

maintenance goals because it serves as a guide for managers when determining 
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harvesting, thinning, and other treatments (Palik & Pederson 1996; Palik et al. 2002; 

Churchill et al. 2013).   

Characterizing the influence of existing stand structure and of neighbor 

competition on mortality and growth of trees can help improve an understanding of how 

stand structure is achieved and how it changes in space and time (Platt & Rathbun 1993; 

He & Duncan 2000; Lutz et al. 2014).  Even fine-scale interactions among trees and 

between trees and understory plants can offer insight into stand dynamics (Tatsumi & 

Owari 2013).  Characterizing and understanding how competition affects mortality and 

growth (Das 2012) of trees in old-growth stands can aid managers in mimicking natural 

patterns of mortality to achieve natural patterns and also provide a reference point against 

which to compare stands in the process of being restored (Aronson et al. 1995; Palik et al. 

2002).   

Longleaf pine ecosystems are of high restoration priority in the United States. The 

first Europeans arrived in the southeastern United States encountered a savanna-like 

landscape dominated by pines and characterized by discontinuous canopies and species-

rich herbaceous groundcover (Platt 1999; Frost 2006).  One of the ecologically and 

economically most important pines, often found as a monodominant in these savannas, 

was longleaf pine (Landers et al. 1995).  Prior to European colonization the extent of 

longleaf pine has been estimated at 37 million hectares stretching from Virginia to Texas, 

into most of Florida, and inland into northcentral Georgia and Alabama (Frost 2006).  

Longleaf pine is a keystone species in several different ecosystem types across its range 

(Noss 1989), with certain longleaf pine communities ranking among the most species-
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rich ecosystems outside of the tropics and many containing local and regional endemic 

species (Platt 1999; Peet 2006).  

The high biodiversity and endemism in longleaf pine ecosystems is strongly 

linked to a frequent fire regime.  Historically, most longleaf pine ecosystems are believed 

to have experienced low-severity surface fires every 2 to 3 years, with the frequency 

decreasing in the inland parts of the range as the extent of longleaf pine became more 

fragmented and systems became less longleaf-dominated (Frost 2006; Bale 2009; 

Stambaugh et al. 2011).  Longleaf pine and many of its associated species are fire-

adapted (Platt 1999).  In longleaf pine these adaptations include a “grass stage” of 

seedling growth during which the seedling devotes carbohydrates to belowground 

growth, allowing it to rapidly “bolt” and grow to a fire-resistant height (Wahlenberg 

1946).  Longleaf pine’s senesced litter and abundant herbaceous fuels can sustain high 

intensity surface fires (Noss 1989; Fonda 2001), which in turn promotes the propagation 

of fire within the ecosystem.  Longleaf pine is also characterized by thick, flaky bark and 

exhibit rapid self-pruning, both traits commonly considered as adaptations to frequent fire 

(Keeley & Zedler 1998; Platt 1999).     

Alteration of its natural fire regime is frequently cited as a major cause of the 

degradation and elimination of longleaf pine ecosystems, though it was by no means the 

only cause.  As early as 1608 settlements in Virginia and surrounding areas exploited 

longleaf pine to produce naval stores (tar, pitch, and turpentine) and by 1850 the heavy 

use and non-renewable practices had resulted in the virtual extirpation of longleaf from 

many areas of its northern range (Frost 2006).  Similarly, the massive amounts of naval 

stores that earned North Carolina the nickname ‘Tarheel State’ came at the cost of the 
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state’s longleaf pinelands and by 1900 the center of production once again moved south 

(Frost 2006).  In addition to the damage and mortality that resulted from the production 

of naval stores, longleaf pine was also regarded as an excellent lumber tree and was 

heavily exploited. 

Currently longleaf pine ecosystems occupy only a fraction of their former extent, 

with much of the remaining forest degraded due to fire exclusion (Varner et al. 2005; 

Frost 2006).  Old-growth longleaf pine stands are increasingly rare and many remain 

threatened by the urban interface and other issues (Varner & Kush 2004).  Of the 

remaining old-growth longleaf pine ecosystems only a few are located within mountain 

or montane longleaf pine, which is the interior limit of longleaf pine in the north-central 

regions of Alabama and Georgia (Ridge and Valley, Blue Ridge, and Piedmont 

physiographic regions) and represent different physiographic conditions than the Coastal 

Plain region in which most longleaf pine studies have been conducted.    

