
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

8-11-2017 

Monitoring Aspergillus Flavus Progression and Aflatoxin Monitoring Aspergillus Flavus Progression and Aflatoxin 

Accumulation in Inoculated Maize (Zea Mays L.) Hybrids Accumulation in Inoculated Maize (Zea Mays L.) Hybrids 

Cedric Xavier Reid 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Reid, Cedric Xavier, "Monitoring Aspergillus Flavus Progression and Aflatoxin Accumulation in Inoculated 
Maize (Zea Mays L.) Hybrids" (2017). Theses and Dissertations. 3195. 
https://scholarsjunction.msstate.edu/td/3195 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3195?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


Template B v3.0 (beta): Created by J. Nail 06/2015  

Monitoring Aspergillus flavus progression and aflatoxin accumulation in inoculated 

maize (Zea mays L.) hybrids 

By 
TITLE PAGE 

Cedric Xavier Reid 

A Dissertation 
Submitted to the Faculty of 
Mississippi State University 

in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy 

in Biochemistry 
in the Department of Biochemistry, Molecular Biology, Entomology and Pant Pathology 

Mississippi State, Mississippi 

August 2017 



 

 

Copyright by 
COPYRIGHT PAGE 
Cedric Xavier Reid 

2017 



 

 

Monitoring Aspergillus flavus progression and aflatoxin accumulation in inoculated 

maize (Zea mays L.) hybrids 

By 
APPROVAL PAGE 
Cedric Xavier Reid 

Approved: 

 ____________________________________ 
Ashli Brown-Johnson 

(Major Professor) 

 ____________________________________ 
Darrell L. Sparks Jr 

(Co-Major Professor) 

 ____________________________________ 
Xueyan Shan 

(Committee Member) 

 ____________________________________ 
Daniel G. Peterson 

(Committee Member) 

 ____________________________________ 
W. Paul Williams 

(Committee Member) 

 ____________________________________ 
Kenneth O. Willeford 

(Graduate Coordinator) 

 ____________________________________ 
George M. Hooper 

Dean 
College of Agriculture and Life Sciences 



 

 

Name: Cedric Xavier Reid 
ABSTRACT 

Date of Degree: August 11, 2017 

Institution: Mississippi State University 

Major Field: Biochemistry 

Major Professor: Ashli Brown-Johnson 

Title of Study: Monitoring aspergillus flavus progression and aflatoxin accumulation in 
inoculated maize (Zea mays L.) hybrids 

Pages in Study: 240 

Candidate for Degree of Doctor of Philosophy 

Aflatoxins are a secondary metabolite produced by the fungus Aspergillus flavus. 

A. flavus has been known to infect several crops including tree nuts, peanuts, rice, cotton 

and maize. Aflatoxins have been found to cause tumors with aflatoxin B1 being the most 

carcinogenic biologically produced substance known to man. Therefore, the FDA has 

restricted the amount of aflatoxin in maize for human consumption to 20 ppb (ng/g). An 

estimated $225 million are lost each year in the United States due to aflatoxin 

contamination in maize crops alone. Agriculture is a vital part of Mississippi’s economy, 

and maize is one of its largest crops.  

The purpose of this research is to track the correlations between aflatoxin 

accumulation and Aspergillus flavus fungal biomass for the first several weeks after 

inoculation, as well as the spreading of the fungus and the aflatoxin throughout the 

inoculated ear of maize. This will allow for better understanding of the pathogen-host 

interactions and how the fungus progresses over time. GA209 x T173 is the aflatoxin 

accumulation susceptible maize hybrid, GA209 x Mp313E is the susceptible and resistant 

hybrid, and Mp717 x Mp313E is the resistant maize hybrid to aflatoxin accumulation. 



 

 

These maize hybrids were each inoculated with toxin producing Aspergillus flavus 

NRRL 3357 and water as a control 21 days after silk maturation. Collections of the 

inoculated maize cobs were made 3, 7, 14, 21, 28, 35, and 60 days after inoculation. 

Maize samples were collected and analyzed for aflatoxin and DNA concentration. The 

extracted aflatoxin was analyzed using an LC/MS. The fungal biomass was determined 

by performing quantitative real time polymerase chain reaction (PCR). 

 GA209xT173 and Mp717xMp313E showed no aflatoxin production two days 

after inoculation. The resistant maize hybrid lead in aflatoxin accumulation the last two 

years but had the least amount of fungal biomass for second and third years of the 

experiment The production of aflatoxin seems to begin decelerating after 21 days after 

inoculation. Resistance characteristics are more to prevent fungal infection. Fungal 

biomass was significantly higher in the susceptible hybrid GA209xT173 compared to the 

other hybrids. However, fungal spread was significantly higher in Mp313ExT173 and 

Mp717xMp313E. 
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INTRODUCTION 

Agriculture is an essential sector of the global economy. Approximately 40% of 

the world’s land mass is used for agricultural purposes (Alston and Pardey, 2014a). The 

value of the annual global agricultural production is estimated to be just shy of $4 trillion 

dollars. The five most valuable crops in the world at current production rates are rice, 

maize, wheat, soybeans, and potatoes. These crops are also on the list of the six most 

produced crops in the world behind only sugar cane. Of these crops, the United States 

leads in global production of both maize and soybeans. In fact, maize and soybeans are 

the two most produced crops in the United States; combining for more than a third of the 

United States Agricultural GDP (FAOSTAT 2014).  

Agriculture is also an important industry in the United States (US). China is the 

only country that spends more annually on agriculture. In Mississippi (MS), nearly 30% 

of the State’s workforce is directly or indirectly associated with farming and forestry 

adding over $16.5 billion/year to the local economy. According to the Mississippi 

Department of Agriculture and Commerce, MS produces more catfish than any other US 

jurisdiction, and ranks third in pulpwood, sweet potatoes and cotton. Dollar wise, 

however, the top agricultural product are (in ascending order) catfish, cattle, corn/maize, 

cotton, soybeans, pulpwood, and poultry/eggs. The United States is the second ranked 

exporter of both maize and soybeans in the world with Brazil being the first (FAOSTAT 
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2014). Animal pests, plant pathogens (viral, fungal, or bacterial), and weeds combined 

destroy 37% of all potential crops. On average, plant pathogens and weeds cause two 

thirds of all total loss of crops due to harmful organisms (Oerke, 2006; Pimentel, 2005).  

Fungi cause approximately 85% of all plant diseases (Knogge, 1996; Mendgen 

and Hahn, 2002). Ear rot, Pythium damping off, stalk rot, and gray leaf spot are a few of 

the most common maize diseases. Ear rot in maize can be caused by a variety of different 

fungi; however, Aspergillus ear rot is especially dangerous. This is due to the ability of 

Aspergillus flavus (A. flavus) to produce a carcinogenic, secondary metabolite known as 

aflatoxin. 

Aspergillus flavus spends the majority of its life cycle growing as a saprophyte in 

the soil where it plays an important role in the decomposition of plant material (Klich, 

2007; Mellon et al., 2007; Scheidegger and Payne, 2003). A. flavus is a pathogenic 

fungus that has been known to infect a variety of crops including rice (Oryza sativa), 

peanuts (Arachis hypogaea), cotton (Gossypium hirsutum), and maize (Zea mays) 

(Dorner and Horn, 2007; Liu et al., 2006; Rajasekaran et al., 2008; Safara et al., 2010). 

