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With the rise in the application of evolution strategies for simulation optimization, 

a better understanding of how these algorithms are affected by the stochastic output 

produced by simulation models is needed. At very high levels of stochastic variance in 

the output, evolution strategies in their standard form experience difficulty locating the 

optimum. The degradation of the performance of evolution strategies in the presence of 

very high levels of variation can be attributed to the decrease in the proportion of 

correctly selected solutions as parents from which offspring solutions are generated. The 

proportion of solutions correctly selected as parents can be increased by conducting 

additional replications for each solution. However, experimental evaluation suggests that 

a very high proportion of correctly selected solutions as parents is not required. A 

proportion of correctly selected solutions of around 0.75 seems sufficient for evolution 

strategies to perform adequately.  



 

 

 

Integrating statistical techniques into the algorithm�s selection process does help 

evolution strategies cope with high levels of noise. There are four categories of 

techniques: statistical ranking and selection techniques, multiple comparison procedures, 

clustering techniques, and other techniques. Experimental comparison of indifference 

zone selection procedure by Dudewicz and Dalal (1975), sequential procedure by Kim 

and Nelson (2001), Tukey�s Procedure, clustering procedure by Calsinki and Corsten 

(1985), and Scheffe�s procedure (1985) under similar conditions suggests that the 

sequential ranking and selection procedure by Kim and Nelson (2001) helps evolution 

strategies cope with noise using the smallest number of replications. However, all of the 

techniques required a rather large number of replications, which suggests that better 

methods are needed. Experimental results also indicate that a statistical procedure is 

especially required during the later generations when solutions are spaced closely 

together in the search space (response surface). 
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CHAPTER I 

INTRODUCTION 

This thesis studies the optimization of simulated systems using heuristic 

evolutionary search algorithms. Simulation optimization is the process of linking 

simulation with an optimization method to determine the appropriate settings for user-

controlled inputs that maximize or minimize the output responses of interest from a 

simulation model. Optimization algorithms have been developed that are capable of 

finding optimal or near optimal solutions by evaluating only a fraction of the possible 

solutions. These techniques may be broadly classified into direct search techniques, 

gradient based techniques and statistical techniques.  Optimization algorithms called 

evolutionary algorithms (EA) are direct search techniques and have been successfully 

applied to a variety of optimization problems characterized by high dimensions and 

complex search spaces. Evolutionary Algorithms are heuristic search and optimization 

techniques based on the theory of evolution. The major classes of evolutionary search 

algorithms are genetic algorithms, evolution strategies, and evolution programming. 

Evolutionary algorithms have been successful in solving difficult optimization problems 

where other traditional techniques fail. For this reason, some commercial simulation 

optimization software packages are based on evolutionary algorithms.  

Evolutionary algorithms were originally designed for optimization of 

deterministic problems. Many real world optimization problems contain stochastic 

variation in their response function, which poses further difficulty in optimization. This is 
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the case of simulation optimization problem. Evolutionary algorithms (EA) are found to 

be relatively robust in handling variation in the response surface being searched. 

However, EA's become less effective in locating the optimal solution as the level of 

variation in the response surface increases.  

Evolutionary algorithms are direct search techniques. As such, EA�s need good 

estimates of the expected value of the simulation model's response surface that composes 

the objective function used by the EA. The objective function evaluation is used only in 

the selection mechanism (the identification of better solutions) for most implementations 

of evolutionary algorithm. Stochastic variation causes the observed objective function 

value to be distorted and hence affects the selection mechanism�s accuracy. With this in 

mind, there are three objectives for this research. The first objective is to gain a better 

understanding of the level of variation in the response surface that an EA called evolution 

strategies (ES) can tolerate before its performance deteriorates. The evolution strategies 

algorithm is used in two commercial simulation optimization packages, one by 

PROMODEL and another by AutoSimulations. The second objective is to identify 

potential statistical techniques that could be integrated into an ES's selection process that 

may improve the algorithm's performance on response surfaces characterized by a high 

level of variation. Performance is measured by the number of the times the simulation 

model is called by the algorithm and the closeness of the average fitness of the parent 

solutions to the optimal solution in the final generation. And the third objective is to 

evaluate the effectiveness of the different statistically based selection techniques within 

the context of the performance of the ES. Though, the primary focus of this thesis is on 
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problems involving simulation optimization, the results are applicable to any stochastic 

optimization problem using evolution strategies.  

This thesis is organized as follows. A review of the literature on optimization 

using evolutionary algorithms in the presence of noise is presented in Chapter 2. In 

Chapter 3, optimization using evolution strategies is discussed and the potential statistical 

techniques that easily mesh with evolution strategies are presented. The experiments 

conducted to evaluate the effectiveness of these statistical techniques identified are 

described in Chapter 4. The results of the experiments are presented in Chapter 5. The 

final conclusions and recommendations for future research are presented in Chapter 6.  
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CHAPTER II 

EVOLUTIONARY ALGORITHMS FOR OPTIMIZATION IN THE PRESENCE OF 

NOISE 

2.1 Introduction 

In Evolutionary Algorithms, the selection mechanism serves a critical role in 

evolving solutions towards more favorable search spaces on a response surface. The 

evaluation of the objective function, or the output from a simulation model in this 

research is used as a fitness measure for EA�s. In a deterministic setting, the fitness of a 

solution can be obtained accurately, whereas in a stochastic setting, we obtain only 

estimates of the fitness of a solution, which could be very inaccurate. Hence, the selection 

mechanism is affected by the presence of stochastic variance (noise) (Boesel, 1999). 

There is evidence in literature suggesting that evolutionary algorithms are robust 

in the presence of noise, especially low levels of noise [(Grant, 1998), (Hammel and 

Back, 1994), (Boesel, 1999), (Hall, 1997)). Biethahn and Nissen (1994) opine that an 

evolutionary algorithm�s use of a population of solutions rather than a single solution to 

conduct a search makes them robust for optimization in the presence of noise. Since EA's 

use a population of solutions to conduct their search, it is likely to visit the same solution, 

or nearby solutions, multiple times. The authors explain this internal ability to resample 

as the justification for EA's robustness in the presence of noise. Furthermore, it is 

observed that noise can be helpful in optimization for some fitness functions (Rana et. al., 

1996). 
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Boesel (1999) explains this robustness of EA's for optimization in the presence of 

noise in a different perspective. Generally, the solutions are assigned selection 

probabilities based on the fitness evaluation or rank of the solution. The better solutions 

are assigned higher selection probabilities of being selected. A slight change in the 

assignment of selection probabilities does not affect the overall performance of the 

evolutionary algorithm (Boesel, 1999). This small variability in the selection mechanism 

is a desirable characteristic of the evolutionary algorithms (Boesel, 1999). An erroneous 

classification of a poor solution as good or a good solution as a poor solution in stochastic 

environments does not necessarily lead to absolutely wrong search directions (Stagge, 

1998). Hence, a close enough assignment of selection probabilities to the true selection 

probability (noise less case) would suffice in a stochastic environment. This robustness of 

EA's to slight variation in selection probabilities explains the good performance of an EA 

in the presence of low levels of noise (Boesel, 1999). Marrison and Stengel (1997) rightly 

observe that if the variation due to stochastic effects is smaller than the differences 

between the true fitness of solutions, then the selection mechanism is almost unaffected. 

Although no one to our knowledge has quantified the level of variation that can 

adversely affect the performance of an EA, there surely exists a level of variation that 

will render these algorithms ineffective. For such cases, the selection mechanism needs to 

be adjusted for noisy conditions. In the following sections, a review of the literature that 

discusses the effect of noise on an EA search is presented followed by a review of various 

methodologies and techniques proposed in the literature that help EA's cope with noisy 

environments.  
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2.2 Effects of Noise on the Performance of EA 

In deterministic environments, where there is no stochastic variance, we can 

conclusively rank all competing solutions. However, in stochastic environments, it 

becomes increasingly difficult to determine the actual ranking of the solutions, based on a 

single evaluation, with increasing levels of noise (Boesel, 1999). At very high levels of 

noise, the measured fitness of a solution based on a single evaluation of the objective 

function may be very inaccurate, and thus can cause the selection mechanism to pick 

inferior solutions as the parent solutions. Incorrect ranking of the solutions can cause 

wrong directions of search and thus ultimately render the algorithms to be ineffective 

(Boesel, 1999).   

Hammel and Back (1994) conducted experiments to gain insights about 

convergence velocity and convergence reliability of ES in the presence of noise. Presence 

of noise reduces the convergence velocity and deteriorates the quality of the final solution 

found by the search (Hammel and Back, 1994; Beyer, 2000). Beyer (2000) provides 

theoretical results, which suggests that increasing noise deteriorates the performance of 

ES based on the N-dimensional sphere model. Boesel and Nelson (2000) opine that 

evolutionary algorithms, in their original form designed for deterministic environments, 

may "deteriorate into an aimless random search in the presence of very high levels of 

noise".  

2.3 Methodologies for Optimization with EA's in the Presence of Noise 

Beyer (2000) broadly classified the techniques that help EA�s, especially ES, cope 

with noise into three categories.   

1. Resampling or Replications. 
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2. Increasing the population size. 

3. Novel self-adaptive mutation operation. 

Most of the methodologies found in the literature for optimization with EA�s in the 

presence of noise employ one of the first two approaches or a combination of both.  

In a noisy environment, multiple replications are required in order to obtain a 

more accurate estimate of the objective function (or simulation model output). The fitness 

of a solution is estimated by averaging the fitness values of a solution across different 

replications. Resampling improves the search procedure by obtaining more accurate 

estimates of the fitness of a solution. The second technique is implemented by simply 

increasing the population size, allowing more exploration of the search space and; 

therefore, evaluating more solutions. The third technique is to design novel self-

adaptation schemes that direct evolutionary algorithms towards more favorable search 

spaces (Beyer, 2000). Studies of the third technique are mostly focused on self-adaptation 

of mutation step sizes in ES. The idea is to adapt these step sizes in such a manner that 

they are not fooled by noise and to utilize information from both the superior and inferior 

solutions to guide the EA. Beyer (2000) opines that more techniques that unify all the 

above three approaches will be developed in the future.  

Sano and Kita (2000) classify different techniques for optimization with genetic 

algorithms in the presence of noise into two categories. One approach uses resampling, 

while the other approach uses the history of the search. Approaches that use history of the 

search are proposed by Tamaki and Arai (1997) and Tanooka et al. (1999). In these 

approaches, fitness of a solution is estimated as a weighted average of the sampled fitness 

estimate of parent solutions and the sampled fitness of the evaluated solution. Sano and 
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Kita (2000) propose a genetic algorithm where the fitness of an individual is estimated as 

a weighted average of the sampled fitness of the solution, and the sampled fitness of all 

the solutions previously visited by the search algorithm.  

 

2.4 Resampling vs. Increasing Population Size in the Presence of Noise 

There is a trade-off between the number of replications at each solution, which 

translates into the accuracy of evaluation of a solution, and the number of solutions 

evaluated, which translates into exploration of solution space (Fitzpatrick and 

Grefenstette, 1988). Different attempts are made to identify the best approach: increase 

the population size or increase the number of replications per solution. This gives rise to 

the question  "Is it best to increase the population size or increase the number of 

replications, given a limited number of fitness evaluations (or simulation calls)" (Beyer, 

2000). Different researchers attempted to answer the above question on a variety of 

problems using different methodologies and obtained conflicting answers. Fitzpatrick and 

Grefenstette (1988) conducted experiments on noisy fitness functions with genetic 

algorithms. Their results suggest that increasing the population size rather than increasing 

the number of replications per solution improves the performance of the search 

algorithm. In experiments conducted by Hammel and Back (1994) with (1, λ )-ES in the 

presence of noise, increasing the number of replications per solution resulted in better 

performance than increasing the population size. The above observation disputes the 

observation made by Fitzpatrick and Grefenstette (1988).  

R.C. Grant (1998) performed some empirical research regarding allocation of 

available simulation calls. He conducted experiments at four levels of noise on various 
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test functions ranging from single modal to multi modal and low dimensional to high 

dimensional functions. He considered three different population sizes (7, 28, and 49), 

seven levels of replications (1,4,7,10,13,16,19) and four levels of available simulation 

calls (100, 500, 1000, and 2000). Three optimization techniques, genetic algorithms, 

evolution strategies and scatter search are examined in his research. His results suggest 

that allowing the algorithm to search longer is favorable against increasing the number of 

replications when a limited number of simulation calls are available. He recommends 

increasing the population size rather than increasing the number of replications per 

solution, when the number of available simulation calls is very limited. Given a fixed 

number of available simulation calls, how to best allocate the available simulation calls to 

resampling and population size for optimum performance of the algorithm remains an 

open question (Beyer, 2000). 

 

2.5 Self-Adaptive Mutation Operators in the Presence of Noise 

Arnold and Beyer (2000) opine that increasing the population size would be 

favorable to increasing the sample size under the precondition that self-adaptive mutative 

scheme and the µ /λ  ratio are suitably modified for ( µ ,λ )-ES. They attribute the inferior 

performance of the search algorithm with increased population size compared to 

increased sample size, as observed by Hammel and Back (1994), to discarding of 

information from inferior solutions in ES.  

Kumar and Fogel (1999) focus on the mutation operator rather than the cross over 

operator for optimization with EP, both in the presence and absence of noise. They 

emphasize on fitness distribution analysis, where expected improvement and probability 
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of improvement statistics are estimated for specific mutation operators in a few trials, 

both in the presence and absence of noise. 

Matsumura, Ohkura and Ueda (2001) propose an extended evolutionary 

programming procedure for optimization in the presence of noise. They call their 

algorithm as Robust-EP (REP) and compare it with two other standard evolutionary 

programming algorithms, Fogel's EP and Yao and Liu's EP. The authors propose using 

Cauchy mutation instead of the traditional Gaussian mutation and new mutation 

mechanisms for changing strategy parameters. Their experimental results indicate that 

their proposed algorithm is favorable and robust in the presence of noise comparatively. 