  A key component to longleaf pine restoration efforts is an improved 

understanding of natural stand dynamics.  In particular, research is needed in old-growth 

stands and in mountain longleaf as both represent critical and, in the case of mountain 

longleaf pine, understudied areas (but see Maceina et al. 2000; Stokes et al. 2010; 

Womack & Carter 2011; Carter & Floyd 2013; Kronenberger et al. 2014).  Varner and 

collaborators (2003a) previously characterized stand and age structure in two mountain 

old-growth longleaf pine stands based on stem mapped data collected in 1998 and 1999.  

The present study takes advantage of this previously established study and available data 

with the goals of: 
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i. characterizing 15-year changes and trends in stand dynamics; 

ii. examining trends and conspecific neighbor competition effects on 

mortality; and 

iii. examining trends and conspecific neighbor competition effects on growth. 

The results of this study will further not only a broader understanding of old-

growth longleaf pine stand dynamics, but will also help inform regional management for 

this critical ecosystem by quantifying long-term changes in stand structure in these old-

growth stands. 

Methods 

Study sites 

The study was located in two old-growth longleaf pine stands, Caffey Hill and 

Red-Tail Ridge, in the Mountain Longleaf National Wildlife Refuge in Calhoun County, 

Alabama (33°42’N, 85°45’W).  At both sites there are tree age classes pre-dating 

European settlement of the area and have been previously classified as old-growth stands 

(Varner & Kush 2004).  Complete site descriptions can be found in Varner et al. (2003a), 

from which important factors will be highlighted here (Table 2.1).  The climate is warm 

and humid with an annual average temperature of 17 °C, short mild winters, and an 

average annual precipitation of 1,205 mm evenly spread throughout the year, mostly as 

rain.  Soils are mapped as Rough Stony Land-Sandstone with intergrades of Anniston 

series soils, resulting in frequent quartzite/sandstone bedrock outcrops, loose rock 

fragments, and scattered shallow patches of sandy soil, with clay-loams in the subsoils.       
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Table 2.1 Stand attributes of Caffey Hill and Red-Tail Ridge 

 Slope position Slope (%) Aspect Size (ha) Elevation (m) 

Caffey Hill Upper 40-60 SSE 1.5 450 

Red-Tail Ridge  Lower/mid 30-45 WSW 1.8 350 

two old-growth montane longleaf pine stands in northeast Alabama. 

A fire history study by Bale (2009) in the nearby Choccolocco Mountain area 

found a mean fire return interval of 3.5 years pre-European settlement (1547 AD to 

1830s), of 2.5 years from the 1830s to 1940, and an increase to 7.5 years following the 

increase of regional fire-suppression policies in the 1940s.  A second site had a period of 

recording from 1550 AD to 1940 and found mean fire return intervals of 2.7 years pre-

European settlement and 2.6 years post-European settlement.  Given the proximity (both 

sites in Bale [2009] are approximately 32 km from the sites in this study) and landscape 

of the area, it is reasonable to assume that these results would approximate fire return 

intervals and represent a similar fire history to that of Caffey Hill and Red-Tail Ridge.  

The stands are located on land previously belonging to Fort McClellan (established in the 

1920s), an Army training garrison whose use of live fire and incendiary rounds helped 

maintain a frequent (1 to 3 year) fire return interval in both stands.   

Field methods 

Within the two old-growth stands, all longleaf pines with a diameter at breast 

height (“DBH”, 1.37 m) >2.5 cm within the stand boundary were mapped using 

horizontal distance and azimuth from plot centers, measured (total height, crown height, 

DBH), and permanently tagged in 1998 and 1999 (Varner et al 2003a).  All longleaf 
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pines ≥10 cm DBH were also cored and rings counted to determine approximate ages.  