Maize is one of the crops most harshly affected by Aspergillus flavus. Under 

environmental conditions such as high temperatures, high humidity, drought, and high 

levels of phytophagous insects, A. flavus can produce a secondary metabolite known as 

aflatoxin (Cardwell et al., 2000; Guo et al., 2008; Trenk and Hartman, 1970).  There are 

four main types of aflatoxin: B1, B2, G1, and G2. Aflatoxin B1 is the most ubiquitous 

and carcinogenic of the aflatoxins. In 1988 the International Agency for Research on 

Cancer classified aflatoxin B1 as a Class 1 human carcinogen (Vainio and Wilbourn, 

1992). The FDA has restricted the amount of aflatoxin allowed for human consumption 
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to 20 (ppb) parts per billion. It has been estimated that crop loss due to aflatoxin 

contamination ranges between $104.5 million to $1.68 billion dollars in the United States 

(Mitchell et al., 2016a; Robens and Cardwell, 2003). Certain farming techniques such as 

irrigation, earlier planting dates, fertilization, insect control, biological controls, proper 

storage, and the use of aflatoxin resistant maize lines can aid in controlling aflatoxin 

levels (Dorner, 2009; Pitt et al., 2013; Wiatrak et al., 2005). However, improved fungal 

and aflatoxin resistant maize lines are still required. There are several genes that have 

been identified as involved in aflatoxin resistance in maize but are difficult to transfer to 

increase maize’s resistance (Asters et al., 2014; Chen et al., 2004; Kelley et al., 2012).  

A method was developed to extract aflatoxin for a single maize kernel in order to 

better correlate aflatoxin concentration with the fungal biomass at the inoculation site 

(Reid et al., 2016). This technique is also useful in pinpointing genes that are only being 

activated at certain sites on the inoculated cob that may aid in aflatoxin resistance. In the 

field experiment, three maize hybrids GA209 x T173 (susceptible), GA209 x Mp313E 

(susceptible/resistant), and Mp717 x Mp313E (resistant) were used in the experiment to 

assess how maize hybrids respond differently to infection with Aspergillus flavus. The 

maize hybrids were allowed to self-pollinate to ensure that the ears have as many kernels 

as possible. 21 days after silk emergence, the top ear from each plant were inoculated 

with A. flavus isolate NRRL 3357 or water as a control in a 3 by 3 kernel grid. There 

were three inoculated maize plants for each row. The inoculated maize ears were then 

collected 3 days, 7 days, 14 days, 21 days, 28 days, and 35 days after infection as well as 

harvest. 
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Approximately two months after inoculation with A. flavus during harvest, ears of 

GA209 x T173, Mp313 x T173, and Mp717 x Mp313E maize hybrids were collected and 

spilt into four groups. The first group were immediately processed and used as a control 

for the other three groups. The samples in the second group were baked in a large 

wooden oven for 7 days at 40°C and then processed. This is the drying down process that 

is common amongst farmers. The samples in the third group were also baked for 7 days 

and then stored in a dry container for 8 weeks before processing. The samples in the final 

group were stored in a dry container for 8 weeks prior to processing. There were six 

samples of each of the three maize hybrids in each group. Aflatoxin concentrations were 

determined using an Agilent 6460 LC/MS Triple Quadruple with electrospray ionization. 

The fungal biomass of the inoculated maize samples was determined by running 

quantitative real time polymerase chain reaction (qPCR) using Roche LightCycler 480 

instrument. 

In global agriculture, over two thirds of all crop loss are due to plant pathogens 

and weeds. Fungi are the pathogen that causes the majority of plant diseases. Weeds 

make up 34% of the total loss of crops as a result of harmful organisms (Oerke, 2006; 

Pimentel, 2005). Weeds are detrimental to crops because they compete for the same 

resources, which can reduce crop yields. There are around 8,000 distinct species of 

weeds. Herbicides are widely used to combat weeds in food production. Glyphosate is the 

most popular herbicide used in the United States. It is a broad spectrum herbicide that 

inhibits the plant enzyme that is vital to the creation of aromatic amino acids. In 1996, 

soybeans were the first glyphosate resistant crop to be released in the United States 
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(Brookes and Barfoot, 2013). Since then several weeds have become tolerant to 

glyphosate including rigid ryegrass, horseweed, ragweed, and water hemp.  

The popularity of dicamba and 2,4-D as herbicides has increased in order to address the 

growing issue of glyphosate resistant weeds. 2,4-Dichlorophenoxyacetic acid (2,4-D) and 

3,6-dichloro-o-anisic acid (dicamba) are commonly used herbicides in agriculture. 

Dicamba and 2,4-D are synthetic auxins that act similar to the natural hormone indole-3-

acetic acid (IAA) which is the regulator of several plant regulatory functions 

(Grossmann, 2000, 2009). Soybean (Glycine max) and cotton (Gossypium hirsutum) 

plants have 2,4-D and dicamba resistant varieties commercially available. Drift is a well-

known issue particularly with the application of synthetic auxin herbicides due to their 

high vapor pressure. In the United States, the potential economic cost of drift is $1 billion 

dollars annually (Egan et al., 2014; Pimentel, 2005). Dow AgroSciences and Monsanto 

have taken proactive steps to address concerns of off-target movement by developing 

new herbicide formulations that, according to product labels and technical use guidelines 

for their tolerant seed products, will require new application method. Dow AgroSciences 

also developed a new Enlist Duo™ herbicide that contains glyphosate and a new 

formulation of 2,4-D-choline. This new choline formulation should provide ultra-low 

volatility, minimizing potential for drift. Monsanto is collaborating with BASF to address 

dicamba’s potential to injure off-target vegetation through drift or volatilization by 

attaching a BAPMA group (Plume, 2016). Product Stewardship programs promote best 

product practices and are fundamental to an integrated pest management system. 

Regulatory labs routinely analyzes drift complaint samples in the spring. Most of these 

complaints consist of injured ornamentals or soybeans exposed to the following 
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herbicides: 2,4-D, atrazine, acetochlor, dicamba, glyphosate, and paraquat. The drift 

concerns and damage to sensitive crops is a valid concern. The lab currently uses 

sensitive liquid chromatographic techniques including LC-MS/MS to identify these 

compounds at residue levels. However, this sensitive method cannot differentiate 

between the amine, ester, or choline formulations. The groups (amine, ester, or choline) 

attached to the acid moiety are cleaved, leaving only the acid form for detection. For 

example 2,4-D and 2,4-D dimethylamine amine salt have the sample parent (219.1) and 

product ion (160.7). Therefore, we have developed an analytical method using Fourier 

Transform Infrared (FT-IR) in order to identify the formulation of the auxin herbicide in 

these cases to ensure an effective stewardship program.   

 Maize and soybeans are the two prominent crops produced in the United States. 