 

2.6 Statistical Procedures for Optimization with EA's 

As the output from a simulation model has stochastic variance, it is prudent to 

employ some statistical technique to differentiate the outputs of different solutions before 

selecting parents. One way would be to perform as many replications as required by 

using some statistical technique to conclusively rank all the solutions and assign selection 

probabilities based on these means. However, such a methodology would require a fairly 

high number of replications. It is required to find an optimal sample size that expends 

only enough replications at each solution without sacrificing the objective of the selection 

mechanism. 

Aizawa and Wah (1994) address two objectives for optimization with GA in the 

presence of noise: duration sizing and sample-allocation problem. In duration sizing, the 

termination of a generation is determined under the conditions of constant population size 

and equal assignment of replications to each solution with the assumption of infinite 
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available replications. Sample allocation addresses the issue of allocating replications to 

solutions when the number of total available replications is constant per generation, with 

the goal of maximizing the probability of identifying good solutions, where the number 

of replications allocated to different solutions in a population may vary. Different 

solutions in a population may be assigned different sample sizes. Assuming that the 

fitness evaluations are normally distributed, they derived equations for the two 

objectives. This adaptive procedure of allocating replications performs better than the 

static procedures in which each solution is assigned a predetermined number of 

replications. The allocation of replications is based on the idea of assigning more 

replications to superior and high variance solutions.  

Marrison and Stengel (1997) combine genetic algorithms with a statistical 

procedure for optimization in the presence of noise. They employ tournament selection as 

the selection mechanism within their algorithm and use within solution fitness variance to 

determine the number of replications required. Their methodology is based on the idea 

that if the error due to noise is smaller than the actual differences between fitness of 

solutions, then the selection method is unaffected. In order to make this error small 

enough, replications are allocated based on the ratio of the observed fitness variance 

between the top 25% of the solutions and the average within-solution fitness variance of 

these solutions.  

Stagge (1998) proposed combining a statistical procedure and ( µ ,λ ) selection 

mechanism with GA for optimization in the presence of noise. The author rightly 

observes that the number of evaluations per solution need not be equal for all the 

solutions in the population. Some solutions may be easy to detect as clearly inferior. In 
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such a case, clearly inferior solutions may be eliminated for further consideration as 

potential parent solutions and thus reduce the total number of evaluations significantly 

(Stagge, 1998). A one-sided t-test was used to decide the number of evaluations per 

solution. In this test, it is hypothesized that one solution is superior to another solution. 

Replications are added to either one of the solutions or both until the hypothesis is 

rejected. In this manner, the order of the solutions is deduced. Allocating replications to 

the best solutions and eliminating the clearly inferior solutions from competition 

significantly reduced the total number of replications. 

Tomick, Arnold and Barton (1995) combined single factor one-way analysis of 

variance (ANOVA) with Nelder-Mead simplex algorithm for simulation optimization. 

They used ANOVA to assist in determining the number of replications required per 

solution. In each iteration, the population of solutions is tested for the hypothesis of 

equality of solutions using single factor ANOVA. If the hypothesis is accepted then the 

number of replications to be performed in the next iteration is increased by some factor 

chosen by the user, else the number of replications is decreased by the same factor.  

Olafsson(1999) developed algorithms that combine statistical ranking and 

selection techniques with a optimization method designed for deterministic objective 

functions. The optimization method, nested partitions (NP), was combined with Rinnott�s 

two-stage ranking and selection procedure. Rinott's indifference zone procedure is used 

to determine the number of replications per solution. Rinott�s two-stage ranking and 

selection procedure is applied in each iteration of the optimization procedure. The author 

presented theoretical evidence of convergence of the algorithm to the optimum under 

some assumptions. 
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An efficient GA in the presence of noise should have a population size that takes 

into account both the selection pressure of the selection mechanism employed and the 

amount of noise (Miller, 1997). Miller (1997) derived selection intensity models that 

would predict the impact of noise on the convergence velocity of GA�s for various 

popular selection mechanisms such as tournament selection, linear ranking selection, 

( λµ, ) selection and stochastic universal selection. Miller (1997) derived models for GA 

that determines the optimal sample size and developed techniques to determine the lower 

bound and upper bound. Additionally Miller (1997) derived population-sizing models 

and extended these models to quantify the population-sizing requirement at various noise 

levels under different selection pressures for a given domain.  

Boesel (1999) proposed grouping the competing solutions into a small number of 

groups for optimization with GA's in the presence of noise. The groups are arranged in 

the order of superiority using a statistical technique. Each member of the group is 

assigned the group's average selection probability. By assigning the groups average 

selection probability to each member in the group, the error in the probability of selection 

due to misranking of solutions is reduced. The grouping of the solutions is obtained by 

using a clustering procedure given by Calsinki and Corsten (1985). 

Baesler and Sepulveda (2000) used Tukey's multiple comparison procedure with a 

GA for stochastic optimization. Using Tukey's procedure, groups of solutions are formed 

where solutions within a group are considered to be statistically indifferent. All the 

solutions within a group are assigned the same selection probability, which is equal to the 

group's average selection probability.  



14 

 

Hughes (2001) present an algorithm in which the solutions are assigned a 

probability of selection based on the probability that a solution dominates other solutions, 

for optimization with GA, in the presence of noise. The probability of a solution being 

superior to another solution is calculated based on the difference between the two fitness 

means, assuming that the means are normally distributed, with variance equivalent to the 

sum of the two variances. To make the calculation of this probability easier he formulated 

an alternate equation, which closely approximates the normal standard probability 

equation. Thus, if there is no noise, then it is possible to conclude the rank of each 

solution explicitly. As the noise increases, the assigned probabilities to each solution get 

closer to each other, since there is less evidence of the dominance of one solution over 

another. Increasing the sample size reduces this effect of noise, as we gain more evidence 

about the superiority of a solution. That is, if noise approaches infinity, all the solutions 

are assigned the same probability of selection, which is equivalent to 1/k (k is the number 

of solutions in competition), which is equivalent to random search. They do not provide 

any method to guide on the allocation of replications to solutions. 

Pitchitlamken and Nelson (2001) combined a statistical ranking and selection 

method such as the sequential selection with memory (SSM) with an optimization 

algorithm such as hill climbing algorithm for optimization in the presence of noise. They 

experimentally compared the performance of SSM with three other approaches for 

optimization with hill climbing at different levels of noise in terms of the number of 

convergent paths and the average number of evaluations. Their empirical investigation 

suggests that SSM is superior to other approaches considered.  
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2.7 Other Procedures for Optimization in the Presence of Noise 

Markov, Arnold, Back, Beielstein and Beyer (2001) propose a (1+1)-ES with 

thresholding operation for optimization in the presence of noise. A parent solution is 

replaced only if the fitness of the child solution exceeds the parent fitness by a certain 

amount τ , known as the threshold. The parent solution is reevaluated in every generation. 

The authors compare experimentally the progress of the proposed algorithm for a non-

zero threshold and zero-threshold at various noise levels. The results favor considerably 

to a non-zero threshold, however the correct choice of this parameter remains an open 

question. Choosing a very high value for τ  could stagnate the search algorithm, hence it 

is important to make a good choice of τ  to obtain positive progress.  

Stroud (2001) presented an optimization algorithm based on genetic algorithms in 

non-stationary and noisy environments. They call their algorithm the Kalman-extended 

genetic algorithm in which the solutions are resampled based on uncertainty. A 

population of solutions is generated, which contains a specified proportion of new 

solutions and the remaining population is filled with reevaluation of solutions from the 

previous generations. They propose that the solution having the highest uncertainty 

among the competing solutions, whose estimated means are greater than the population 

mean minus the population standard deviation, be selected for resampling. The 

proportion of solutions to be reevaluated and the proportion of solutions to be newly 

generated are usually pre-specified by the user.   
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2.8 Summary of Literature Review 

The presence of noise has deteriorating effects on the performance of an 

evolutionary algorithm. Noise affects the selection mechanism in an EA; hence the 

selection mechanism has to be modified to take into account the noise (Boesel, 1999). 

Taking multiple observations (replications or samples) at each solution reduces the effect 

of noise and improves the selection process, however at the expense of increased 

computational cost. There is a trade off between the selection accuracy and number of 

replications to be performed. Evolutionary algorithms are robust to small changes in the 

assignment of selection probability (Boesel, 1999). Taking advantage of this fact, it is 

required to devise selection procedures that do not deviate much from their deterministic 

counter parts in the presence of noise. Hence, it is required to perform minimum number 

of replications that achieve the goal of "stochastic equivalence" to their deterministic 

counterparts in the presence of noise (Boesel, 1999). In this direction, we identify 

different statistical ranking and selection procedures and other statistical clustering 

procedures that could be used in place of the traditional selection technique used in 

evolution strategies. We confine our research to combining statistical techniques with ES 

for optimization of stochastic systems as most of the published research in this area is 

focused on combining statistical techniques with genetic algorithms. Furthermore, ES is 

used in at least two simulation optimization packages. 
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CHAPTER III 

STATISTICAL TECHNIQUES FOR ( λµ, ) SELECTION IN ES 

3.1 Introduction 

A ( λµ, ) selection is traditionally employed as the guidance mechanism within an 

ES. In ( λµ, ) selection, µ denotes the number of parents and λ denotes the number of 

offspring solutions. The µ  parent solutions are selected by identifying the best solutions 

among the λ offspring solutions. A desirable characteristic of the selection mechanism in 

an ES is to drive the algorithm into favorable search spaces by exploiting good solutions 

while maintaining population diversity by exploring different regions of the search space. 

Diversity of the solutions is required in order to avoid convergence of the algorithm at a 

local optimum. Exploitation of solutions and exploration of solutions correspond to the 

convergence velocity and convergence reliability of the algorithm respectively. Another 

variant of the selection mechanism frequently employed with an ES is the ( λµ + ) 

selection, where the best µ  solutions among λµ +  solutions are selected as parents. 

This technique has a higher selective pressure and there is a chance of premature 

convergence. Hence in order to avoid convergence at a local optimum, the ( λµ, ) 

selection mechanism is recommended by Back, Hoffmeister and Schwefel (1991). 

Furthermore, the ( λµ, ) selection mechanism with µ>1 is recommended for stochastic 

problems (Arnold and Beyer, 2001).  The ( λµ, ) selection mechanism is found to provide 
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a good balance at both exploiting and exploring solutions, though exploitation and 

exploration of the solutions can be varied by changing the values assigned to µ  and λ .  

In the noise less case, the λ solutions can be ranked conclusively based on 

deterministic fitness evaluations and the top µ  solutions are selected as parents for the 

next generation upon which recombination and mutation operations are performed to 

generate the offspring solutions for the next generation. Typically, each of these selected 

µ  solutions is assigned an equal probability of participating in recombination and 

mutation. Therefore, it is not necessary to rank the solutions from best to worst, as in the 

case of GA, but only to identify the top µ  solutions, irrespective of the within ranking of 

these µ  solutions. Increasing the number of parents, µ , while keeping the number of 

offspring constant, allows the algorithm to derive information from a large number of 

solutions, thus, increasing the convergence reliability at the expense of decreasing 

convergence velocity. On the other hand, retaining only the single best individual as a 

parent speeds up the convergence at the cost of convergence reliability. In general, 

increasing the ratio of µ / λ  increases the convergence reliability whereas decreasing the 

ratio of µ / λ  increases the convergence velocity. 

 

3.2 Selection and Noise 

Typically, µ / λ ≈ 1/7 is used in experiments concerning optimization with ES in 

deterministic environments, which provides a balanced exploration and exploitation of  

the search space. However, it is not clear if this ratio is suitable in stochastic 

environments and remains an open question. Beyer (2000) has provided some theoretical 
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evidence, which suggests that µ / λ ≈ 1/2 be used in stochastic environments, based on 

the sphere model. In noisy environments, increasing the ratio of µ / λ  up to a value of 0.5 

with increasing noise levels allows progress of the search algorithm towards favorable 

search spaces (Arnold and Beyer, 2000). This is based on the idea that, by incorporating 

information from more solutions (increased µ), we can compensate for the lack of 

accurate estimates of the objective function values (Arnold and Beyer, 2001).  

The ratio of µ / λ may be increased by decreasing the offspring population size λ , 

or by increasing both the parent population size µ  and the offspring population size λ , or 

by increasing µ  keeping λ  constant. Increasing the offspring population size, λ , 

excessively is very undesirable because mutation step sizes become very high and hinders 

the self-adaptation of mutation step sizes (Arnold and Beyer, 2000). Decreasing λ  is not 

recommended as the exploration of the solution space decreases with decreasing 

population size. Since increasing λ very high or decreasing λ too low is not desirable, the 

ratio of µ / λ should be increased by increasing µ  keeping λ  constant. Thus, Arnold and 

Beyer believe the hindering effects of noise can be partially overcome by using a larger 

parent population size than would normally be used in the noise less case. 

 

3.3 Statistical techniques and ( µ , λ )-ES in the Presence of Noise. 

 A statistical methodology can be incorporated within the selection mechanism of 

the ES to identify the µ  solutions, which are to serve as parents for the next generation. 

Since, a µ / λ  ratio of 1/7 is found to be robust in deterministic settings, a statistical 

technique that significantly guarantees the top µ  solutions being selected with a pre-
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specified probability is one possible methodology. There are a variety of statistical 

techniques, which perform the above stated goal of selecting the top µ  solutions 

approximately with some specified probability. The following sections describe the 

different potential statistical techniques and the respective goals achieved.  

Different ranking and selection procedures exist in statistical literature that 

achieves the goal of selecting a subset of size µ , which contains the µ  best solutions with 

a pre-specified probability. One example is the technique proposed by Dudewicz and 

Dalal (1975) for selecting the best set of solutions of fixed size pre-specified by the user, 

where the within ordering of the subset of solutions is immaterial. A potential issue is that 

the selection procedure will require a large number of observations or simulation calls.  

 A less ambitious goal is to select a subset of size µ , which contains the best 

solution, popularly known as subset selection, with a pre-specified probability. Examples 

of statistical techniques that achieve the goal of subset selection are procedure by Kim 

and Nelson (2001), procedure by Gupta (1965) and procedure by Sullivan and Wilson 

(1989). There are also ranking and selection techniques available that return a subset of 

solutions of random size where this subset of solutions includes the ' µ ' best solutions 

with a pre-specified probability. Caroll, Gupta and Huang (1975) propose one such 

technique. The subset, which is of varying size, is dependent on the number of 

observations obtained per solution.  