The sites were initially measured in late 1998 and early 1999 (hereafter “1999” for 

simplicity), during which time snags within the stand were also tallied but only the 

largest were tagged.  All living tagged trees at both sites were re-measured for DBH in 

2005 and 2008 (Kush et al. 2013).  These re-measurements followed prescribed burns, 

one in May 2004 at Caffey Hill and another in March 2006 at both Caffey Hill and Red-

Tail Ridge.  The 2004 Caffey Hill burn was ignited at the base of the slope and burned 

upslope while the 2006 burns were ignited via helicopter (Kush et al. 2013; Sarah Clardy, 

pers. comm., Refuge Manager, Mountain Longleaf National Wildlife Refuge, July 2014).  

In late 2013 and early 2014 (hereafter referred to as “2014”) both stands were re-

measured for DBH, total and crown height.  In addition, ingrowth of live longleaf pine 

with DBH ≥ 2.5 cm were tagged, measured, and mapped using the previously established 

methods and plot centers.  

Data analysis 

All analyses were performed in R (R Core Team 2014) using the spatstat package 

for spatial analysis (Baddeley & Turner 2005) and the pgirmess package for certain non-

parametric statistical tests (Giraudoux 2014).  Since this is a 15-year study with multiple 

re-measurements by different crews there were cases of human error (e.g., abnormally 

large DBH in one year or shrinking DBH in one year).  When the tree in question had 

only one anomalous DBH measurement, linear regressions of DBH changes were 

developed using data from the non-anomalous trees in the stand and these regressions 

were used to adjust anomalous measurements.  However, if the anomalous measurement 

was a shrinking of DBH prior to the tree being recorded as dead in the next measurement 
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the DBH was not adjusted, given the possibility that it may be a real loss of DBH due to 

do consumption of bark by fire or some other mechanical injury.  Likewise if a tree was 

noted as having severe scarring that could result in loss of DBH the measurement was not 

corrected.  Discrepancies in heights were adjusted by simple rounding if the height was 

lower than the initial measurement, unless field observations indicated the possibility of 

top damage.  This was justified by the somewhat subjective nature of height measurement 

and high likelihood that small negative differences in height were the result of 

measurement error. 

Changes in stand structure arise through mortality, growth of established trees, 

and ingrowth of new trees.  For the purposes of this study these changes were examined 

using analyses based on the 1999 and 2014 measurements.  For most analyses diameter 

classes were defined using the coarse size categories: 2.5 to 10.0 cm, 11 to 20.0, 21 to 

30.0, 31 to 40.0, and greater than 40 cm.  The largest DBH trees (i.e. all those >40 cm 

DBH) were lumped because there were too few trees of that size to warrant continuing 

the 10 cm breaks for analysis purposes, particularly at Caffey Hill.  Transition of trees 

from one DBH class to the next largest was calculated based on all trees alive in the 2014 

re-measurement.  Changing spatial patterns were visualized using stem maps made by 

converting the x,y coordinates calculated from the original mapping to spatial point 

pattern data using spatstat.           

Longleaf pine mortality was examined based on distribution within each 10 cm 

DBH class and also spatially by using nearest neighbor analysis in spatstat to obtain the 

distance to the desired neighbor (nearest, second nearest, etc.).  With this information, 

ANOVA was used to determine if there was a significant difference in distance to nearest 
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neighbor for dead vs. live trees within each DBH class.  Because the distance data failed 

to meet assumptions of normality (as measured by deviation from a line in a Q-Q plot), 

the non-parametric Kruskal-Wallis one-way analysis of variance test was used.  

Spatial patterns of mortality and ingrowth were examined using Ripley’s K 

function, Kest() in the spatstat package.  Ripley’s K is based on a comparison of the 

sample function to a complete spatially randomized pattern (Ripley 1976) and is an 

accepted method to examine basic clustering patterns of trees (Moeur 1993).  The related 

L-function is a variance-stabilized version of the K function that can be plotted to follow 

a horizontal zero-axis and allows for easier interpretation of the spatial patterns within the 

data.         