Potential economic loss in a year due to aflatoxin could be as high as $1.68 billion dollars 

in the United States (Mitchell et al., 2016a). It is imperative to study and understand how 

Aspergillus flavus progresses distinctively in the susceptible maize hybrids, 

susceptible/resistible maize hybrid, and resistant maize hybrids. Discovering more about 

the pathogen-host interactions between different varieties will give key insight into what 

genes and proteins benefit maize in aflatoxin resistance. In the same spirit, herbicide drift 

not only damages neighboring crops by reducing yields, but it simultaneously reduces the 

efficiency of the herbicide on the target.  Developing an FT-IR method will potentially 

allow us to differentiate between the new, low volatile formulations of synthetic auxin 

herbicides and the older synthetic auxin herbicides in drift cases. Hopefully this method 

will help keep farmers in accordance with their product stewardships. The overall goal of 

this research is to aid in the reduction of crop loss to fungal pathogen and herbicide drift.  



 

7 

The main objectives of this research were: 

I. Develop a single maize kernel aflatoxin extraction method. 

II. Correlate and characterize the aflatoxin accumulation and fungal biomass 

for the several weeks after inoculation with Aspergillus flavus.  

III. Assess if certain storage conditions can reduce the growth of Aspergillus 

flavus and additional aflatoxin accumulation of harvested maize. 

IV. Develop a viable method for differentiating between formulations of 

synthetic auxins using Fourier Transform Infrared spectroscopy (FT-IR).  
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LITERATURE REVIEW 

The genus Zea contains both wild annual and perennial species native to Mexico. 

In 1939 George Beadle proposed that teosinte was the wild ancestor of maize which was 

discovered in Mexico and Central America (BucklerIV and Stevens, 2013; Hufford et al., 

2012a; Piperno et al., 2015). Scientific evidence implies that maize was first 

domesticated approximately 10,000 years ago in the Balsas River Basin of southwestern 

Mexico from teosinte (Zea mays ssp. parviglumis) (Bonavia, 2013; Piperno and Flannery, 

2001).  

Maize 

Zea divided into two sections Luxuriantes and Zea. Luxuriantes consisting of one 

annual or two perennial species Z. diploperemis, Z. perennies, and Z. luxurians. Zea 

consist of a single diploid annual species, Zea Mays (Hufford et al., 2012b; Prasanna, 

2012). Teosinte and maize are different due to the fact that teosinte’s kernels fall from the 

plant, where as the kernels in maize are enclosed and requires assisted propagation. It has 

been confirmed that teosinte was the wild ancestor to maize after the production of viable 

offspring from a teosinte and maize cross DNA analysis has highlighted the similarities 

and outlined the differences between the two. The difference between teosinte and maize 

is only about five genes. Maize is a monocotyledonous plant, has 10 chromosomes, and is 

a (2n=20) diploid (Hufford et al., 2012a; Piperno et al., 2015). Teosinte ears possess only 
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about 5 to 12 kernels each in a hard shell. Maize can have well over 500 kernels on the 

cob. In teosinte, the ear is a two ranked distichous while maize is polystichous (Buckler 

and Stevens, 2013). Maize is an excellent example of a cultigen, which is defined as a 

plant species that can only exist in its domesticated form.  

Maize Development 

A maize plant begins as a planted seed. For our research, maize is typically 

planted in single row plots that are 4 meters (m) long and space 0.97 m apart. The growth 

stages of maize are divided into two main categories vegetative and reproductive. The 

first stage after planting, vegetative emergence is when the coleoptile opens and the 

plumule emerges around seven to ten days after seeding (Bonavia, 2013; O’Keeffe et al., 

2009; Verheul et al., 1996).  

Vegetative Stage 

V1 stage begins after the leaf collar becomes visible and the first leaf has entirely 

emerged. It normally occurs four to six days after vegetative emergence. V2 begins seven 

to ten days after emergence, once the second leaf has fully emerged. About two weeks 

after emergence, V3 stage is initiated.  The radicle, which is the primary root, is no longer 

the main food source and photosynthesis takes over (Gunawardena et al., 2001; O’Keeffe 

et al., 2009). The tassel, leaf shoots, and ear shoots are initiated during Stages V4 and V5. 

The roots of the second whorl are elongated at this time. The third root whorl elongates 

three weeks after plant emergence in stages V6 and V7. In stages V8 and V9, the fourth 

whorl of nodal roots is elongated around four weeks after plant emergence. Throughout 

the four weeks’ stages V10 through V17 progress. Soil nutrients and water are critical at 
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these stages to ultimately determine maize yield (Jacobs and Pearson, 1991; O’Keeffe et 

al., 2009; Shanahan et al., 2001). Potential number of kernel rows and ovules that 

developed silks are established as well as ear size (Tollenaar and Daynard, 1978a). The 

tips for the upper ear shoots and the tassel are visible at the top of the leaf sheaths during 

this time. V18 occurs only one week before silking commences. Brace roots begin 

developing from the above ground nodes to help support the plant as well as absorb 

nutrients and water from the top soil (Mollier and Pellerin, 1999). Vegetative tasseling 

normally occurs two to three days before silking, after the plant has reached its maximum 

height and pollen begins to shed from the tassel (O’Keeffe et al., 2009).  

Reproductive Stage 

The R1 stage begins once silks are visible outside the husk around 60 days after 

plant emergence. A silk grows on average about 1.25 inches per day. It only takes 24 

hours for a pollen grain to grow down the silk and fertilize the ovule. Each ovule can 

produce an individual kernel. This is most vital period when it comes to potential yield 

reduction due to plant stress and nutrient (Duvick, 2005). The R2 blister stage begins 

around 12 days after silking. The cob is close to its max size and kernels are white and 

have a blister like shape. Starch is accumulating in kernels that are 85 percent moisture 

(Tollenaar and Daynard, 1978b). R3 is the milk stage, which occurs 21 days after silking. 

Kernels contain a white milky fluid but begin to yellow on the outside. The cell division 

of the endosperm in each seed is finished and growth continues due to starch 

accumulation (Tollenaar and Daynard, 1978a). The R4 dough stage is about 26 days after 

silking. The kernels thicken to a doughy type of consistency due to starch increasing and 

kernel moisture decreases. The kernels are beginning to dry at the dent while the embryo 
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of the seed is still growing. The kernels have about 70 percent moisture at this point 

(Trenk and Hartman, 1970). R5 is the dent stage occurring about 35 days after silking. 

Close to all kernels are dented or in the processing of denting. Kernels have about 55 

percent moisture at the dent stage. The R6 stage the kernels reach maturity around 55 

days after silking (Figure 2.1). Kernel moisture at the R6 stage is around 30 percent 

(Borras et al., 2003). Black layer formation starts when the starch line has moved to the 

basal of the kernel. The maize is harvested with a combine harvester.  

 

Figure 2.1 Maize in the R6 stage.  

 

Maize in Global Agriculture 

Maize (Zea mays) is the second most produced crop in the world; sugar cane is 

the first (FAOSTAT 2014). Maize is predicted to become the crop with the greatest 
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production globally by 2050 (Alston and Pardey, 2014; Shiferaw et al., 2011). The 

United States is the world’s largest producer of maize followed by China, Brazil, 

Argentina, and Ukraine. The US produced an estimated 353,699,441 metric tons in 2013 

(FAOSTAT 2014). The United States is the second biggest exporter of maize behind only 

Brazil. The Gross Production Value of maize in the United States is higher than any other 

crop (FAOSTAT 2014). Japan, South Korea, Mexico, Spain, and Taiwan are the top 

importing countries of maize. 