The goal of ( µ ,λ ) selection mechanism can also be stated as simply dividing the 

solutions into two groups of solutions where solutions in one group are superior to 

solutions in the other group. Statistical multiple-comparisons procedures may be used to 

group the solutions where one group of solutions is statistically different from the other 
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group of solutions. Examples of statistical multiple comparison procedures are Fisher's 

Least Significant Difference (Fisher, 1935), Duncan's multiple range test (Duncan, 1955), 

Student-Newman Keuls test (Keuls, 1952), Scheffe's Procedure (Scheffe, 1959), Welsch' 

s procedure (Welsch, 1977), and Tukey's procedure (Tukey, 1949). Tukey�s multiple-

comparison procedure was used by Baesler and Sepulveda (2000) with genetic 

algorithms for optimization in the presence of noise.  

Another approach for grouping solutions is to use statistically based clustering 

techniques to select the µ  best solutions. Many statistically based clustering techniques 

may not guarantee the superiority of solutions but split the solutions into groups such that 

solutions in a group may be considered internally homogenous. From this information, 

one may be willing to infer that the group of solutions with the highest group mean, in the 

case of a maximization problem, contains the best solutions. Cluster analysis techniques 

for means separation where solutions are grouped into non-overlapping sets of solutions 

are given by Bautista, Smith and Steiner (1997), Calsinki and Corsten (1985), Scott and 

Knott (1974). Clustering technique given by Calsinki and Corsten (1985) was used by 

Boesel (1999) in the selection mechanism for stochastic optimization problems with GA. 

Although such an approach does not guarantee that the top µ  solutions are identified, it 

may be accurate enough for the ES to effectively conduct its search.  

A very less ambitious goal would be to compare the average of the estimated 

means of the solutions corresponding to the top µ  means to the average of the estimated 

means of the remaining solutions. If the top µ  means is hypothesized as significantly 

different than the remaining λ -µ  means, then the top µ  means are selected as parents. 

Owing to the robustness of the selection mechanism of an ES, such a statistical procedure 
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might be sufficient to correctly direct the search algorithm. Scheffe (1959) has proposed a 

method for comparing any set of contrasts among means. Though, Scheffe procedure is a 

multiple comparison procedure, it has been categorized under other technique since it is 

not used to conduct a multiple comparison procedure. 

In summary, the techniques that could be used within the selection mechanism for 

an ES may be broadly classified into four categories. They are:  

1. Ranking and Selection Procedures 

2. Multiple Comparison Procedures 

3. Cluster Analysis Procedures 

4. Other Procedures. 

 

3.4 Techniques for selection of parent solutions 

In light of the above discussion, it can be seen that the number of possible 

statistical techniques that can be applied within the selection mechanism of an ES are 

very large. Hence, a few techniques that cover the various categories of procedures are 

selected for further experimental analysis. The procedure given by Dudewicz and Dalal 

(1975) is explained in a popular simulation textbook by Law and Kelton (1998). The 

procedure given by Kim and Nelson (2001) is sequential in nature and has very few 

assumptions compared to other procedures. Tukey�s multiple comparison procedure is 

widely popular among all the multiple comparison procedures and is covered in most of 

the statistical textbooks. Clustering procedure given by Calsinki and Corsten (1985) was 

implemented within a genetic algorithm by Boesel (1999). Scheffe procedure to compare 
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contrasts represents a new approach. The following five techniques are chosen for 

experimental analysis in such a way that there is at least one procedure from each 

category.   

1. Procedure by Dudewicz and Dalal (1975) 

2. Procedure by Kim and Nelson (2001) 

3. Tukey's Multiple Comparison Procedure (1949). 

4. Clustering with studentized range test by Calsinki and Corsten (1985). 

5. Scheffe's Procedure (1959). 

The above techniques are introduced in the next section and the details of their 

implementation are given in Chapter 4. 

3.4.1. Procedure by Dudewicz and Dalal (1975) 

This is a very straightforward procedure that selects the µ  best of λ  competing 

solutions with specified confidence level 1-α  and indifference zone δ . Indifference zone 

is the minimum difference worth detecting. The observations from each solution are 

assumed to be independent and normally distributed. The variance is assumed unknown 

and the variance of the observations across solutions is allowed to be unequal. This is a 

two-stage procedure, which uses the first stage sample variance information of each of 

the solutions to determine the number of additional replications required at each of the 

solutions. The solutions corresponding to the top µ  means are selected as parents. This 

procedure guarantees that the selected solutions are the top µ  solutions with specified 

confidence level. 
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3.4.2. Procedure by Kim and Nelson (2001) 

Kim and Nelson (2001) have proposed a sequential ranking and selection 

procedure for selection of the best and subset selection, where observations are obtained 

incrementally. The procedure assumes that the observations are normally distributed. The 

procedure allows unequal variances across solutions. In this procedure, the clearly 

inferior solutions are screened from competition at early stages. Additional observations 

are obtained for the solutions that remain in competition and are further screened until a 

subset of the desired parent population size µ   is obtained. 

3.4.3. Tukey's procedure (1949) 

Baesler and Sepulveda (2000) used this procedure with genetic algorithms for 

proportionate selection. In Tukey's multiple comparison procedure, solutions are grouped 

based on the range. The observations from each solution are assumed to be independent 

and normally distributed. The variance is assumed to be unknown and equal across the 

solutions. Groups of solutions are obtained, which are significantly indifferent within a 

group. Tukey's procedure could produce overlapping groups of solutions, where a 

solution may be contained in more than one group. The critical distance measure, which 

determines the grouping for this procedure is a function of the number of replications. As 

the number of replications is increased, more groups are obtained. We consider the 

solutions in the top group to be superior to the solutions in the remaining groups.  

3.4.4. Clustering with Studentized Range test by Calsinki and Corsten (1985) 

This is a grouping procedure, where solutions are grouped into non-overlapping 

sets of solutions. The solutions in a group are considered to be homogenous or 
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significantly indifferent. This procedure is used by Boesel et al. (1999) for simulation 

optimization with genetic algorithms. The observations are assumed to be independent 

and normally distributed. The variance across solutions is assumed constant. In this 

procedure, the solutions are ranked based on the sample fitness means and groups are 

formed based on the smallest mean fitness difference between solutions. As the number 

of replications is increased, more groups are obtained. The solutions in the top group may 

be considered to be superior to the solutions in the remaining groups.  

3.4.5. Scheffe' Procedure (1959) 

Scheffe�s procedure is designed to compare any set of contrasts. A contrast is 

constructed as a linear function of the fitness means. The observations are assumed to be 

independent and normally distributed. The variance across solutions is assumed to be 

equal. The average of the mean fitness of the first µ  solutions in rank order is compared 

against the average of the mean fitness of the remaining λ -µ  solutions. A one-tail test is 

conducted on the hypothesis to determine if the average of the mean fitness of the µ  

solutions is significantly different than the average of the mean fitness of the λ - µ  

solutions. This procedure does not group solutions or identify the top µ  solutions but 

merely provides a statistical test to evaluate the stated hypothesis.  
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CHAPTER IV 

METHODOLOGY  

4.1 Introduction 

In this chapter, the experiments conducted are described. Also, the performance 

measures for these experiments are defined. All the experiments are conducted within the 

framework of an ( µ , λ )-ES. The offspring population size remains constant throughout 

the experiments and is chosen to be 28.  The parent population size used is 4, whereas for 

some implementations of the selection mechanism of ES, the parent population size 

varies in the range of λ /7 and λ /2, which is in the range of 4 to 14. The offspring 

solutions are generated by discrete recombination of the parent solution's decision 

variables and intermediate recombination of their strategy parameters. The offspring 

solutions are then subject to mutation using Schwefel's mutation method (Back, 1996).  

Experiments are performed to gain a better understanding of the level of variation 

in the response surface that an evolution strategy can tolerate before its performance 

deteriorates. Further experiments are conducted to investigate the effectiveness of 

modified selection mechanisms identified in Chapter 3 in the presence of high levels of 

noise. The results of these experiments are presented in Chapter 5. 

 

4.2 Test Functions 

 Conducting experiments using actual simulation models for testing would require 

an enormous amount of computational effort. For simplicity, two test-functions are 
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chosen to represent the output from a simulation model. The test-functions are two-

dimensional meaning that the test functions have two decision variables. The decision 

variables are continuous and range from 0 to 10 for both test functions. The algorithm is 

required to identify a solution that minimizes the objective functions. The optimum 

fitness value for both test function-1 and test function-2 is 1.  

Test function-1 is a unimodal function and is defined as below. 

f(x,y) = 1.05.0)(5.0)( 22 +−+− yx  

Test function-1 has the optimal solution located at x = 5.0 and y = 5.0 and has no other 

local optimum.  Figure 4.1 shows the response surface plot of test function-1 and Figure 

4.2. shows the contour plot of test function-1.  

Test function-2 is a tetra modal test function and is defined as below. 

f(x,y) = cos( x.π / 2.5) + cos( y.π / 2.5) - 0.964001 * EXP(-(x - 2.5) 2  - (y - 2.5) 2 ) + 3.964 

Test function-2 has the global optimal solution located at x=2.5 and y=2.5. Figure 4.3 

shows the response surface plot of test function-2 and Figure 4.4 shows the contour plot 

of test function-2. It has three other attractive local optimal solutions, which correspond 

to the valleys in Figure 4.3.  The global optimal fitness value of the objective function is 

1.0 and the local optimal fitness values are 1.96.  
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Figure 4.1 Response Surface for Test function-1    
 

 

 

Figure 4.2 Contour Plot for Test function-1 
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Figure 4.3 Response Surface for Test function-2    

 

 

 

Figure 4.4 Contour Plot for Test function-2 
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4.3. Initial Number of Replications 

The initial number of replications needs to be chosen in such a way that it is 

neither too small nor too large. If the initial number of replications is chosen to be very 

large, there exists the danger of spending excessive amount of time evaluating solutions 

wastefully. Choosing a very small initial number of replications may result in obtaining 

very unrealistic estimates of the variability. Law and Kelton (1998) recommend 

conducting at least three to five replications per solution and moreover most of the 

statistical techniques recommend conducting at least 5 replications per solution. In our 

experiments the initial number of replications is chosen to be 5 irrespective of the noise 

level.  

 

4.4. Noise Levels 

The noise levels added to the test functions to simulate a stochastic response 

surface are chosen in such a way that they range from low to very high. Test function-2 is 

used to derive the noise levels. Test function-2 is multi-modal, which implies that it 

contains local optimum in addition to the global optimum. Usually, multi-modal 

functions pose further difficulty for the search algorithm because of the presence of 

attractive local optimum. The local optimum can appear better than the global optimum at 

increasingly higher levels of noise. The amount of noise that can make a local optimum 

appear equivalent or better than the global optimum is identified by using a simple t-test. 

Let D denote the difference between the fitness of the global optimum solution and the 

fitness of the local optimum solution as shown in Figure 4.5, which is equal to 0.96 for 
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test function-2. Let f(x) and f(x1) denote the global optimum fitness and local optimum 

fitness respectively. Let n denote the initial number of replications, which is equal to 5.  

 
Figure 4.5 Calculation of Noise 

 
A two-sample pooled t-test is conducted to calculate the variance, which makes 

the local optimum and the global optimum appear not significantly different. Let s denote 

variance. Let 't' denote the calculated test statistic, which is compared to 2n2,2/t −α , where 

2n2,2/t −α  is the upper critical value of the studentized t-distribution with 2n-2 degrees of 

freedom at a significance level of α . We fail to reject the hypothesis that f(x) and f(x1) 

are equal if the calculated t-statistic is less than 2n2,2/t −α .  
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In other words, the local optimum f(x1) and the global optimum f(x) appear to be not 

significantly different when the standard deviation is greater than 0.81807 at a 

significance level of 0.10 and 8 degrees of freedom. Hence, if the amount of noise added 

is greater than 0.81807, there is a significant chance that the local optimum can appear 

superior to the global optimum. Let the noise be represented by noiseσ . 

 Hence a noise of noiseσ /2 = 0.409 may be considered low and similarly noise 

levels of noiseσ = 0.818, noiseσ *1.5 = 1.227 and noiseσ *2= 1.636, may be considered to be 

moderate, high and very high respectively for test function-2 with 5 initial number of 

replications. Noisy fitness function values are obtained by adding normally distributed 

random variate with a mean of zero and standard deviations equal to 0.409, 0.818, 1.227 

and 1.636 to the objective function values. The objective function can be defined as 

O(x,y) = ),( yxf + N(0, noiseσ ), where N(0, noiseσ ) is a normally distributed random 

variate with a mean of zero and standard deviation equal to noiseσ  and f(x,y) is the 

objective function of the test function. Experiments are conducted at these four levels of 

noise. The noise corresponding to 0.409, 0.818, 1.227 and 1.636 are represented as 

0.5 noiseσ , 1 noiseσ , 1.5 noiseσ  and 2 noiseσ  respectively through out the remaining part of this 

thesis.  

 

4.5 Common Experimental Conditions 

In order to conduct a fair and effective comparison, the ES is run under similar 

conditions. ES starts with the same initial population in all the experiments. Similarly, 

recombination and mutation functions remain the same in every experiment. This is 
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achieved by assigning separate random number seeds to each specific purpose of the ES, 

which include initial population, recombination, and mutation. Synchronization is 

achieved by reinitializing the random number seed values for each experiment. This 

would ensure that the ES starts with the same initial population in every experiment and 

identical random numbers are used for each specific purpose of the algorithm across 

replications. Each experimental condition is repeated 25 times and the results are 

obtained by averaging over 25 replications. Since, the purpose of this thesis is to study 

the effect of noise on evolution strategies, noise is generated by different streams of 

random numbers for each replication, while keeping the remaining elements of the ES the 

same. In other words, common random numbers are used for the ES but not for the noise. 

Independent observations are obtained by allocating different streams of random numbers 

for each replication. This allows a fairer comparison since any differences in the 

performance measures are only due to the various selection mechanisms employed and 

not due to changes in the experimental conditions. 