In order to examine the relationship between conspecific neighbor competition 

and pine growth (changes in DBH, basal area, height) linear regressions were fit with 

distance to nearest neighbor and the significance of the regressions were evaluated using 

the lm() procedure.  Annual growth was evaluated only for trees alive in 2014 and was 

taken as the simple change in DBH, basal area, or height divided by 15 (1999 to 2014).  

In cases where the data were analyzed based on DBH class, the DBH class of the tree in 

1999 was used.  For annual change in DBH, the distances to the second and third nearest 

neighbor were also evaluated as independent variables in an initial effort to determine the 

point at which neighboring trees ceased to have an influence.   

Results 

Changes in stand structure 1999 to 2014 

Several measures of structure changed significantly over the fifteen year period in 

these two old-growth mountain longleaf pine stands (Table 2.2).  Red-Tail Ridge stem 
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density decreased by 16% while at Caffey Hill stem density increased by 32% over the 

period.  Stand basal area (Figure 2.1) increased as an overall trend; however a slight dip 

can be seen in both stands in post-fire measurements.  For Caffey Hill the basal area 

decreased by 0.27 m2 ha-1 in 2005 (one year post-fire) and at Red-Tail Ridge it decreased 

by 0.32 m2 ha-1 in 2008 (two years post-fire).  Despite the fact that Caffey Hill also 

burned in 2006, there was no corresponding dip in basal area for Caffey Hill in 2008.  In 

both stands, however, basal area recovered to greater than pre-fire levels by the next re-

measurement.  In 2014 the basal areas were 14.2 and 10.2 m2 ha-1, which represent a 5% 

and 31% increase in basal area from the establishment of the study for Red-Tail Ridge 

and Caffey Hill, respectively. Snag density also increased in both stands (Table 2.2); 

when snags ≤10 cm DBH are excluded snag density increased by 185% or more in both 

stands.   

There are important differences in the diameter distribution for longleaf pine in 

2014 for the two stands (Figure 2.2).  Caffey Hill had a “reverse J” distribution (Figure 

2.3) dominated by trees 5 to 10 cm DBH, Red-Tail Ridge had a much more even 

distribution of diameters and greater numbers of large diameter trees.  The density of 

trees within each DBH class also experienced substantial flux over the 15 years (Figure 

2.4).  Caffey Hill increased in density across all DBH classes by 2 to 63%, with the 

greatest increase in the 21 to 30 cm size class.  At Red-Tail Ridge, however, the density 

of trees in the smallest DBH class (2.5 to 10 cm) decreased by almost half (46%) and the 

density of trees in the next largest class (11 to 20 cm) decreased by 23%.  For both stands 

the 30 to 40 cm class appeared to be the most stable, with Red-Tail Ridge decreasing by 

3% and Caffey Hill increasing by 2%.  Both stands saw increases in the largest diameter 
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pines (≥41 cm DBH), with Red-Tail Ridge increasing by 30% and Caffey Hill increasing 

by 43%.  
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Patterns of longleaf pine growth and mortality 1999 -2014 

Both Caffey Hill (Table 2.3) and Red-Tail Ridge (Table 2.4) underwent changes 

in stand structure due to mortality and the growth and transitioning of trees from one 

DBH class to another.  In all three re-measurements at Caffey Hill substantial numbers of 

trees grew into both the 11 to 20 cm (45 trees [2005], 28 [2008], 29 [2013]) and 21 to 30 

cm DBH classes (16 trees [2005], 18 [2008], 24 [2013]) (Table 2.3).  Red-Tail Ridge had 

substantial numbers of trees transitioning from one DBH class to the next for all classes 

in 2005 with only subtle changes occurring in 2008 and 2013 (Table 2.4).  Also of note is 

the substantial ingrowth at Caffey Hill (273 trees [2014]) in contrast to the low ingrowth 

at Red-Tail Ridge (13 trees) over the 15 year period. 