Maize Diseases 

Although only ten percent of all known fungi infect living plants, the majority of 

plant diseases are caused by fungi (Knogge, 1996; Mendgen and Hahn, 2002). Fusarium 

stalk and ear rot, Aspergillus ear rot, Pythium damping off, and gray leaf spot are a few 

of the most common maize diseases. Fusarium moniliforme is usually the fungus 

responsible for Fusarium ear rot in maize plants (Munkvold, 2003; Nelson et al., 1993). 

Fusariums, much like A. flavus, not only damages the maize plant but also can produce 

mycotoxins. This fungal genus produces ochratoxins, trichothecenes, zearalenone, and 

fumonisins which can have cytotoxic and/or carcinogenic effects on animals (Abbas et 

al., 2002; Bruns, 2003; D’Arco et al., 2008). The fungus Cercospara zeae-maydis causes 

gray leaf spot. The lesions on the leaves caused by the fungus reduces the amount of area 

to perform photosynthesis thus resulting in a loss of yield (Ward et al., 1999). Aspergillus 

ear rot in maize is caused by Aspergillus flavus, which destroys kernels and produces the 

highly carcinogenic metabolite called aflatoxin (Figure 2.2).  
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Figure 2.2 Maize infected with Aspergillus flavus. 

 

Aspergillus 

In 1960 what came to be known as “turkey X disease” killed over 100,000 turkeys 

at poultry farms all over England. Despite the name, turkeys were not the only victims of 

the disease. Thousands of ducks and pheasants also died on poultry farms around the 

same time (Amaike and Keller, 2011; Moss, 2002). An autopsy on the deceased turkeys 

showed liver lesions and hemorrhages as well as swollen kidneys. At the same time, a 

similar outbreak occurred in the United States with hepatocellular carcinoma in rainbow 

trout. Postmortem examinations revealed severe liver hematoma and necrosis as well as 

ruled out biological agents being the cause of the disease.  It was suspected that the feed, 

with trace amounts of fungus, was being poisoned with a known toxin. The commonality 

that all the incidences shared was a shipment of contaminated Brazilian peanut meal used 
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in the animal feed (Kensler et al., 2011; Peraica et al., 1999; Rawal et al., 2010; Rustom, 

1997). The fungus was later identified as Aspergillus flavus and the toxin was therefore 

named aflatoxin. There are other fungi that produce aflatoxin including Aspergillus 

parasiticus, Aspergillus nomius, Aspergillus niger, Aspergillus bombycis, Aspergillus 

tamari, Aspergillus ochraceroseus, and Aspergillus australis. Aspergillus oryzae and 

Aspergillus sojae do not produce aflatoxin.  Isolates of the Aspergillus species contain the 

two morphotypes: the L strain and the S strain. Isolates of the L strain morphotype 

produce several conidia but comparatively few large sclerotia. On the other hand, isolates 

of the S strain morphotype conversely make few conidia (Amaike and Keller, 2011; 

Gibbons and Rokas, 2013; Hesseltine et al., 1966; Scheidegger and Payne, 2003). The 

genus Aspergillus is one of the oldest named genera of fungi. It was classified by Italian 

priest Pier Antonio Micheli in 1729 and named due to its similarity in shape to a device 

used by the Roman Catholic clergy to sprinkle holy water during service called the 

“asperges”(Gibbons and Rokas, 2013). To date, there are 250 known species of 

Aspergilli. Aspergillus species have been identified as a pathogen to plants, insects, and 

animals. Aspergillus fumigatus is the species that can cause aspergillosis, an infection of 

the lungs in humans (Bertuzzi et al., 2014; Dagenais and Keller, 2009; Latgé, 2001). 

Citric acid was first produced commercially in England around 1826 using lemon juice. 

In 1919, Belgium was the first to use Aspergillus niger in this process. Pfizer in 1923 

perfected the way citric acid was produced using Aspergillus niger. Citric acid is one of 

the best known inhibitors of glycolysis and the ability of A. niger to overproduce citrate 

by an active glycolytic pathway (Angumeenal and Venkappayya, 2013; Lotfy et al., 

2007; Papagianni, 2007, 2007). Aspergillus terrus is used for biotechnological 
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applications. Aspergillus oryzae is use for sake and soy sauce. Soy sauce originated in 

China over 2500 years ago. Almost 300 volatile compounds have been identified in soy 

sauces including alcohols, ketones, aldehyde, and esters. The growth rate of Aspergillus 

oryzae affects koji flavors in soy sauce (Zhao et al., 2015). Soybeans and wheat are 

crushed and blended. Water is added and boiled until the grains are fully cooked. The 

mash is allowed to cool to about 80F before Aspergillus oryzae is added. The mixture is 

allowed to mature for three days in large vats where air is circulated. The koji is 

transferred and fermentation tank mixed with water and salt. Lactic acid bacteria and 

yeast are added and allowed to ferment for several months. The raw soy sauce is 

separated from the liquids and then pasteurized (Feng et al., 2013; Liang et al., 2009). 

Aspergillus flavus 

Aspergillus flavus is considered a hemibiotrophic fungus. Hemibiotrophic fungi 

commonly reach a symbiotic state with its host but eventually leads to the death of the 

plant. The Aspergillus flavus genome is 36.3 Mb long and consists of eight chromosomes 

(Bhatnagar et al., 2006; Scheidegger and Payne, 2003). Aspergillus flavus reproduces by 

asexual spores known as conidia. The fungus can grow from temperatures ranging from 

12°C to 48°C but the ideal temperature for fungal growth is 37°C (Amaike and Keller, 

2011). The fungus endures harsh winter conditions in its mycelium form or due to the 

formation of resistant structures called sclerotia (Figure 2.3).  



 

19 

 

Figure 2.3 Life cycle of Aspergillus flavus. 

Adapted from http://www.aspergillusflavus.org/aflavus 

Aspergillus flavus is a common filamentous fungus that has been known to grow 

on a variety of crops including rice, cotton, peanuts, and corn. A. flavus can cause ear rot 

in corn, aflaroot in peanuts, and boll rot or yellow spot disease in cotton (Guchi, 2015; 

Smart et al., 1990; Zeringue et al., 1999). The primary mode of inoculation of Aspergillus 

flavus is due to sclerotia in the soil, releasing its conidia into the air. The fungus 

infiltrates through wound damage by spreading through the rachilla and the rachis. An A. 

flavus infection through the silk enters the kernel through the pedicel. Mycelium are 

composed of branching microscopic tubular cells called hyphae that grow and secrete 

enzymes that break down complex substrates into simpler compounds. Fungal adhesives 

are normally water-soluble glycoproteins. The sticky mucilaginous layer attaches and 

absorbs water in order to swell and increase its surface area. Appressoria are swollen tips 



 

20 

of hyphae that allow the fungus, through mechanical and enzymatic activity penetrate 

plant tissues (Knogge, 1996).  

The first step of a phytopathogenic fungus is to adhere to the potential plant host. 