 

4.6. Number of generations 

The number of generations is constant and is chosen to be equal to 10. It is 

observed that the standard ES converges completely in 10 generations for the two test 

functions in the absence of noise. Hence, the number of generations is limited to 10 for 

all the experiments to see how it is affected as the noise is increased. 

 

4.7 Effect of Noise  

The presence of variation in the output of a simulation model affects the selection 
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mechanism of an evolutionary algorithm by potentially causing the solutions to be 

incorrectly ranked. In other words, the proportion of correctly selected solutions as 

parents for the next generation decreases with increasing levels of noise. We define 

proportion of correct selection as the ratio of the number of solutions correctly classified 

as parents to the number of parent solutions. The standard ES with 5 initial number of 

replications per solution is evaluated under the four levels of noise 0.5 noiseσ , 1 noiseσ , 

1.5 noiseσ  and 2 noiseσ . The proportion of correct selection for each noise level is captured 

to gain more insights on the effect of noise on the algorithm. Based on these experiments 

the level of noise that deteriorates the performance of the standard evolution strategies 

algorithm significantly is identified and is used as the noise level for remaining 

experiments. For sake of discussion, let us denote the noise level that deteriorates the 

performance of the algorithm to be highσ .  

 

4.8 Controlled Proportion of correct selection 

An open research question is what proportion of correct selection is required by 

the ES to effectively conduct a search for the optimum. Therefore, we attempt to quantify 

the proportion of correct selection desired and gain some insights on the proportion of 

correct selection and its effect on the performance of evolution strategies. The 

performance of evolution strategies is studied experimentally at various levels of 

proportion of correct selection in the presence of noise equivalent to highσ .  Note that 

highσ  is based on previous experiments, where highσ  is the amount of noise that 

deteriorates the performance of the standard ES significantly. The proportion of correct 
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selection is controlled by estimating the fitness of the solutions based on 2 initial 

replications, selecting µ  parents and computing the proportion of correct selection, and 

then adding replications until the desired proportion of correct selection is achieved in 

each generation. The proportions of correct selection experimented with are 0.25,0.5,0.75 

and 1.0. A proportion of correct selection of 0.25 corresponds to a correct selection of 

one parent among the four solutions selected as parents. Similarly, a proportion of correct 

selection equivalent to 0.5 corresponds to a correct selection of two parents among the 

four parent solutions. Correct selection of all the parents would be equivalent to a 

proportion of correct selection of 1. The minimum desired proportion of correct selection 

is estimated, where the performance of evolution strategies is not affected.  

 

4.9 Modified Selection Mechanisms 

 The statistical techniques identified in Chapter 3 are incorporated within the 

standard ( µ , λ ) selection methodology to derive the modified selection methodologies. 

The original techniques are modified to fit within the evolution strategies selection 

mechanism. Experiments are conducted on five techniques, which are described in detail 

below. 

4.9.1 Indifference Zone procedure by Dudewicz and Dalal (1975)  

Dudewicz and Dalal (1975) have designed a two-stage indifference zone 

procedure for the selection problem. Indifference zone may be defined as the minimum 

fitness difference worth detecting. The procedure is later modified and extended by 

Koenig and Law (1985). Let m = number of systems, s = subset size, and p= number of 
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best systems to be selected or identified, then, they give a generalized procedure that 

would allow selection of a subset of size s, which contains the p best systems at the 

specified confidence level. Specifically, the procedure addresses three goals, which are 

selection of best system, selection of a subset that contains the best system and the 

selection of the best subset of systems. Note that msp ≤≤ . In this procedure, the user 

specifies the initial number of replications to be performed on each system. Using the 

information about the competing systems from the initial set of observations, the number 

of additional replications required to attain the stated goal is determined. Thus, if s=p=1, 

then the goal is selection of the best solution. If p=1 and s >1, then the goal is selection of 

a subset of size s that contains the best system. This corresponds to the goal of subset 

selection. If s=p, then the goal is to select a subset that contains the superior p solutions.  

The procedure assumes that observations are independent, identical and normally 

distributed. One advantage of the procedure is that the procedure does not assume 

equality of variance across systems. This is a two-stage procedure. The subset size to be 

selected is pre-specified. The procedure for the three goals is similar except that the 

statistical constant �h� (critical value) changes as applicable. So, h values are lower, 

which requires fewer replications, for the goal of selecting a subset that contains the best 

than for the goal of selecting the best subset, which requires more replications, as the 

latter goal is superior to the former goal. The procedure is outlined below. 

1. Specify indifference zone δ , number of initial replications n, confidence level 1- α . 

Let the number of systems in competition be m. Then, let Xi1, Xi2, ��Xi,n denote 

independent and identically distributed random output from system i.  

2. Calculate the first stage m sample means, iX (1) = ∑
=

n

j

ij

n
X

1

, for i =1,2� m.  
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    Now, calculate the sample variance Si = 
1

)(
1

2

−

−∑
=

n

XX
n

j
iij

. For i =1,2�m.       

3. Compute the total sample size required for each system i as 

               Ni = max





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iShn , where h value is obtained from tables. 

4. Conduct Ni-n additional replications of each system and obtain the second stage 

sample means. 
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5. Define the weights for i=1 to m. 

                               Wi1 = 





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n δ

      

                              Wi2 = 1-Wi1  

6. Compute the weighted sample means for i =1�m 

                Xi  = Wi1 iX (1)+Wi2 iX (2) and arrange the weighted means in ascending order. 

The above selection procedure is accommodated within the selection mechanism of ES 

by choosing m = λ , s = p = µ  and n = 5, where µ = 4 and λ =28. The solutions that 

correspond to the top µ  means are selected as parents. The indifference zone, δ , is 

chosen to be a constant, which was initially, and somewhat arbitrarily, set equal to 0.1.  

4.9.2 Sequential Procedure by Kim and Nelson (2001) 

  Kim and Nelson (2001) have proposed a sequential indifference zone selection 

method for selecting the best or a subset containing the best. Sequential sampling 
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methods eliminate the clearly inferior systems at an early stage and henceforth reduce the 

number of observations (replications) required (Kim and Nelson, 2001). The observations 

are assumed to be independent, identical and normally distributed with unknown 

variance. The procedure is described below. 

1. Specify indifference zone δ , initial number of replication n, confidence level 1- α . Let 

m represent the number of systems in competition. Let s represent the required subset 

size. Then, let Xi1, Xi2�Xi,n denote independent and identically distributed output from  

system i. Let I denote the systems still in competition, so I={1,2,3,...m} initially. 

2. Calculate the m sample means, iX = ∑
=

n

j

ij

n
X

1

, for i =1,2�m and  

     For all i ,j≠ calculate the sample variance of the difference between systems i and j. 

      So, ∑
=

−−−
−

=
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l
jijlilij XXXX

n
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22 ])[(
1

1  

3. Calculate 











= 2

22

δ
ij

ij

Sh
N , where )1(22 −×= nch η .  

     Kim and Nelson recommend c = 1, where 
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     Let )max( iji NN =  for i ≠ j. Then iN +1 is the maximum number of observations from 

system i. If n>max iN  for i=1 to m, then stop the procedure and select the system with 

the largest iX as the best, else go to step 4. 

4. Set oldI =I, then 

       I = {i : i oldI∈ and ,ijji WXX −≥ ∀  j ij,I old ≠∈ } where 
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5. If I <=s, then stop the procedure and select the systems whose index are in I as the 

subset of systems containing the best, else take one additional observation 1n,iX + from 

each system Ii ∈ , set n=n+1. If n = 1Nmax ii + , then stop the procedure and select the 

system which has the largest mean as the best else go to step 4. 

The above selection procedure is accommodated within the selection mechanism 

of ES by choosing m = λ , s = µ  and n = 5. The solutions returned by this procedure are 

selected as parents for the next generation. If the subset of solutions returned by the 

selection procedure is less than the desired parent subset size, then the remaining parent 

solutions are selected by picking the offspring solutions with the lowest sample mean 

fitness. 

 

4.9.3 Tukeys procedure (1949) 

Tukey's multiple comparison procedure is very widely popular and is covered in 

most of the basic statistics textbooks. Tukey�s procedure separates the solutions into 

groups of solutions, where solutions in a group are internally homogenous. The 

observations are assumed to be normally distributed. The observations are also assumed 

to be independent within and across systems. A common variance is assumed for all the 

systems in competition. Tukey's multiple comparison procedure involves the following 

steps with a specified confidence level 1-α . 

1. Calculate the m sample fitness means, iX  = ∑
=

n

1j

ij

n
X

, for i =1,2�m.  
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    Compute the common pooled sample variance estimate =2S  
)1.(

)(
1

2
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−∑∑
==

nm

XX
n

j
iij

m

i . 

2. Arrange the means in ascending order and let ][]3[]2[]1[ ......,,, mXXXX  denote the 

ordered sample means. 

3. Obtain the upper critical value of the studentized range q (α , m, v), where v is the 

number of degrees of freedom for the sample variance and is equal to m(n-1).  m is the 

number of competing solutions. Calculate 'w', the critical distance measure for the 

Tukey's procedure, where  

 w = q (α , m, v)
n

S 2 . 

4. If the means of the solution output differ by less than 'w ', they are grouped together. 

That is if [ ] [ ] <− 12 XX w then solutions corresponding to [ ] [ ]12 , XX  are grouped together. 

Conduct all pair wise comparisons as above and declare the solutions as significantly 

different where the hypothesis of equality of the means is rejected.  

5. After all pair wise comparisons are conducted, we obtain groups of solutions where, 

solutions in a group may be considered significantly indifferent. 

Tukey's procedure could produce overlapping groups of solutions, where a 

solution might be included in more than one group. Tukey�s procedure is incorporated 

within the selection mechanism of evolution strategies by modifying the above 

procedure, where m = λ , and n = 5. Overlapping groups of solutions are combined 

together for adapting the procedure into the selection mechanism of ES. Moreover, the 

parent population size µ  is not constant and is allowed to vary in the range of λ /7 to 

λ /2. Hence, if the number of solutions in the combined top groups fall in the range of 
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λ /7 to λ /2, the solutions are selected as parents. If the number of solutions in the 

combined groups of solutions obtained do not fall in the range of λ /7 to λ /2, then 

additional observations are obtained and the above procedure is repeated until the criteria 

is satisfied.       

 

4.9.4 Cluster Analysis Procedure by Calsinki and Corsten (1985) 

Cluster Analysis procedures separate the solutions into distinct groups of 

solutions. Calsinki and Corsten (1985) propose two clustering methods, where one is 

based on the studentized range and the other is based on the F test. Both these methods 

separate the solutions into non-overlapping sets of solutions. The observations are 

assumed to be independent and normally distributed. The variance is assumed to be equal 

across competing alternative solutions. The procedure based on the studentized range is 

described below. 

1. Let m denote the number of systems in contention and let n denote the number of 

replications performed. Calculate the m sample fitness means iX  = ∑
=

n

j

ij

n
X

1

, where i=1 

to m.  

    Compute the common pooled sample variance, S 2  = ∑∑
= =

−−
m

i

n

j
iij nmXX

1

2

1
)1(/)( .  

2. Arrange the sample fitness means in ascending order and let ][]3[]2[]1[ ......,,, mXXXX  

denote the ordered sample fitness means. 

3. Obtain the upper critical value of the studentized range q (α , m, v) from tables, where v 

is the number of degrees of freedom for the sample variance and is equal to m(n-1). m 
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is the number of competing solutions. Calculate αR , the critical distance measure for 

this procedure, where  

     αR  = q (α , m, v)
n

S 2 .  

4. The two fitness means that result in the smallest ranges are combined together as a 

group or cluster and compared with αR . If the smallest range is less than αR , then the 

procedure is continued and the two means are grouped. The number of solutions to be 

grouped is reduced by 1 and the average of the means clustered together represents the 

output of this group. If the smallest range exceeds αR , the procedure is stopped. 

5. In each next step, the smallest range is compared with αR and the means are combined 

if the range is smaller than αR . If the smallest range exceeds αR , then the procedure is 

stopped and the groups obtained in the previous step would be the final grouping. 

The clustering procedure is incorporated within the selection mechanism of 

evolution strategies by modifying the above procedure, where m = λ , and n = 5. Groups 

of solutions are obtained, where there is no overlap of solutions between groups. If the 

number of solutions in the combined top groups fall in the range of λ /7 to λ /2, the 

solutions are selected as parents. If the groups of solutions obtained do not meet this 

criterion for grouping, then additional observations (replications) are obtained and the 

above procedure is repeated until the termination criteria is satisfied. 

4.9.5 Scheffe Procedure (1959) 

Scheffe' Procedure (1959) allows the analysis of all possible comparisons of 

competing solutions. The method is designed to compare any set of contrasts. The 

observations are assumed to be independent and normally distributed. The variance is 
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assumed to be equal across competing alternative solutions. A contrast is constructed as a 

linear function of all or any of the fitness values of solutions. The steps involved in this 

procedure are described below.  

1. Define the contrast as a linear function of the sample fitness. Calculate the m sample 

fitness means, iX  = ∑
=

n

1j

ij

n
X

, for i =1,2�m. Compute the common pooled sample 

variance estimate =2S  
)1(

)(
1

2

1

−

−∑∑
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nm

XX
n

j
iij

m

i .    

2. Arrange the means in ascending order and let ][]3[]2[]1[ ......,,, mXXXX  denote the 

ordered sample means. 

3. Compute the estimated value of the contrast, ( )∑
=

=
m

i
ii XaL

1

� , where ia is the coefficient 

for fitness mean i. For linear contrasts, .0
1

=∑
=

m

i
ia  The ia values are chosen to be equal 

to 1/ µ , for i =1 to µ  top ranked solutions, and ia  = -(1/( µλ − )), for i = 1+µ  to 

λ remaining solutions. 

    Null hypothesis may be stated as :H0 0L� = . 

    Alternate hypothesis 0L�:Ha ≠ . 

4. Compute the critical value C = ∑
=









−

m

i
i n

SaFm
1

2
2)1( α , where αF is the α  level 

critical value of the F distribution with (m-1) and m(n-1) degrees of freedom. 