The spatial patterns of ingrowth at Caffey Hill (Figure 2.5) exhibit a significant 

spatial clustering pattern (Figure 2.10) as shown by the red, blue, and green lines being 

above the blue line, which represents a spatially random pattern.  Ingrowth also generally 

seems to arise in what were formerly gaps within the stand, as shown by the high 

numbers of mapped ingrowth in areas with few or no intermixed live mapped pines 

(Figure 2.5).  Mortality at Caffey Hill was also significantly spatially clustered (Figure 

2.11).  At Red-Tail Ridge (Figure 2.6) there was significantly less ingrowth, which 

lowers our ability to confidently apply Ripley’s K function, although the L-function 

results (Figure 2.12) and visual inspection of the stem map (Figure 2.6) indicate spatial 

clustering.  Mortality, however, was significantly clustered at Red-Tail Ridge (Figure 

2.13). 

Overall longleaf pine mortality varied between Caffey Hill and Red-Tail Ridge 

(Figure 2.7).  One year post-fire (2005), Caffey Hill experienced 19.4% stand mortality, 
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however two years after another fire (2008) the stand mortality was only 2.2% and then 

rose to 6% in 2013.  Red-Tail Ridge suffered post-fire mortality of 6.6% (2008), with 

5.1% tree mortality one year before the fire (2005), and 2.8% mortality level seven years 

post-fire (2013).  Annual mortality for all diameter sizes in the stands were 2.7 and 5.2 

trees per ha or 1% and 1.8% stand mortality for Red-Tail Ridge and Caffey Hill, 

respectively.  Both stands were more similar, however, in annual mortality rates of trees 

≥10 cm DBH with Red-Tail Ridge at 1.4 trees per ha and 0.5% and Caffey Hill at 1.8 

trees per ha or 0.6% annual stand mortality.   

The distribution of pine mortality across DBH classes also differed between the 

two stands (Figure 2.8).  At Caffey Hill, 65% of tree mortality was within the smallest 

(2.5 to 10 cm) size class.  Red-Tail Ridge experienced 48% of its tree mortality in this 

same smallest size class.  The two stands were within one percentage point for the 11 to 

20 and 21 to 30 size classes; however, for the two larger size classes Red-Tail Ridge 

experienced relatively more mortality.  Combined, Red-Tail Ridge experienced 28% of 

its mortality in the two largest DBH classes, with Caffey Hill experiencing only 11% of 

its mortality in these larger trees (>30 cm DBH).   
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Conspecific neighbor effects on longleaf pine growth and mortality 1999 to 2014 

Effects of conspecific neighboring pines on tree growth and mortality are 

generally less clear than the broad stand-level patterns.  At Caffey Hill there were no 

significant differences found in distance to nearest neighbor and longleaf pine survival 

(status in 2014) except in the 2.5 to 10 cm DBH class (p=0.0006), where the average 

distance to nearest neighbor (Figure 2.9A) is shorter for dead trees (1.6 m) than for live 

trees (2.1 m). No significant differences were detected for the next largest diameter class, 

11 to 21 cm (Figure 2.9B).  Red-Tail Ridge, however, did not have any significant 

differences for distance to nearest neighbor within any size class (results for ≤ 10 cm and 

11 to 20 cm shown Figure 2.9C, D). 

To examine the relationship between basal area growth and neighbor competition, 

a linear regression was fit to annual change in basal area with distance to nearest 

neighbor.  There was a significant effect for Caffey Hill (Table 2.5) and Red-Tail Ridge 

(Table 2.6) (both p<0.0001), however the magnitudes were subtle, with a slope of 

0.00003 (non-transformed) at both stands.  Additionally, little variation was explained 

(R2 <0.14; for square-root transformed <0.16) by the relationship at either stand. 

Linear regressions of annual change in DBH vs distance to neighbor (nearest, 

second nearest, third nearest) show slightly different trends between the two stands.  

Caffey Hill (Table 2.5) had no significant relationships for both nearest and second 

nearest neighbor.  The results for third nearest neighbor were only marginally significant 

(p=0.053, R2=0.05) at Caffey Hill, likely due to the effect of a single outlier.  For Red-

Tail Ridge the relationships between annual DBH growth and distance to neighbor were 
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