This is achieved through the secretion of non-water soluble glycoproteins, lipids, and 

polysaccharides by the fungus spores. Spores with a sticky mucilaginous layer absorb 

water on the plant’s surface and swell. This increases their surface area, increasing the 

amount of contact being made with the surface of the plant (Dufresne and Osbourn, 

2001). Necrotrophic and some hemibiotrophic fungi including Aspergillus flavus secrete 

hydrolytic enzymes like cutinases, cellulases, pectinases, and proteases to aid in 

surmounting the plant’s defenses (Mellon et al., 2007). Cutinases penetrate through the 

cuticle, which is the waxy outer protective layer of plant cells. Cellulase breaks down 

cellulose in the plant cell wall. Pectinases also degrades a polysaccharide found in the 

cell wall known as pectin. It is generally easier for fungi to infiltrate plant tissue through 

cracks, wounds, and the stomata (Mendgen and Hahn, 2002). If those modes are not 

available, first the fungus invades plant cells by forming a germ tube. At the end of the 

germ tube forms a penetration organ known as an appressoria. The appressorium are 

penetration organs, these swollen tips of hyphae that allow the fungus to enter the 

epidermal cell wall of the plant.  The combination of compounds and the appressoria 

makes infiltrating the host a much easier task. Isocitrate lyase production is heavily 

upregulated during the plant penetration stage but significantly decreases after the 

appressoria is formed (Pedras and Ahiahonu, 2005). This indicates a transition from the 

use of fatty acid metabolism to the use of extracted carbohydrates from the plant. This is 

achieved by the intake of simple carbohydrates from the plant tissue. Once the fungus is 
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in the plant cell a nutrient absorbing structure called haustoria is formed. The haustorium 

uses HXT1p sugar transporters to uptake amino acids and sugars like glucose and 

fructose into the fungus (Hardham, 2001; Mendgen and Hahn, 2002).   

Chitin, which is present in the cell walls of fungi, induces an immune response in 

plants. The glycoprotein, chitin elicitor-binding protein, binds to chitin and helps enact 

the immune response (Huffaker et al., 2011; Kaku et al., 2006; Kanno et al., 2012). 

OsCERK generates reactive oxygen species to both initial immune response to upregulate 

defense genes and synthesize phytoalexins. Phytoalexins are a group of compounds that 

plants use in defense to invading pathogens. However, some fungi are able to break down 

phytoalexins (Ahuja et al., 2012; Grayer and Kokubun, 2001; Poloni and Schirawski, 

2014). Other environmental factors such as drought stress, humidity, and heat stress also 

increases a plant’s overall susceptibility to fungal infection.  

Aflatoxins 

The same environmental conditions that increase fungal susceptibility (high 

temperatures, high humidity, drought stress, poor crop storage and insect damage) can 

cause Aspergillus flavus to start producing aflatoxins (Thompson and Henke, 2000; Trenk 

and Hartman, 1970; Villers, 2014). Aflatoxins are secondary metabolites of A. flavus and 

are extremely carcinogenic. There are four major types aflatoxin B1, B2, G1, G2 (Figure 

2.4). Aflatoxin B1 and B2 glow blue under UV light while aflatoxin G1 and G2 fluoresce 

green in the presences of UV light (Hara et al., 1974). Aflatoxin B2 is the dihydroxy form 

of aflatoxin B1 while aflatoxin G2 is the dihydroxy form of aflatoxin G1. The most 

common and toxic of these is aflatoxin B1.  
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Figure 2.4 Molecular structure of aflatoxin B1, B2, G1, G2, and M1. 

Adapted from Walderhaug et al. (2014). 

Aflatoxin Production 

The mechanism for aflatoxin production in Aspergillus flavus starts with acetyl-

CoA that was manufactured from pyruvate during the Pyruvate Dehydrogenase Complex 

reaction. AFlR is a regulatory gene which is required for the expression of most of genes 

in the aflatoxin pathway gene cluster (Amare and Keller, 2014). Acetyl-CoA is converted 

into malonyl-Coa by acetyl-CoA carboxylase. Fatty acid synthase transforms malonyl-
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CoA into hexanoyl-CoA. Norsolorinic acid is formed when polyketide synthase modifies 

hexanoyl-CoA. Norsolorinic acid is converted into averantin by ketoreductase. AFlD is a 

structural gene whose product converts norsolorinic acid into averantin thus representing 

one of the first steps in the biosynthesis pathway of aflatoxin (Amare and Keller, 2014; 

Yu, 2012). Hydroxylase transforms averantin into 5-hydroxyaverantin. 5-oxoaverantin is 

formed when dehydrogenase modifies 5-hydroxyaverantin. 5-oxoaveratin is converted 

into averfin by cyclase. Oxidase transforms averfin into versiconal hemiacetal acetate. 

Versiconal is formed when acsterase versiconal hemiacetal acetate. Versiconal is 

converted into versicolorin B by versiconal B synthase. Versiconal B is randomly 

hydroxylated to Versicolorin A. DMST synthase transforms Versicolorin A into 

demethylsterigmatocystin and Versiconal B into Demethyldihydrosterigmatocystin 

(Bhatnagar et al., 2003; Hesseltine et al., 1966). Sterigmatocystin is formed when 6-O-

methyltransferase modifies demethylsterigmatocystin. Sterigmatocystin is converted into 

O-methylsterigmatocystin by 8-O-methyltransferase. Dihydrodomethylsterigmatocystin 

is transformed by O-methyltransferase to dihydro-O-sterigmatocystin (Figure 2.5).  

Finally, P-450 monooxygenase transforms O-methylsterigmatocystin into Aflatoxin B1 

or Aflatoxin G1 and dihydro-O-methylsterigmatocystin to Aflatoxin B2 and G2 

(Bhatnagar et al., 2006; Trail et al., 1995). Ethylene inhibition aflatoxin biosynthesis is 

due to oxidative stress alleviation of fungal cells (Huang et al., 2009).  
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Figure 2.5 Aflatoxin synthesis pathway. 

Adapted from Cleveland et al. (2009). 
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Aflatoxin Bioactiviation 

Aflatoxin B1 is a procarcinogen because it requires enzymatic bioactiviation 

before it becomes carcinogenic. Aflatoxin B1 is converted in the body to AFB1-8-9-

epoxide by the liver enzyme p450. Cytochrome p450 is a heme-binding enzyme that has 

an important role in the biotransformation of xenobiotics. Cytochrome p450 aids in the 

inactivation of foreign compounds however in the case of aflatoxin B1, it metabolizes 

aflatoxin B1 into AFB1-exo-8, 9-epoxide. Cyp2A4 is the p450 enzyme that activates 

aflatoxin B1 in the liver to form the epoxide (Ayed-Boussema et al., 2011; Yu et al., 

2000). Cyp1A2 metabolism of aflatoxin B1 produces aflatoxin M1 as well as the AFB1-

exo-8, 9-epoxide. The AFB1-exo-8, 9-epoxide is formed by epoxidation at the 2,3 double 

bond.  The epoxide that is formed is a highly reactive electrophile and has a high 

regiospecificity for the N7 position of the guanine residue in DNA (Figure 2.6).  It 

specifically binds to the p53 encoding region to form a DNA adduct (Clewell et al., 2014; 

Essigmann et al., 1977; Smela et al., 2001).  This results in nonfunctioning p53 proteins 

that are important tumor suppressors in the body.  
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Figure 2.6 Bioactiviation of aflatoxin B1.  