5. Compare the value of L�  with critical value C. If L� >C, then we reject the null 

hypothesis at the stated significance level.  
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6. If L� < S, then we fail to reject the null hypothesis. 

Scheffe�s procedure is implemented within the ES selection method by placing 

the top µ  solutions in the hypothesized �best group� and the remaining µλ −  solutions 

in the hypothesized �second best group�. The procedure is repeated with an additional 

replication for each solution until the mean fitness of the two groups is determined to be 

significantly different. 

Table 4.1 shows the summary of the assumptions for each of the above 

techniques. An �YES� indicates that the procedure assumes the respective condition.  

Table 4.1. Summary of assumptions for statistical techniques 
 

Statistical Selection Techniques Independent 
Normally 

Distributed 
Equal variance across 

solutions 
Dudewicz and Dalal Selection Procedure YES YES NO 
Kim and Nelson's Sequential Procedure YES YES NO 
Tukey's Multiple Comparison Procedure YES YES YES 
Calsinki and Corsten's Clustering Procedure YES YES YES 
Scheffe's Procedure YES YES YES 

 
 

4.10 Criteria for Evaluation of Performance 

 Two performance measures are used to evaluate the effectiveness of these 

modified selection mechanisms in conjunction with evolution strategies under various 

experimental conditions. The two performance measures are the average fitness of the 

parent solutions and the total number of simulation calls. The average fitness of the 

parent solutions is computed by averaging the actual fitness values (objective function 

values without noise) of the solutions that are identified as parents. In order to make a fair 

comparison, the actual values are used rather than the estimated fitness values. The 

average fitness of the parent solutions is a measure of the quality of the solutions 
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identified (smaller is better) and the total number of simulation calls is a measure of the 

computational effort required for the algorithm (smaller is better). It is required to 

identify good quality solutions with minimum computational effort in the presence of 

noise. In addition to average fitness of the parents and the total number of simulation 

calls, the proportion of correct selection is reported. 

4.11 Probability of correct selection (1-α ) 

Three α  significance levels will be examined for the modified selection 

methodologies. The three α  levels are 0.1,0.2, and 0.4. It is hypothesized that small α  

values are not necessary owing to the fact that an ES can tolerate some imperfect 

selection of the best solutions as parents. 

4.12 Indifference Zone 

  As the search algorithm progresses towards the optimum region, the solutions in 

the population get closer and closer together. In other words, the solutions are spaced 

farther apart in the earlier generations and are closely spaced in the latter generations. In 

order to exploit this property to decrease the number of simulation calls, the indifference 

zone could be set high in the earlier generations and then decreased in the latter 

generations, as solutions get closer together.  

 One measure of the distance between solutions is the average fitness distance 

between all the solutions in the population. In other words, the average fitness distance is 

computed as the average of the all pair wise fitness distance. Since, the actual fitness is 

not known, the estimated fitness based on the initial replications is used to compute the 

average distance. Half the average distance is used as the indifference zone in each 
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generation. Indifference zone selection methodologies, DD and KN are modified to 

incorporate this methodology, where indifference is dynamic and is equivalent to half the 

average fitness distance.  

Tukey�s procedure, Clustering procedure and Scheffe procedure are not based on 

an indifference zone methodology. Hence, as solutions get closer to the optimum, the 

techniques might prescribe excessively high number of simulation calls wastefully. In 

order to avoid an excessive number of simulation calls, the number of simulation calls 

per solutions in each generation is restricted to twice the number of simulation calls in the 

previous generation. These methodologies are tested with the hope that the search 

algorithm finds the optimum solution with a much smaller number of simulation calls.  

 

4.13 Comparison of modified selection mechanisms with the standard.  

The best performing modified selection methodologies experimented are compared to the 

standard selection methodology used in ES. The standard ES is compared with these 

modified selection mechanisms by allocating an equivalent number of simulation calls 

expended by the modified selection methodology and comparing the average fitness of 

the parent solutions. Let, T denote the number of simulation calls expended by the 

algorithm using modified selection mechanism in 10 generations. The population size of 

the standard ES is increased by a factor in such a way that the number of simulation calls 

available is equivalent to T. The population size is computed by dividing T simulation 

calls by the number of generations times the initial number of replications. The modified 

standard ES used for comparison is denoted as SD-C. 
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CHAPTER V 

RESULTS 

5.1. Overview  

In this chapter, the results of the experiments described in Chapter 4 are 

presented. Plots of the results are included where appropriate. The primary performance 

measures of interest reported are the average fitness (actual fitness without noise) of the 

parent solutions and the total number of simulation calls (or function calls). In addition 

the proportion of correct selection is reported, where appropriate. The averaged results of 

25 macro replications for each experimental configuration are presented. For 

convenience, the techniques, selection of the s best by Dudewicz and Dalal, subset 

selection by Kim and Nelson, Tukey�s multiple comparison procedure, clustering 

procedure by Calsinki and Corsten, and Scheffe�s procedure are denoted as DD, KN, TP, 

CC and SP, respectively. For comparison, the performance of standard ES with constant 

number of replications equal to 5 in the absence of noise is denoted as OCP, which stands 

for optimum convergence path. The OCP is included in plots where appropriate. 

5.2 Standard ES in the presence of Noise 

In this section, the results of the experiments conducted to gain a better 

understanding of the effect of noise are presented. The amount of noise that an evolution 

strategy can tolerate before its performance deteriorates is identified.  



48 

5.2.1 Effect of noise 

Table 5.1 and Table 5.2 show the results of the average actual fitness of the parent 

solutions in each generation for test function-1 and test function-2, respectively. A plot of 

the average fitness of the parent solutions in each generation at various levels of noise is 

shown in Figure 5.1 and Figure 5.2 for test function-1 and tests function-2, respectively.  

The performance of the algorithm deteriorates at increasingly higher levels of noise for 

both test function-1 and test function-2. Comparison of Figure 5.1 and Figure 5.2 show 

that noise has a more deteriorating effect with test function-2 than test function-1, which 

may be explained owing to the fact that test function-2 is more complex than test 

function-1. The influence of 2 noiseσ  on the algorithm is rather significant for test 

function-2. Hence, a noise level of 2 noiseσ  is set as the noise level for the remaining 

experiments.  
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Table 5.1 Average Fitness of Parents at various noise levels for test function-1 
 

 Noise     
Gen 0 0.5S 1S 1.5S 2S 

1 5.196 5.221 5.230 5.258 5.258 
2 3.240 2.881 2.456 2.599 2.533 
3 1.135 1.683 1.639 1.665 1.876 
4 1.027 1.292 1.324 1.447 1.516 
5 1.037 1.227 1.278 1.296 1.410 
6 1.027 1.149 1.168 1.249 1.342 
7 1.006 1.099 1.164 1.190 1.226 
8 1.002 1.066 1.115 1.172 1.198 
9 1.003 1.078 1.131 1.200 1.232 

10 1.003 1.063 1.127 1.163 1.245 
 
 
 
 

Table 5.2 Average Fitness of Parents at various Noise Levels for test function-2    
 

 Noise     
Gen 0 0.5S 1S 1.5S 2S 

1 2.260 2.267 2.326 2.488 2.634 
2 1.585 1.617 1.793 1.888 2.048 
3 1.480 1.530 1.654 1.830 2.014 
4 1.124 1.260 1.355 1.590 1.742 
5 1.090 1.172 1.281 1.439 1.615 
6 1.063 1.132 1.230 1.317 1.532 
7 1.042 1.099 1.199 1.266 1.417 
8 1.006 1.082 1.162 1.227 1.406 
9 1.015 1.071 1.201 1.229 1.417 

10 1.006 1.073 1.158 1.203 1.367 
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Average Fitness at various Noise levels for Test Function-1
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Figure 5.1 Average Fitness of Parents at various noise levels for test function-1 

 
 

Average Fitness at various noise levels for Test Function-2

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

1 2 3 4 5 6 7 8 9 10

Generations

A
ve

ra
ge

 F
itn

es
s Noise = 0

Noise = 0.5S
Noise = 1S
Noise = 1.5S
Noise = 2S

 
Figure 5.2 Average Fitness of Parents at various Noise Levels for test function-2 
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5.2.2 Proportion of correct selection 

The decrease in the performance of evolution strategies at increasingly higher 

levels of noise can be attributed to the decrease in the proportion of correct selection. 

Figures 5.3 and 5.4 show the results of the proportion of correct selection in each 

generation at various levels of noise for test function-1 and test function-2, respectively. 

It can be clearly seen that the proportion of correct selection decreases with increasing 

levels of noise for both test function-1 and test function-2. The proportion of correction 

selection decreases with the number of generations at various levels of noise. The high 

proportion of correct selection during the early generations is due to the fact that 

solutions are widely spaced and the algorithm can easily detect superior solutions in spite 

of the presence of noise. The decrease in the proportion of correct selection as the search 

algorithm progresses may be explained owing to solutions being closely spaced in later 

generations and henceforth making the selection mechanism hard to detect the superior 

solutions in the presence of noise. Because of the decrease in the proportion of correct 

selection, the algorithm fails to converge to the optimum within 10 generations at 

increasingly higher levels of noise.  

Knowledge about the required proportion of correct selection for the algorithm to 

do well is gained by evaluating the performance of ES at various levels of proportion of 

correct selection under very highly noisy conditions. The noise level for the remaining of 

the experiments is chosen at 2 noiseσ . Plots of the average fitness of the parents at various 

proportions of correct selections for test function-1 and test function-2 are shown in 

Figure 5.5 and Figure 5.6, respectively. The number of simulation calls expended to 

obtain the desired proportion of correct selection for test function-1 and test function-2 is 
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tabulated in Table 5.3 and 5.4, respectively. A target proportion of correct selection was 

obtained by adding replications (simulation calls) to estimate the fitness of solutions until 

the estimates yielded the desired number of correctly selected parents. Plots 5.5 and 5.6 

indicate that a very high proportion of correct selection is not required by the algorithm to 

perform adequately. For test function-1, a proportion of correct selection greater than 0.5 

seems necessary for the algorithm to perform adequately. However for test function-2, a 

proportion of correct selection greater than 0.75 seems necessary. There is significant 

impact on test function-2 compared to test function-1.  

Table 5.3 and 5.4 show the number of simulation calls required to attain the 

desired proportion of correct selection. The number of simulation calls required increases 

with increase in the desired proportion of correct selection. Maintaining a high proportion 

of correct selection during the later generations, where solutions are closer together, 

requires a very large number of simulation calls. It is desired to find or develop 

methodologies that allow the solutions to follow the optimum convergence path with a 

minimum number of simulation calls.  
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Proportion of Correct Selection at various noise levels for Test function-1
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Figure 5.3 Proportion of correct selection at various Noise Levels for test function-1 

 
 

Proportion of Correct Selection at various noise levels for Test function-2
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Figure 5.4 Proportion of correct selection at various Noise Levels for test function-2 
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Average Fitness using controlled proportion of CS for Test function-1 

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10

Generation

A
ve

ra
ge

 F
itn

es
s

Prop CS = 0.25
Prop CS = 0.5
Prop CS = 0.75
Prop CS = 1.0

Total Number of  Sim. Calls
Prop CS          Total Sim. Calls
 0.25                          675
 0.50                        2,855
 0.75                    253,530 
1.0                    2,534,528         

 
Figure 5.5. Average fitness of parents using controlled proportion of correct selection for 

test function-1 
 

Average Fitness using controlled proportion of CS for Test function-2
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Figure 5.6. Average fitness of parents using controlled proportion of correct selection for 

test function-2 
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Table 5.3 Number of simulation calls in each generation for various levels of proportion 

of correct selection for test function-1 
 

 Proportion of Correct Selection  
Gen 0.25 0.5 0.75 1.0 

1 56 56 73 1,800 
2 56 57 81 768 
3 56 57 81 547 
4 58 86 358 10,236 
5 59 138 3,624 69,162 
6 63 517 2,361 233,512 
7 93 167 4,948 289,824 
8 72 597 33,999 492,399 
9 64 775 74,346 672,373 
10 99 404 133,660 763,907 

 
Table 5.4 Number of simulation calls in each generation for various levels of proportion 

of correct selection for test function-2 
 

 Proportion of Correct Selection  
Gen 0.25 0.5 0.75 1.0 

1 56 64 141 572 
2 60 102 207 3,714 
3 58 69 211 1,751 
4 62 120 422 10,702 
5 76 137 697 28,245 
6 63 190 1,172 145,650 
7 58 240 10,020 230,016 
8 69 304 12,443 521,852 
9 75 1,575 13,755 601,511 
10 81 398 85,712 701,557 

 

5.3 Evaluation of modified selection mechanisms 

The performance of modified selection mechanisms is evaluated in the presence 

of very high levels of noise equivalent to 2 noiseσ  (normally distributed), where the 

performance of the algorithm has deteriorated significantly. The experiments are 

conducted at three different levels of probability of correct selection equivalent to 0.9, 0.8 

and 0.6, respectively. The results of these modified selection mechanisms at significance 

levels of 0.1, 0.2 and 0.4 are presented in sections 5.3.1, 5.3.2 and 5.3.3, respectively. For 
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convenience, the techniques, standard ES with constant number of replications equal to 5, 

selection of the s best by Dudewicz and Dalal, subset selection by Kim and Nelson, 

Tukey�s multiple comparison procedure, clustering procedure by Calsinki and Corsten, 

and Scheffe�s procedure are shortly denoted as SD, DD, KN, TP, CC and SP, 

respectively. A fixed indifference zone of 0.1 is used for DD and KN.  

5.3.1 Performance of Modified selection mechanisms at significance level = 0.1 

The average fitness of the parent solutions in each generation for each of the 

modified selection mechanisms under very highly noisy conditions equivalent to 2 noiseσ  

at a significance level of 0.1 for test function-1 and test function-2 are plotted in Figure 

5.7 and Figure 5.8, respectively. The optimum convergence path in the absence of noise 

is also included in the plot and is denoted as SD. Similarly, Table 5.5 and Table 5.6 show 

the corresponding number of simulation calls expended for test function-1 and test 

function-2, respectively, for each of the modified selection mechanisms at a significance 

level of 0.1. In addition, corresponding plots of the proportion of correct selection in each 

generation for test function-1 and test function-2 are shown in Figure 5.9 and Figure 5.10, 

respectively.  

It is observed in Figure 5.7 and Figure 5.8 that DD and KN follow closely along 

the convergence path towards the optimum, whereas TP, CC and SP do not perform as 

well under the given conditions. Note that all the five techniques perform well on test 

function-1, whereas the techniques TP, CC and SP fail to converge to the optimum in 10 

generations for test function-2. This is due to the fact that test function-2 is much more 

complex than test function-1. SP performs comparatively better than TP and CC in 10 

generations. Looking at Figures 5.7, 5.8, 5.9 and 5.10, TP and CC do not perform well 
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inspite of the relatively high proportion of correct selection. The under performance of 

TP and CC may be explained owing to the higher parent population size, which would 

decrease the selective pressure and slow the algorithm�s convergence speed. It is also 

observed that TP performs slightly better than CC. Moreover, the proportion of correct 

selections remains relatively high for TP and CC until the 10th generation. This explains 

the deterioration of the selection mechanism TP and CC due to the higher parent 

population size. So, we would expect that TP and CC might converge to the optimum if 

the algorithm is allowed to run longer than 10 generations.  

Scheffe�s procedure may perform better if it is allowed to run for longer number 

of generations or at a higher probability of correct selection. Note that the proportion of 

correct selection was relatively low compared to the other techniques. Scheffe�s 

procedure could be improved by increasing the probability of correct selection. Note that 

TP, CC and SP consumed a very small number of simulation calls in the early 

generations for test function-1 and test function-2.  

Table 5.5 and 5.6 show that DD consumed an excessively high number of 

simulation calls compared to other techniques. Figure 5.3 and Figure 5.4 show that DD 

and KN follow very closely along the optimum convergence path and KN performs as 

good as DD with far fewer simulation calls than required for DD. Table 5.5 and 5.6 show 

a general trend of increase in the simulation calls for generation 1 through generation 10 

for all the techniques.  

We would expect that DD and KN to have a high proportion of correct selection 

since they follow closely along the optimum convergence path. An interesting result is 

that the proportion of correct selection was high in the early generations for DD and KN, 
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but was not maintained high in the later generations. This is because the difference 

between the fitness of the solutions is less than the indifference zone. In other words, the 

solutions are so closely spaced in the later generations that the procedures consider them 

to be indifferent. This low proportion of correct selection did not affect the search 

procedure using DD and KN. The low proportion of correct selection in the later 

generations did not have any affect on the performance of DD and KN because the 

solutions quickly reached the optimum region and the solutions are very closely spaced 

together. Hence, an improper selection of a solution as parent after the solutions have 

converged did not have any affect on the convergence of the algorithm. TP and CC 

maintain a very high proportion of correct selection, but still do not converge since the 

parent population size was high and also the solutions are spaced farther apart even at the 

end of 10 generations, which can be observed based on the average fitness at the end of 

10 generations. 
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Table 5.5 No of sim calls for modified selection techniques at α = 0.1 for Test function-1 
 
  Modified Selection Mechanisms 

GEN DD KN TP CC SP 
1 130,588 7,190 140 140 140 
2 131,553 5,656 141 149 140 
3 129,095 8,700 162 153 140 
4 129,564 34,720 243 236 140 
5 129,705 47,043 335 299 172 
6 128,878 75,632 486 563 547 
7 128,069 81,229 1,025 383 400 
8 128,957 105,016 3,734 563 976 
9 128,215 103,738 4,517 755 1,816 
10 130,663 115,496 8,637 965 6,225 

 
 
 
 

Table 5.6 No of sim calls for modified selection techniques at α = 0.1 for Test function-2 
 

  Modified Selection Mechanisms 
GEN DD KN TP CC SP 

1 130,588 17,298 570 306 217 
2 131,553 16,748 320 271 189 
3 129,095 21,160 379 306 178 
4 129,564 34,321 525 336 200 
5 129,705 51,077 738 328 278 
6 128,878 67,004 519 402 564 
7 128,069 84,197 972 355 1,586 
8 128,957 109,000 1,648 1,269 3,287 
9 128,215 112,914 2,474 876 3,634 
10 130,663 123,486 3,368 1,935 5,124 
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Average Fitness at alpha=0.1 for test function-1
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Figure 5.7 Average Fitness of parents for modified selection mechanisms at α =0.1 for 

Test function-1 
 

Average Fitness at alpha=0.1 for test function-2
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Figure 5.8. Average Fitness of parents for modified selection mechanism at α =0.1 for 

Test function-2 
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Proportion of CS at alpha = 0.1 for Test function-1
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Figure 5.9. Proportion of CS for modified selection mechanisms at α =0.1 for Test 

function-1 
 

Proportion of CS at alpha = 0.1 for test fucntion-2
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Figure 5.10 Proportion of CS for modified selection mechanisms at α =0.1 for Test 

function-2 
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5.3.2 Performance of Modified selection mechanisms at significance level = 0.2 

The average fitness of the parent solutions in each generation for each of the 

modified selection mechanisms under very highly noisy conditions equivalent to 2 noiseσ   

(normally distributed), at a significance level of 0.2 for test function-1 and test function-2 

are plotted in Figure 5.11 and Figure 5.12, respectively. Similarly, Table 5.7 and Table 

5.8 show the number of simulation calls expended for test function-1 and test function-2, 

respectively, for each of the modified selection mechanisms at a significance level of 0.2. 

In addition, corresponding plots of the proportion of correct selection in each generation 

for test function-1 and test function-2 is shown in Figure 5.13 and Figure 5.14, 

respectively. It can be seen that DD and KN follow closely along the convergence path 

towards the optimum, whereas TP, CC and SP do not perform as well under the given 

conditions.  

 The results of the average fitness of the parent solutions are similar to the case 

where the probability of correct selection is 0.9. Selection mechanism TP, CC and SP do 

not perform well under the given experimental conditions for test function-2. Note the 

quality of the solution is about the same at the end of search for both levels of α  for test 

function-1. For test function-2, the average fitness of the parents is higher using TP, CC 

and SP at α  = 0.2 compared to α =0.1 indicating the degradation in the quality of the 

solution with increase in the level of significance. The number of simulation calls 

expended decreased for all the modified selection mechanisms with increase in the level 

of significance from 0.1 to 0.2. The main difference between the results for the case of 

α =0.1 and α =0.2 is the decrease in the number of simulation calls, while the remaining 
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output parameters of interest are fairly similar for DD and KN. Note that DD and KN still 

expended an excessively high number of simulation calls. 

Table 5.7. No of sim calls for modified selection techniques at α = 0.2 for Test function-1 
 

  Modified Selection Mechanisms 
GEN DD KN TP CC SP 

1 104,075 4,688 140 140 140 
2 102,124 3,394 140 149 140 
3 105,458 6,312 156 144 140 
4 101,170 25,142 197 216 140 
5 101,395 34,579 242 199 151 
6 101,640 55,652 551 580 496 
7 103,112 62,056 878 386 314 
8 101,652 86,142 2,675 687 1,992 
9 101,124 87,801 4,604 825 2,415 
10 102,074 98,148 7,615 1,023 2,558 

 
Table 5.8. No of sim calls for modified selection techniques at α = 0.2 for Test function-2 

 
  Modified Selection Mechanisms 

GEN DD KN TP CC SP 
1 104,075 11,592 469 283 196 
2 102,124 11,103 290 226 155 
3 105,458 13,179 334 241 170 
4 101,170 22,815 529 282 198 
5 101,395 36,908 598 272 299 
6 101,640 43,298 683 421 515 
7 103,112 62,465 899 605 571 
8 101,652 82,982 1,436 758 3,338 
9 101,124 89,291 2,367 880 3,093 
10 102,074 101,736 3,076 687 2,463 
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Average Fitness at alpha=0.2 for test function-1
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Figure 5.11 Average Fitness of the solutions for modified selection mechanism at α =0.2 

for Test function-1 
 
 

Average Fitness at alpha=0.2 for test function-2
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Figure 5.12 Average Fitness of the solutions for modified selection mechanism at α =0.2 

for test function-2 
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Proportion of CS at alpha = 0.2 for test function-1
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Figure 5.13 Proportion of CS for modified selection mechanisms at α =0.2 for Test 

function-1 
 
 

Proportion of CS at alpha = 0.2 for test function-2
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Figure 5.14 Proportion of CS for modified selection mechanisms at α =0.2 for Test 

function-2 
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5.3.3 Performance of Modified selection mechanisms at significance level = 0.4 

The average fitness of the parent solutions in each generation for each of the 

modified selection mechanisms under very highly noisy conditions equivalent to 2 noiseσ  

(normally distributed) at a significance level of 0.4 for test function-1 and test function-2 

are plotted in Figure 5.15 and Figure 5.16, respectively. In addition, corresponding plots 

of the proportion of correct selection in each generation for test function-1 and test 

function-2 are shown in Figure 5.17 and Figure 5.18, respectively. Table 5.9 and Table 

5.10 show the number of simulation calls expended for test function-1 and test function-

2, respectively, for each of the modified selection mechanisms at a significance level of 

0.4. It is observed that DD and KN follow closely along the convergence path towards 

the optimum, whereas TP, CC and SP do not perform as well under the given conditions. 

Similar results are obtained for significance level of 0.2 and 0.1 

The results of the average fitness of the parent solutions are similar to the case 

where the probability of correct selection is 0.9 and 0.8. The performance of the search 

algorithm using SP is further degraded with the decrease in the probability of correct 

selection. However, the number of simulation calls expended is much lower than the 

number of simulation calls expended for the case where α  is 0.1 or α  is 0.2. The number 

of simulation calls expended decreased for all the modified selection mechanisms with 

increase in the level of significance from 0.2 to 0.4. The main difference between the 

results for the case of α =0.1, α =0.2 and α =0.4 is the decrease in the number of 

simulation calls, while the remaining parameters are fairly similar for DD and KN. The 

number of simulation calls is much lower compared to the case where the probability of 

correct selection is 0.8 without any degradation in the quality of the solutions for DD and 
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KN. Although, the number of simulation calls has decreased for DD and KN with 

decrease in the probability of correct selection, the total number of simulation calls 

expended is still very high. Especially, DD consumed a very large number of simulation 

calls compared to KN with relatively insignificant difference in the performance. Also, 

the number of simulation calls is very high even in the early generations for DD, which 

implies that a significant amount of simulation effort is utilized than necessary.  

 
Table 5.9. No of simulation calls for modified selection techniques at α = 0.4 for Test 

function-1 
 

  Modified Selection Mechanisms 
GEN DD KN TP CC SP 

1 88,917 2,982 140 140 140 
2 86,447 2,303 140 148 140 
3 86,780 3,969 144 148 140 
4 90,019 12,892 188 198 140 
5 86,008 19,491 267 343 140 
6 86,903 34,294 776 306 431 
7 87,450 42,210 1,056 439 964 
8 87,133 55,239 2,624 365 1,626 
9 88,490 59,503 2,188 375 544 
10 85,544 70,887 5,140 1,200 1,947 

 
 
 
 

Table 5.10 No of simulation calls for modified selection techniques at α = 0.4 for Test 
function2 

 
  Modified Selection Mechanisms 

GEN DD KN TP CC SP 
1 88,917 7,561 351 223 176 
2 86,447 7,607 264 208 146 
3 86,780 9,557 264 204 143 
4 90,019 15,170 250 260 181 
5 86,008 21,319 501 228 217 
6 86,903 29,902 417 245 371 
7 87,450 41,413 430 284 452 
8 87,133 52,071 660 366 1,644 
9 88,490 57,071 1,032 420 1,670 
10 85,544 65,724 1,845 520 4,620 
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Average Fitness at alpha=0.4 for test function-1
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Figure 5.15 Average Fitness of the solutions for modified selection mechanism atα =0.4 

for Test function-1 
 

Average Fitness at alpha=0.4 for test function-2
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Figure 5.16 Average Fitness of the solutions for modified selection mechanism at α =0.4 

for Test function-2 
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Proportion of CS at alpha = 0.4 for test function-1
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Figure 5.17 Proportion of CS for modified selection mechanisms at α =0.4 for Test 

function-1 
 

Proportion  of CS at alpha = 0 .4  for test function-2
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Figure 5.18 Proportion of CS for modified selection mechanisms at α =0.4 for Test 

function-2 
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5.4 Indifference zone techniques 

A variable indifference zone methodology is employed within the two selection 

mechanisms, DD and KN in such a way that the indifference zone starts higher in the 

early generations and decreases as the search progresses towards to the optimum. This 

was tested to determine if it would allow the algorithm to perform adequately with far 

less number of simulation calls. Half the average fitness distance is used as the 

indifference zone, which is based on the initial estimates of the fitness from 5 

replications. To further decrease the number of simulation calls required, DD and KN 

selection mechanisms are evaluated with the probability of correct selection equivalent to 

0.6, since the quality of the search algorithm remains good even at a high significance 

level using DD and KN. Since, TP, CC and SP do not have an indifference zone kind of 

procedure inherently, the number of simulation calls in any generation is limited to twice 

the number of simulation calls expended in the previous generation. This would restrict 

the algorithm from spending excessive number of simulation calls especially when 

solutions are very closely spaced. TP and CC are evaluated at a probability of correct 

selection equivalent to 0.6. SP is evaluated at a probability of correct selection equal to 

0.99 with the hope of improving the convergence of the algorithm. Note that the 

techniques are evaluated at a very high noise level equivalent to 2 noiseσ  (normally 

distributed). 

Table 5.11 and Table 5.12 show the number of simulation calls expended in each 

generation for test function-1 and test function-2 respectively. The average actual fitness 

of the parent solutions in each generation for each of the selection mechanisms with 

modified indifference zone procedures under very highly noisy conditions at a 
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significance level of 0.4 for test function-1 and test function-2 are plotted in Figure 5.19 

and Figure 5.20, respectively. In addition, corresponding plots of the proportion of 

correct selection in each generation for test function-1 and test function-2 are shown in 

Figure 5.21 and Figure 5.22, respectively. 