Adapted from Kensler et al. (2003). 

The p53 controls an important cell cycle checkpoint that is responsible for 

maintaining the integrity of the genome. The p53 protein can bind to specific DNA 

sequences and activate the transcription of genes including p53 binding sites. The protein 

also causes the expression of the Cipl cell cycle inhibitor which induces cell growth arrest 

(Sablina et al., 2005; Soussi, 2000). When DNA is damaged, p53 has been shown to 

induce cell cycle arrest or even lysis of the cell. Some mutations to p53 eliminate this 

response and it results in an increased frequency of unchecked genetic mutations 
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(Greenblatt et al., 1994; Hollstein et al., 1991). This phenomenon increases the 

probability that a tumor cell escapes the normal system of checks against excessive cell 

growth. An aflatoxin t-RNA adduct can inhibit t-RNA binding activity of some amino 

acids on protein synthesis like lysine, leucine, arginine, and glycine. The glutathione S-

transferase can detoxify the AFB1-8, 9-epoxide in it mediated conjugation with 

glutathione (Edwards et al., 2000; Hayes and Strange, 2000; Sablina et al., 2005). 

Aflatoxin B1 inhibits synthesis of factors II and VII involved in prothrombin synthesis 

and clotting mechanisms. The activity of liver UDP glucose-glycogen transglucosylase is 

also affected by aflatoxin B1 (Abdollahi and Buchanan, 1981; Zhang et al., 2014). 

Aflatoxin B1 can also be metabolized to aflatoxin M1, which would be found in the milk 

of lactating mammals. The hydroxylation of aflatoxin B1 at C4 produces aflatoxin M1 and 

at C22 produces aflatoxin Q1. Aflatoxin P1 results from o-demethylation of aflatoxin B1 

(Mohammadi, 2011; Yu, 2012). Aflatoxin M1 is associated with the protein fraction of 

milk.  

Detection of Aflatoxins 

Thin Layer Chromatography 

 Thin layer chromatography (TLC) was one of the first analytical techniques used 

to separate and identify aflatoxins (Reddy et al., 1970; Shephard, 2009). In 1954 the use 

of silica gel coated glass plates began and a year later Stahl standardize the separation 

technique and popularized it for routine analysis (STAHL and KALTENBACH, 1961). 

The thin layer chromatography starts with a sheet of glass, aluminum, or plastic coated 

with a thin layer of adsorbent material silica gel. The plate preparation involves mixing 

silica gel, calcium sulfate, and water (Sherma, 2000). This layer of adsorbent is the 
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stationary phase. A small amount of the solution with the sample is added 1.5 cm from 

the bottom edge, and allowed to evaporate off. The TLC plate is placed in a beaker with a 

solvent and then the lid is closed. Before the solvent has reached the top adsorption on 

the surface partition on the thin layer plate, the TLC plate should be removed from the 

solvent (Lin et al., 1998). This allows the compounds to separate on the TLC plate. The 

most important thing in qualitative analysis depends on the retention factor. The retention 

factor is the division of the distance between starting line and the middle spot by the 

distance of the starting line and the solvent front. The retention is best when the values 

are between 0.1 and 0.8 and reproducible (Stroka and Anklam, 2000). Ultraviolet (UV) or 

fluorescence detectors, Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance 

(NMR), and mass spectroscopy can be used in tandem with TLC to perform quantitation.  

Enzyme Linked Immunosorbent Assay 

 ELISA stands for Enzyme Linked Immunosorbent Assay and commonly used in 

aflatoxin quantification (Anjaiah et al., 1989). Veratox is a direct competitive 

immunoassay that uses antibody-coated wells to check samples for aflatoxin. An enzyme 

labeled aflatoxin conjugate competes with the free aflatoxin from the sample for the 

antibody binding sites coating the well. Conjugate is added to the mixture and reacts with 

the bound aflatoxin conjugate to produce a blue color (Kolosova et al., 2006; Lee et al., 

2004). This results in an inverse relationship, the bluer the color, the less aflatoxin B1 that 

is concentration in the sample. The amount of aflatoxin is calculated by a micro-well 

reader using UV absorbance at 650 nm and by comparing that to a standard curve. The 

Veratox test has an accurate concentration reading between 0 ppb to 50 ppb.  
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Liquid Chromatography 

Liquid Chromatography in tandem with a quadrupole mass spectrometer for 

analysis of aflatoxins is a much more sensitive and consistent than traditional aflatoxin 

testing methods such as ELISA (Blesa et al., 2003; Jaimez et al., 2000). Liquid 

Chromatography uses organic and aqueous mobile phases with the aid of a column to 

separate different analytes in the sample for analysis. For aflatoxins reverse phase liquid 

chromatography is used, which means a non-polar, typically silica based column is 

required (Liu et al., 2013; Spanjer et al., 2008). Methanol and acetonitrile are common 

organic mobile phases that are used in reverse phase chromatography while water is 

mostly used as the aqueous mobile phase. A gradient is required to get good separation 

between the different analytes. The gradient in reverse phase chromatography starts with 

the aqueous mobile phase and slowly transitions to the organic mobile phase throughout 

the five to twenty-minute run. The progression from an aqueous to an organic mobile 

phase will elute the compounds from the sample off the non-polar column based on the 

polarity of the compound itself (Stubblefield and Shotwell, 1977). The less polar the 

compound the longer it takes to elute off the column while the more polar analytes will 

come off the column more quickly. The time it takes for an analyte to elute from the 

column is called the retention time and is often used in the identification of compounds.  

Analytical Detectors 

Liquid Chromatography can be coupled to both nonspecific and specific 

detectors. Detectors are composed of a sensor and associated electronics. The design and 

performance of any detector depends heavily on the chromatographic system it is 

associated with. The actual detection of the analyte can be done with a variety of 
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instruments/detectors but the two most popular methods for aflatoxin detection are a UV 

detector, a florescence detector, and a mass spectrometer. Fluorescence detection is 

widely considered more sensitive than UV detection by liquid chromatography especially 

with the use of reverse phase liquid chromatography. The addition of an organic acid to 

the mobile phase increases the fluorescence of aflatoxin B1 and B2 (Jaimez et al., 2000; 

Manabe et al., 1978).  

Mass spectrometers are a precise and efficient to quantitate aflatoxins. An 

ionization source, mass analyzer, and a detector are the three major components of a mass 

spectrometer. There are multiple ways to ionize samples using mass spectrometry 

including electron ionization, matrix assisted laser desorption ionization, electrospray, 

thermospray, inductively coupled plasma, and atmospheric pressure chemical ionization 

(Liu et al., 2013; Ramos Catharino et al., 2005). There are several types of mass 

spectrometers with various analyzers such as an ion trap, time of flight, single 

quadrupole, or triple quadrupole. An ion trap uses electrodes producing a magnetic field 

to contain ions. In time of flight detection, a uniform electromagnetic force is applied to 

the ions and the mass to charge ratio of the molecule is calculated by the amount of time 

it takes each ion to reach the detector. Smaller ions would reach the detector faster than 

larger mass ions. A single quadrupole filters ions by using four magnets hyperbolic in 

cross section with one pair having a direct current and the other an alternating current 

applied to it. This results in an oscillating electric field that requires a particular mass ion 

to resonate properly in order to reach the detector. The detector in mass spectrometry is 

universally an electron multiplier. For aflatoxin analysis, electrospray ionization is widely 

used as the ionizer and single or triple quadrupoles can be used to analyze the sample. 
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Aflatoxin Regulations 

In 1988 the International Agency for Research on Cancer classified aflatoxin B1 

as a Class 1 human carcinogen (Vainio and Wilbourn, 1992). The FDA has restricted the 

amount of aflatoxin allowed for human consumption to 20 (µg/kg) parts per billion. 