Note that from Table 5.11 and 5.12, the total number of simulation calls has 

decreased significantly by using the adaptive indifference zone method for DD and KN 

for both test function-1 and test function-2. Also note that the number of simulation calls 

has decreased significantly for the other techniques as well. (See Table 5.9 and Table 

5.10). KN uses slightly lower number of simulation calls compared to the number of 

simulation calls expended by DD. The number of simulation calls increases as the search 

progresses towards the optimum region. 

Comparison of Figure 5.19 and Figure 5.20 show that test function-2 proves more 

difficult. For test function-2, the algorithm does not converge using the selection 

techniques TP, CC under the given experimental conditions as seen in Figure 5.20. There 

is a significant improvement in the performance of SP (Compare Figure 5.16 with Figure 

5.20). SP is approaching being competitive with DD and KN using significantly fewer 

simulation calls.  The algorithm with selection techniques DD and KN converges towards 

the optimum utilizing much smaller number of total simulation calls than before. 

However, the solutions are not quite as good (Compare Figure 5.16 with Figure 5.20). 

These results indicate that a higher proportion of correct selection in the early 

generations helps the algorithm converge towards the optimum region quickly, and in the 

later stages, a moderate proportion of correct selection would be sufficient (Figure 5.21 

and Figure 5.22). In other words, maintaining a reasonably good convergence velocity in 
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the early generations helps the algorithm converge quickly towards the optimum. This 

would be advantageous since maintaining a high proportion of correct selection in the 

early generations requires far fewer simulation calls as compared to later generations.  

Table 5.11 No of simulation calls using indifference zone technique for test function-1 
 

 Selection Mechanisms   
GEN DD KN TP CC SP 

1 140 140 140 140 140 
2 142 140 140 148 140 
3 144 140 142 148 140 
4 173 144 166 184 140 
5 443 254 194 175 148 
6 1,106 923 289 245 205 
7 1,096 985 391 234 284 
8 2,768 2,317 616 353 464 
9 2,044 1,508 811 396 608 
10 3,658 2,608 1,397 445 1,146 

  
 

Table 5.12 No of simulation calls using indifference zone technique for test function-2 
 

 Selection Mechanisms   
GEN DD KN TP CC SP 

1 2,148 813 291 223 306 
2 1,635 530 231 203 220 
3 1,770 688 240 179 242 
4 2,059 1,111 206 230 267 
5 2,022 1,675 289 246 325 
6 2,956 1,981 282 240 449 
7 3,020 2,677 283 259 606 
8 4,104 4,499 389 290 1,094 
9 3,459 4,944 451 300 1,406 
10 4,983 5,561 416 412 1,973 
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Modified Indifference zone selection methodologies using test function-1
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Figure 5.19. Average Fitness of the solutions for modified indifference zone selection 

mechanism for Test function-1 
 

Modified Indifference zone selection methodologies using test function-2
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Figure 5.20. Average Fitness of the solutions for modified indifference zone selection 
mechanism for Test function-2 
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Proportion of CS for test function-1 using modifed Indifference zone selection
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Figure 5.21 Proportion of CS for modified indifference zone selection mechanisms for 

Test function-1 
 

Proportion of CS for test function-2 using modifed Indifference zone selection
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Figure 5.22 Proportion of CS for modified indifference zone selection mechanisms for 

Test function-2 
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A question that remains unanswered is if the deterioration in the quality of the 

solution in terms of the average fitness of the solutions is worth the savings in the number 

of simulation calls. Table 5.13 shows the comparison of the average fitness of the parents 

in generation 10 and the total number of simulation calls required by the search procedure 

on test function-1 for DD and KN using α =0.4 and dynamic indifference zone or the 

constant (static) indifference zone of 0.10. Similar results for test function-2 are presented 

in Table 5.14.  

Table 5.13. Comparison of dynamic indifference zone and static indifference zone on test 
function-1 

 
 Average Fitness Simulation Calls 

Technique DD KN DD KN 
Dynamic Indifference Zone 1.113 1.108 11,715 9,160 

Static Indifference Zone 1.018 1.013 873,692 303,770 
 
 

Table 5.14. Comparison of dynamic indifference zone and static indifference zone on test 
function-2 

 
 Average Fitness Simulation Calls 

Technique DD KN DD KN 
Dynamic Indifference Zone 1.073 1.059 28,154 24,479 

Static Indifference Zone 1.020 1.017 873,692 307,397 
 

Note that an average fitness improvement of 0.095 for test function-1 using DD 

with static indifference zone of 0.10 required an additional 861,977 simulation calls (See 

Table 5.13). Similarly, an average fitness improvement of 0.053 for test-function-2 using 

DD with static indifference zone of 0.10 required an additional 845,538 simulation calls. 

Clearly, though a slight improvement can be seen, DD has used an excessively large 

number of simulation calls. An average fitness improvement of 0.095 for test function-1 

using KN with static indifference zone of 0.10 required an additional 294,610 simulation 

calls. Similarly, an average fitness improvement of 0.0421 is obtained for test function-2 
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using an additional 282,918 simulation calls. It is concluded that the improvement in 

terms of the average fitness of the parent solutions is not worth the increase in the number 

of total simulation calls, when using a static indifference zone of 0.10. This analysis 

depends on the value chosen for the static indifference zone. Perhaps, a static indifference 

zone equal to 0.10 is too small.  

Figures 5.23 and 5.24 show the dynamic indifference zone for DD for test 

function-1 and test function-2, respectively. The plots show that the indifference zone 

decreases as the search progresses for both test function-1 and test function-2. As 

expected the plots show that the indifference zone decreases as the search algorithm 

progresses towards the optimum region. Note that the indifference zone in the final 

generation is approximately 0.8 for test function-1, which is much higher than the static 

indifference zone of 0.1. Similarly, the indifference zone in the final generation for test 

function-2 is approximately 0.5. The chosen indifference zone of 0.1 is too small for this 

test function and that explains the excessive simulation effort spent for both test-function-

1 and test function-2 using a static indifference zone. Given that a reasonable indifference 

zone value will be difficult to determine for most problems, the dynamic indifference 

zone procedure is appealing. 
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Figure 5.23. Dynamic Indifference zone for Test function-1 using DD at α = 0.4. 
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Figure 5.24. Dynamic Indifference zone for Test function-2 using DD at α = 0.4. 
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5.5 Comparison of modified selection mechanisms with standard ES 

Although, the number of simulation calls is very low for TP, CC and SP; the 

solutions fail to converge to the optimum for test function-2 under the given experimental 

conditions. Noting, however, that SP was much more competitive. Hence, DD and KN, 

which performed well, even at high levels of noise for the given experimental conditions 

are compared against the standard ES by allocating an equivalent number of simulation 

calls used by KN to the standard ES. The simulation calls are allocated to the standard ES 

by increasing the population size by a factor that makes use of allocated simulation calls 

when each solution�s fitness is estimated from 5 replications. This modified standard ES 

designed for comparison is denoted as SD-C.  Table 5.14 shows that 28,000+ simulation 

calls are expended by DD in 10 generations for test function-2. KN required a smaller 

number of simulation calls for both test function-1 and test function-2. Hence the 

population for SD-C is set equal to 28,000/(10*5) = 564 (approximately). Figure 5.25 

shows a plot of the average actual fitness of the parent solutions for test function-1 at a 

noise level of 2 noiseσ  using the various selection mechanisms under comparison. A 

similar plot for test function-2 is shown in Figure 5.26.  

The average fitness of the parent solutions using DD, KN, and SD-C procedures 

on test function-1 are not significantly different in the 10th generation (See Figure 5.25). 

Figure 5.26 illustrates that KN reached a lower average fitness value than did SD-C using 

approximately the same number of simulation calls. An interesting observation is that the 

average fitness of the parents using SD-C is much lower than the other techniques in the 

beginning generations, which is primarily because of the very high population size. 
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However, a high population size did little to speed up SD-C�s rate of convergence to the 

optimum as the search progresses in the presence of very high levels of noise. The KN 

with dynamic IZ more wisely distributed the simulation calls among the population of 

solutions and generations illustrating that the effects of high levels of noise cannot be 

overcome by simply increasing the size of the algorithm�s population size.  
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Comparison of Standard ES with modified selection methodologies using test function-1
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Figure 5.25 Comparison of modified selection mechanisms in terms of average fitness for 

test function-1 
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Figure 5.26 Comparison of modified selection mechanisms in terms of average fitness for 

test function-2 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 The objectives of this thesis are to gain a better understanding of the effect of 

variation in a response surface on the performance of evolution strategies, identify 

potential statistical techniques that can be integrated into the ES to address the variation 

and to evaluate the effectiveness of these techniques within the context of evolution 

strategies. After conducting a series of experiments followed by analysis of results and 

review of the literature, the following conclusions have been reached. Also, 

recommendations for future research are presented.  

 Evolution strategies become less effective in locating the optimum solution at 

increasingly higher levels of noise. Noise affects the selection mechanism in an ES; 

hence the selection mechanism has to be modified to cope with high levels of noise. As 

the level of variation or noise increases, the proportion of solutions correctly identified as 

parents decreases. For any noise level, the proportion of correct selection is high early in 

the search phase and decreases as the search progresses towards the optimum. This is 

because the solutions are farther apart early in the search phase and noise has less affect 

on the selection mechanism. However, in the later stages of the search, solutions are more 

closely spaced and the affect of noise is felt more severely as evolution strategies 

converge towards the optimum. Experimental results suggest that a very high proportion 

of correct selection is not required for evolution strategies to cope with noise. A moderate 

proportion of correct selection approximately greater than 0.75 was sufficient to guide 
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evolution strategies towards the optimum. A high proportion of correctly selected 

solutions can be achieved by obtaining large number of observations at each solution. 

Since simulation computation is very expensive there is a need to identify techniques that 

achieves the goal of guiding evolution strategies towards the optimum solution with 

minimum computational effort.  

 Three different methodologies are frequently employed to cope with noise, which 

include replications, increasing population size, and rescaled mutations (Beyer, 2000). 

This thesis focuses on the first methodology.  It is predicted that techniques that unify 

some or all the above methodologies will be developed in the future. Statistical 

techniques are helpful in determining the appropriate amount of computational effort 

required to lessen the effect of noise on the search algorithm�s performance.  

There are several statistical techniques available that could be integrated into the 

selection mechanism of an ES. The statistical techniques studied in the research are 

broadly classified into four categories namely ranking and selection techniques, multiple 

comparison procedures, clustering procedures, and other statistical procedures. These 

statistical techniques vary with respect to their goals and assumptions. Specific 

techniques studied in this research are Dudewicz and Dalal�s procedure that selects the 's' 

best among 'k' competing systems, Kim and Nelson�s sequential procedure that selects a 

subset of size 's' that contains the best solution, Tukey's multiple comparison procedure, 

Calsinki and Corsten�s Clustering procedure, and Scheffe's Procedure. 

 The scope of this thesis is limited to evaluating the effectiveness of the example 

techniques mentioned, as the selection mechanism within an ES. Experimental results 

suggest modified statistical selection procedures help to guide the search algorithm 
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towards the optimum at high levels of noise. Experimental evaluations show that a 

statistical ranking and selection technique such as the sequential procedure by Kim and 

Nelson (2001) outperforms the other statistical techniques. The procedure given by 

Dudewicz and Dalal and the sequential procedure given by Kim and Nelson followed 

very closely along the optimum convergence path. However, the procedure given by Kim 

and Nelson achieved this close proximity to the convergence path utilizing a relatively 

smaller number of total simulation calls than did the procedure by Dudewicz and Dalal. 

Experimental results also indicated that the aid of a statistical technique is required 

during the later phase of the search. Sequential ranking and selection procedures based on 

indifference zone methodology such as the one given by Kim and Nelson (2001) are 

recommended (within the context of limited research conducted) since they eliminate the 

clearly inferior solutions and additional observations are obtained from only the 

competing solutions still in play. Additionally, it is recommended that the procedure be 

implemented at a low probability of correct selection in the range of 0.5 to 0.6, since the 

performance of the algorithm is not severely impacted while lowering the number of 

simulation calls required. Another important factor is to use an adaptive indifference 

zone, where the indifference zone is proportional to the distance between the solutions. In 

other words, a sequential statistical procedure, with low probability of correct selection, 

and an adaptable indifference zone is recommended. Moreover, sequential procedures are 

easily adaptable to simulation optimization since observations can be obtained 

sequentially. Incorporating the sequential statistical techniques with lower probability of 

correct selection and dynamically adjusting the indifference zone significantly decreased 
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the simulation effort required without greatly compromising the quality of solutions 

found by the search algorithm.  

  Future efforts should be directed towards defining the optimal parameters, such as 

the initial number of replications per solution, the level of significance, and indifference 

zone for different statistical techniques for effective convergence with minimum 

computational effort. The selection methodologies proposed need to be evaluated for 

more test functions. Further research is required for the case of unequal variance across 

the population of solutions. All the statistical techniques examined in the research assume 

independent and normally distributed observations from each system. The sensitivity of 

these methods for deviations of the assumptions of independence and normality is to be 

examined. Further research can be conducted using other statistical techniques, which are 

not considered in this research. Experiments on dynamic parent population sizing 

methodologies combined with Tukey�s procedure and Clustering procedures showed that 

the solutions were converging very slowly towards the converging path. Hence, a 

promising avenue for future research, which seems to have a great potential for 

improving the search algorithm, is to combine statistically based selection methodologies 

with dynamic parent population-sizing. Research on the relation between the proportion 

of correct selection and the probability of correct selection for the statistical techniques 

could lead to new insights that might be helpful is designing optimization methodologies 

to cope with noisy response surfaces. The interaction between the modified selection 

methodologies presented with other recombination and mutation mechanisms is another 

avenue for future research.  
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In conclusion, this research presents methodologies to help optimization 

algorithms such as evolution strategies to cope with problems characterized by highly 

noisy response surfaces. The research can be utilized to develop more efficient and 

effective simulation optimization methodologies, which can be incorporated into 

commercial simulation optimization software. 

 



 

86 

 

 

REFERENCES 

 
Aizawa, A., and B. Wah (1993). Dynamic Control of Genetic Algorithms in a Noisy 

Environment. Proceedings of the fifth International Conference on Genetic 
Algorithms, 48-55. 

 
Andradottir, S. (1998). Simulation Optimization. Chapter 9 in Handbook of Simulation (J. 

Banks, ed.). New York: John Wiley and Sons. 
 
Arnold, D.V., and H-G. Beyer (2000). Efficiency and Mutation Strength Adaptation of 

the ( λµµ ,/ I )-ES in a Noisy Environment. Parallel problem solving from nature-
PPSN 6, 39-48. 

  
Arnold, D.V., and H-G. Beyer (2001). Investigation of the ( λµ, )-ES in the Presence of 

Noise. Proceedings of the 2001 congress on evolutionary computation, v1, 332-339. 
 
Back, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University 

press. 
 
Back, T., and U. Hammel (1994). Evolution Strategies Applied to Perturbed Objective 

Functions. Proceedings of the IEEE World Congress of Computational Intelligence, 
Orlando, Florida, 40-45. 

 
Back, T., F. Hoffmeister, and H.P. Schwefel (1991). A Survey of Evolution Strategies. 

Proceedings of the 4th International Conference on Genetic Algorithms, Ed R.K. 
Belew and L.B. Booker, Morgan Kaufmanns Publishers, San Mateo, CA, 2-9 

 
Baesler, F., and J.A. Sepulveda (2000). Multi-response simulation optimization using 

stochastic genetic search within a goal programming framework Proceedings of the 
2000 Winter Simulation Conference, 788-794. 

 
Banks, J., J.S. Carson, and B.L. Nelson (1996). Discrete-Event System Simulation. 2nd 

ed., Prentice-Hall, Upper Saddle River, New Jersey. 
 
Bautista, M.G., D.W. Smith, and R.L. Steiner (1997). A Cluster-Based Approach To 

Means Separation. Journal of Agricultural, Biological, and Environmental Statistics, 
Vol 2, Number 2, 179-197 

 
Bechhofer, R., T.J. Santner, D.M. Goldsman (1995). Design and Analysis of Experiments 

for Statistical Selection, Screening, and Multiple Comparisons. John Wiley & Sons, 
Inc, New York. 



87 

 
Beyer, H.G. (2000). Evolutionary algorithms in noisy environments: theoretical issues 

and guidelines for practice. Computer methods in applied mechanics and engineering, 
v 186, n2, 239-267. 

 
Beyer, H.G., and D.V. Arnold (1999). Fitness Noise and Localization Errors of the 

Optimum in General Quadratic Fitness Models. Proceedings of the Genetic and 
Evolutionary Computation Conference, 817-824. 

 
 
Biethahn, J., and V. Nissen (1994). Combinations of simulation and evolutionary 

algorithms in management science and economics. Annals of Operations Research, 
52, 183-208. 

 
Booker, L. (1987). Improving Search in Genetic Algorithms. Chapter 5 in Genetic 

Algorithms and Simulated Annealing, Davis, L., Ed. Pitman, London, and Morgan 
Kaufman: Los Altos.  

 
Boesel, J. (1999). Search and selection for large-scale stochastic optimization. Ph.D. 

Dissertation, Department of Industrial Engineering and Management Sciences, 
Northwestern University, Evanston, Illinois.  

 
Boesel, J., B.L. Nelson, and S. Kim (1999). Using Ranking and Selection to `Clean Up' 

After Simulation Optimization. Technical Report, Dept. Of Industrial Engineering 
and Management Sciences, Northwestern University. 

 
Boesel, J., and B.L. Nelson (1998). Accounting for Randomness in Heuristic Simulation  
      Optimization. Proceedings of the 12th European Simulation Multiconference,  
      Society for Computer Simulation International, 634-638.  
 
Bowden, R.O., and J.D. Hall (1998). Simulation Optimization Research and 

Development. Proceedings of the 1998 Winter Simulation Conference, Washington, 
D.C., 1693-1698. 

 
Bramlette, M.F. (1991). Initialization, Mutation, and Selection Methods in Genetic 

Algorithms for Function Optimization. Proceedings of the Fourth International 
Conference on Genetic Algorithms. R. K. Belew and L. B. Booker, Eds. Morgan 
Kaufman: Los Altos, CA.  

 
Calinski, T., and C.A. Corsten (1985). Clustering means in ANOVA by simultaneous 

testing. Biometrics. 41, 39-41. 
 
Carroll, R.J., Gupta, S. S., and Huang, D. Y. (1975). On selection procedures for the t 

best populations and some related problems. Commun. Stat.-Theory and Methods, 
A4, 987-1008 

 



88 

Dudewicz, E.J., and S.R. Dalal (1975). Allocation of observations in ranking and 
selection with unequal variances. Sankhya, B 37, 28-78. 

 
Duncan, D.B. (1955). Multiple Range and Multiple F Tests, Biometrics, 11, 1-42. 
 
Fisher, R.A. (1951). The Design of Experiments (6th Ed.), Oliver and Boyd, London. 
 
Fitzpatrick, J.M., and J.J. Grefenstette (1988). Genetic Algorithms in Noisy 

Environments. Machine Learning, 3, 101-120. 
 
Gen, M., and R. Cheng (1997), Genetic Algorithms And Engineering Design. New York: 

John Wiley and Sons. 
 
Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine 

Learning. Addison-Wesley Inc. Reading, MA.  
 
Goldsman, D., and W.S. Marshall (1999). Selection procedures with standardized time 

series variance estimators. Proceedings of the 1999 Winter Simulation Conference, 
382-388. 

 
Goldsman, D., and B.L. Nelson (1998). Statistical screening, selection, and multiple 

comparison procedures in computer simulation. Proceedings of the 1998 Winter 
Simulation Conference. 159-166. 

 
Goldsman, D., and B.L. Nelson (1998). Comparing Systems via Simulation. Chapter 8 in 

Handbook of Simulation (J. Banks, ed.). New York: John Wiley and Sons. 
 
Grant, R.S. (1998). Evaluating the use of genetic algorithms, evolution strategies, and 

scatter search for performing simulation optimization. M.S. Thesis, Department of 
Industrial Engineering, Mississippi State University, Mississippi. 

 
Greffenstette, J.J. (1986). Optimization of Control Parameters for Genetic Algorithms. 

IEEE Transactions on Systems, Man, and Cybernetics SMC-16, 1, 122-128.  
 
Gupta, S.S. (1965). On some multiple decision (selection and ranking) rules. 

Technometrics, 7, 225-245. 
 
Hall, J.D. (1997). Investigation of a two-phased strategy for simulation optimization. 

PhD Dissertation, Department of Industrial Engineering, Mississippi State University, 
Mississippi.  

  
Hammel, U., and T. Back (1994). Evolution Strategies on Noisy Functions: How to 

Improve Convergence Properties. Parallel problem solving from nature-PPSN, 
International Conference on Evolutionary Computation, Berlin, Springer, 418-427.  

 



89 

Hsu, J.C., and B.L. Nelson (1998). Multiple Comparisons in the General Linear Model. 
Journal of Computational and Graphical Statistics, 7, 23-41.  

 
Hughes, E.J. (2000). Evolutionary Algorithm with a Novel Insertion Operator For 

Optimizing Noisy Functions. Proceedings of the 2000 congress on evolutionary 
computation, v1, 790-797. 

 
Hughes, E.J. (2001). Constraint Handling With Uncertain and Noisy Multi-Objective 

Evolution. Proceedings of the 2001 congress on evolutionary computation, v2, 963-
970. 

 
Kim, S., and B.L. Nelson (2001). A Fully Sequential Procedure for Indifference-Zone 

Selection in Simulation. ACM Transaction On Modeling And Computer Simulation 
(TOMACS), v 11, 3, 251-273.  

 
Keuls, M. (1952). The use of the �Studentized Range� in Connection With an Analysis of 

Variance, Euphytica, 1, 112-122. 
 
Koenig, L.W., and A.M. Law (1985). A Procedure for Selecting a Subset of Size m 

Containing the l best of k Independent Normal Populations. Commun. Statist.-
Simulation and Computation, 14: 719-734 (1985).  

 
Kumar, C., and D.B. Fogel (1999). Fitness distributions in evolutionary computation: 

Analysis of Noisy Functions. Proceedings of the international society for optical 
engineering, v 3722, 313-323. 

 
Law, A.M., and W.D. Kelton (1998). Simulation Modeling and Analysis, 3rd ed., 

McGraw-Hill, New York. 
 
Markon, S., D.V. Arnold, T. Back, T. Beielstein, and H-G, Beyer (2001). Thresholding-a 

Selection Operator for Noisy ES. Proceedings of the 2001 congress on evolutionary 
computation, v1, 465-472. 

 
 
Marrison, C.I. and R.F. Stengel (1997). Robust Control System Design Using Random 

Search and Genetic Algorithms. IEEE Transactions on Automatic Control, Vol. 42, 
No.6, 835-839. 

 
Matejcik, F.J., and B.L. Nelson (1993). Simultaneous ranking, selection and multiple 

comparisons for simulation. Proceedings of the 1993 Winter Simulation Conference, 
386-392. 

 
Michalewicz, Z. (1996). Genetic Algorithm +Data Structures = Evolution Programs. 

Third ed. Springer-Verlag: New York.  
 



90 

Miller, B.L. (1997). Noise, Sampling and Genetic Algorithms. Ph.D. Dissertation, 
Department of Computer Science, University of Illinois, Urbana Champaign, Illinois. 

 
Miller, B.L., and D.E. Goldberg (1996). Genetic algorithms, selection schemes, and the 

varying effects of noise, Evolutionary Computation (2), 113-131 
 
Miller, J.O., and B.L. Nelson, and C.H. Reilly (1998). Efficient Multinomial Selection in 

Simulation. Naval Research Logistics, 45, 459-482.  
 
Nelson, B.L., and S. Banerjee (2001). Selecting a Good System: Procedures and 

Inference. IIE Transactions, vol.33, no.3, 149-166.  
 
Nelson, B.L., J. Swann, D. Goldsman, and W. Song (2001). Simple Procedures for 

Selecting the Best-Simulated System when the Number of Alternatives is Large. 
Operations Research, vol.49, no.6, 95�963.  

 
Nissen, V., and J. Propach (1998). Optimization with Noisy Function Evaluations. 

Parallel problem solving from nature-PPSN, 159-168. 
 
Nissen, V., and J. Propach (1998). On the Robustness of Population-Based Versus Point-

Based Optimization in the presence of Noise. IEEE Transactions on evolutionary 
computation, vol. 2,no.3, 107-119. 

 
Olafsson, S. (1999). Iterative ranking-and-selection for large-scale optimization. 

Proceedings of the 1999 Winter Simulation Conference, 479-484. 
 
Pitchitlamken, J., and B.L. Nelson (2001). Selection of the best procedures for 

optimization via simulation. Proceedings of the 2001 Winter Simulation Conference, 
401-407. 

 
Pierreval, H., and L. Tautou (1997). Using evolutionary algorithms and simulation for the 

optimization of manufacturing systems. IIE Transactions, 29, 181-189 
 
Rana, S., L.D. Whitley, and R. Cogswell (1996). Searching in the presence of noise.  

Parallel problem solving from nature-PPSN, 198-207. 
 
Sano, Y., and H. Kita (2000). Optimization of Noisy Fitness Functions by Means of 

Genetic Algorithms Using History of Search. Parallel problem solving from nature-
PPSN, 571-580. 

 
Scheffe, H. (1959). The Analysis of Variance (1st ed.), Wiley, New York. 
 
Scott, A.J., and M. Knott (1974). A Cluster Analysis Method For Grouping Means in the 

Analysis of Variance. Biometrics, 30, 507-512. 
 



91 

Shannon, R.E. (1998). Introduction to the art and science of simulation. Proceedings of 
the 1998 Winter Simulation Conference, 7-14. 

 
Shi, L. and S. Olafsson (1997). An integrated framework for deterministic and stochastic 

optimization. Proceedings of the 1997 Winter Simulation Conference, 358-485. 
 
Stagge, P. (1998). Averaging Efficiently in the Presence of Noise. Parallel problem 

solving from nature-PPSN, v5, Berlin, Springer, 188-197.  
 
Stroud, P.D. (2001). Kalman-extended genetic algorithm for search in nonstationary 

environments with noisy fitness evaluations. IEEE Transactions on Evolutionary 
Computation, v 5, n 1, 66-77.  

 
Sullivan, D.W. and J.R. Wilson (1989). Restricted subset selection procedures for 

simulation. Operations Research, Vol.37, No.1, 52-70. 
 
Swisher, J.R., and S.H. Jacobson (1999). A Survey of Ranking, Selection, and Multiple 

Comparison Procedures for Discrete-Event Simulation. Proceedings of the 1999 
Winter Simulation Conference, 492-501. 

 
Tamaki, H, and T. Arai (1997). A Genetic Algorithm Approach to Optimization 

Problems in an Uncertain Environment, Proceedings of the 4 th International 
Conference on Neural Information Processing (ICONIP), 436-439. 

 
Tanooka, K., H. Tamaki, S. Abe, and S. Kitamura (1999). A Continuous Age Model of 

Genetic Algorithms Applicable to Optimization Problems with Uncertainties. 
Proceedings of the 1999 IEEE International Conference on Systems Man and 
Cybernetics, Vol. 1, 637-642. 

 
Tomick, J.J., S.F. Arnold, and R.R. Barton (1995). Sample size selection for improved 

Nelder-Mead performance. Proceedings of the 1995 Winter Simulation Conference, 
341-345. 

 
Tukey, J.W. (1949). Comparing Individual Means in the Analysis of Variance, 

Biometrics, 5,99-114. 
 
Welsch, R.E. (1977), Stepwise Multiple Comparison Procedures, Journal of the 

American Statistical Association, 72, 56-575. 
 
 
 
 

 


	Modified Selection Mechanisms Designed to Help Evolution Strategies Cope with Noisy Response Surfaces
	Recommended Citation

	Microsoft Word - 3F0E1AB4-74E8-205E67.doc