Products with concentrations higher than 20 ppb are restricted from interstate commerce. 

The FDA restricted levels aflatoxin in dairy cattle feed is also 20 ppb. For beef cattle and 

swine, the limit for aflatoxin in feed are 300 ppb and 200 ppb, respectively (Lizárraga-

Paulín et al., 2011).  It was labeled a Class I carcinogen by the World Health 

Organization in 1993 and is considered one of the most dangerous biologically produced 

substances known today. In the United States, the estimated economic cost of aflatoxins 

annually ranges between $104.5 million to $1.68 billion dollars (Mitchell et al., 2016; 

Robens and Cardwell, 2003).  

 The United Nations Food and Agriculture Organization on international 

regulations for mycotoxins conducted a study to show that at least 77 countries have 

some sort of regulations for mycotoxins (van Egmond and Jonker, 2004). The United 

States is the number one exporter of maize in the world exporting 49,887,000 metric tons 

in 2010 to over 180 different countries. The United States is also the largest producer of 

maize on the planet producing 316,165,000 metric tons in 2010. China, Brazil, and 

Mexico are also major producers of maize and in 2010 produced over 250,000,000 metric 

tons. Japan, Mexico, Taiwan, and South Korea are the top importing countries of maize. 

The FDA limit of total aflatoxin in the United States is 20 ppb. The limit is the same in 

several other countries including Mexico, Japan, South Korea, Argentina, and Egypt. A 

few countries have a higher limit such as China and Brazil, which are 40 ppb and 30 ppb 
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respectively. There are several countries with a limit below 20 ppb (Egmond et al., 2007; 

Liu et al., 2006; Wu, 2015). All 28 countries in the European Union have a strict 

restriction on total aflatoxin set at 4 ppb. Canada and Taiwan both have aflatoxin limits at 

15 ppb. Over 34 countries have regulations on aflatoxin M1 at 0.05 ppb. Including the 

United States, there are 22 countries with limits set at 0.5 ppb (Wu and Guclu, 2012).  

Aflatoxin Prevention 

There are several ways of reducing Aspergillus flavus infection or aflatoxin 

accumulation. Biological controls such as non-aflatoxin producing strains of Aspergillus 

flavus can outcompete the harmful toxin producing strains. The first maize line that was 

released as resistant to aflatoxin accumulation was Mp313E and Mp420 in 1992 

(Williams, 2006; Windham and Williams, 2002). Mp715 and Mp717 are germplasm lines 

that were developed in Mississippi (Williams and Windham, 2012). Due to its relatively 

early flowering time and resistance to aflatoxin accumulation, Mp719 is also an excellent 

maize line for not only aflatoxin resistance but for breeding for more resistant 

commercial lines of maize as well. Certain farming techniques such as irrigation, 

fungicides, biological controls and planting earlier would be another way of reducing the 

impact of Aspergillus flavus.  

 There are a few physical and chemical detoxification methods for reducing the 

amount of aflatoxin in food and feed products. Extremely high temperatures can 

decompose aflatoxins. Cooking and boiling are not effective in reducing aflatoxin 

because the thermal decomposition temperature of aflatoxin is 267°C. The moisture 

content is a determining factor in how aflatoxin is deactivated. The higher the moisture 

content in the feed, the higher percentage of aflatoxin degraded. Pasteurization of milk 
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has little to no effect on the aflatoxin M1 concentration (Mohammadi, 2011). Solvents 

have been used effectively to reduce the amount of aflatoxin in foods. Ethanol, acetone, 

isopropanol, hexane, methanol, water, and acetonitrile have all been used in various 

combinations to extract aflatoxin from foods and feeds (Campone et al., 2011; Karaseva 

et al., 2014). The major problems that occur in this process are associated with the high 

cost of these solvents and the disposal of the solvents with the extracted aflatoxins. Some 

substances bind to aflatoxin and remove it from the solution that way. Bentonite clay at 

30°C for 5 days removes 94 to 100% aflatoxin B1 from the solution. Hydrated sodium 

calcium aluminosilicate (HSCAS) has been shown to remove 80% of aflatoxin B1 from 

solution because it has such a high affinity (Diaz et al., 2003; PHILLIPS et al., 1988). 

Calcium bentonite, esterified glucomannan, and activated carbon have also been effect in 

binding aflatoxin (Diaz et al., 2004; Phillips et al., 2008).  Radiation is another technique 

that can be used to decompose aflatoxin. Aflatoxin B1 absorbs ultraviolet light optimally 

at 362 nm. AFB1 in peanut oil exposed to UV light for two hours eliminated 45% of the 

aflatoxins (Diao et al., 2015). Contaminated milk exposed to UV light for 10 minutes 

with 1% hydrogen peroxide added after completely inactivated 100% of the aflatoxin M1. 

Gamma radiation has been used to successfully reduce aflatoxin B1 concentration in 

peanut meal by 75% after being exposed to gamma rays at a dose of 1 kilogray (kGy). 

100% of the aflatoxin has been detoxified by a 10kGy dose of gamma rays. A dose of 

gamma radiation greater than 10kGy has been shown to inhibit seed germination and 

increase the peroxide value of the peanut oil (Diao et al., 2015; Iqbal et al., 2012; Van 

Dyck et al., 1982). Ammonia is a popular chemical means to treat aflatoxin contaminated 

feeds. The reaction of ammonia and aflatoxin irreversibly alters the molecular formula of 
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aflatoxin B1 if it is exposed long enough (Allameh et al., 2005; Bagley, 1979). 

Formaldehyde at just 0.5% in contaminated milk reduced aflatoxin M1 concentration by 

95%.  

Health Impact of Aflatoxins 

 Due the bioactiviation of aflatoxin B1 and how it inhibits cytochrome p53 in liver 

cells from properly preventing tumor cell growth, the chance of developing liver cancer 

in an individual who has consumed aflatoxins increases dramatically. The rate of people 

who develop liver cancer due to aflatoxin exposure increases by 60 times if they have 

Hepatitis B (Wild and Montesano, 2009; Wu et al., 2009). Early symptoms of liver 

damage hepatotoxicity from aflatoxicosis can present as anorexia, malaise, and with a 

high fever. Other symptoms include vomiting, abdominal pain jaundice, hypertension, 

hepatitis, and death (Dhanasekaran et al., 2011). Kenya has had multiple documented 

aflatoxin outbreaks dating all the way back to 1981. In 2004, there was a serious outbreak 

of aflatoxin poisoning from infected maize crops in Kenya that killed over 100 people 

(Gieseker et al., 2004; Yard et al., 2013). In March 2013, Germany found high levels of 

aflatoxin contaminated animal feed was sent to over 4,000 farms. The contaminated feed 

originated from a shipment 40,000 tons of maize from Serbia. This led to German 

authorities banning milk deliveries from hundreds of dairy farms while they test the milk 

for aflatoxin M1. The test showed that the aflatoxin M1 concentration in the milk below 

the national limit and therefore was safe for consumption.  
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Soybeans 

The genus Glycine is divided into two subgenera: Soja and Max. Glycine Soja is 

the wild ancestor of the domesticated modern soybean, Glycine Max. G. Soja was 

discovered over 6,000 years ago in Southeast Asia (Kim et al., 2012). Soybeans are 

diploids with 20 chromosomes (2n=40). G. Soja shares 97.65% of the genomic sequence 

with G. Max. 425 genes in Glycine Max are not present in Glycine Soja (Joshi et al., 

2013; Li et al., 2010). G. Soja has tiny, black seeds while G. Max has large yellow seeds. 

The first documented occurrence of soybean use in agriculture was in Northeastern China 

during the Shang Dynasty between 1700 to 1100 B.C.E. Soybeans first came to the 

United States at the end of the 18th Century (Lockeretz, 1988). Soybeans are the sixth 

most produced crop in the world with 307 million tonnes made in 2014. Soybeans are 

behind only maize as the highest produced crop in the United States. Brazil recently has 

topped the US by being the top exporter of soybeans in 2014 (FAOSTAT 2014). China, 

Germany, Mexico, Spain, and the Netherlands are the top five global importers of 

soybeans. 

Soybean Development 

Soybean growth stages are broken up into vegetative and reproductive. The 

soybean seed should be planted between one and two inches deep. Emergence begins 

between five and ten days after planting. The primary root, shortly followed by the stem, 

emerges from the seed and the stem makes its way to the surface. Once the unifoliate 

leaves have fully expanded, the cotyledon stage has begun. For these ten days, the 

cotyledons are the main source of the plant’s nutrients.  
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Vegetative Stage 

The first vegetative stage (V1) is characterized by the emergence of the first 

trifoliolate. The number of trifoliolate on the main stem determines the vegetative stage. 

The soybean plant switches from using the cotyledons for its nutrients to photosynthesis. 

Between V1 and V2 is when  At V2, the plants are about eight inches tall with three 

nodes and two unfolded leaflets and nitrogen fixation has begun (Chen and Wiatrak, 

2010). New nodes will appear every 5 days until V5 stage. Between V3 and V5, the 

soybean plant grows from nine to around twelve inches tall with six nodes. During V5, 

the plant develops buds in the top stem that will soon develop into clusters of flowers. At 

the final vegetative growth stage (V6), the soybean has reached a high of 14 inches tall 

with seven nodes with unfolded leaflets. 

Reproductive Stage 

The first phase of the reproductive stage (R1) occurs when the first flower on the 

soybean plant has bloomed. This normally happens 6-8 weeks after emergence and 

around the third to sixth node on the main stem on the plant. During this time, the plant’s 

height has increased to about 18 inches. Once an open flower has made its way to one of 

the top nodes of the main stem, R2 is in full bloom. The R3 stage is characterized by the 

formation of a pod on the upper nodes of the soybean plant. During this stage, the 

soybean plant can get as tall as 32 inches. Full pod development is shown during R4. The 

importance of R4 for potential seed yield cannot be understated (Egli and Bruening, 

1992). The R5 and R6 stages begin with initial seed development and ends when pod 

weight peaks out. The plant also reaches its maximum height during this period. Leaf 

yellowing begins until all the leaves have fallen. In the final two reproductive stages (R7) 
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and (R8), the soybean plant reaches full maturity when most of the pods mature, and the 

dry weight starts to peak. 

Herbicides 

Weeds in global agriculture make up 34% of the total loss of crops as a result of 

harmful organisms (bacteria, viruses, fungi, and insects). The Crop Life Foundation and 

the Weed Science Society of America estimate that without pesticide use US crop 

production would drop 20% with a loss in value of $16 billion (Gianessi and Reigner, 

2007; Savary et al., 2012). Herbicides are widely used to combat weeds in agriculture. 

Glyphosate is the most popular herbicide used in the United States.    

Glyphosate 

Glyphosate (N-(phosphonomethyl)glycine) is a non-selective herbicide. When 

applied to plants, 5-enylpyruvylshikimate-3-phosphate synthase (EPSPS) is inhibited by 

glyphosate (Steinrucken and Amrhein, 1980). It catalyzes the transfer of the enolpyruvyl 

moiety of phosphoenol pyruvate (PEP) to shikimate-3-phosphate (S3P). This is a key in 

the synthesis of aromatic amino acids for hormones and plant metabolites. The active site 

of the EPSPS enzyme in higher plants is highly conserved (Gao et al., 2014). Glyphosate 

is competitive with respect to PEP binding to EPSPS but uncompetitive with respect to 

S3P and the resulting S3P complex is very stable (Figure 2.7). Phenylalanine, tyrosine, 

and tryptophan are the aromatic amino acids that are synthesized from this pathway 

(Duke and Powles, 2008). In 1996 soybeans were the first glyphosate resistant crop to be 

released in the United States (Barrows et al., 2014; Brookes and Barfoot, 2013; Green, 

2014; Green and Owen, 2011).  
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Figure 2.7 Inhibition of 5-enylpyruvylshikimate-3-phosphate synthase (EPSPS) by 
glyphosate. 

Adapted from Azania et al. (2013). 

Glyphosate Resistant Weeds 

Glyphosate resistant crops overcome this generally by the expression of CP4 a 

type of EPSPS protein that is insensitive to glyphosate. Over time, weeds have become 

more tolerant of glyphosate leading to glyphosate resistant weeds (Gao et al., 2014; 

Wiersma et al., 2015). In glyphosate resistant weeds, glyphosate is transported in the 

phloem. It is sequestered in the vacuole from the cytosol. This reduces the amount of 

glyphosate available to enter the chloroplast and inhibit EPSPS. Glyphosate can be 

released into the cell at a nontoxic rate or potentially stay in the vacuole indefinitely (Ge 

et al., 2010; González-Torralva et al., 2012). A mutation of the EPSPS Prot106 codon or 

an increase in the production of EPSPS are other ways that weeds can become glyphosate 
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resistant (Délye et al., 2013). As of 2011, 21 weed species have developed resistance to 

glyphosate including rigid ryegrass, horseweed, ragweed, and water hemp (Christoffoleti 

et al., 2015; Sammons and Gaines, 2014).  

Auxin Herbicides 

Broadleaf (dicot) plants are damaged and killed by synthetic auxins such as 

dicamba and 2,4-D. 2,4-D and dicamba have been used for weed control since their 

discovery during World War II (Gianessi, 2013). Both 2,4-D and dicamba mimic the 

plant hormone, indole-3-acetic acid. Dicamba and 2,4-D act as the natural hormone 

indole-3-acetic acid (IAA) regulator of several plant regulatory functions.  

Auxins activate Auxin Binding Protein 1 on the plasma membrane, which alters 

the cytoskeleton and reduces the peroxisomes. Auxin Binding Protein 1 induces proton 

pump hyperactivity due to the decreases in pH because of the accumulation of protons 

outside the extracellular membrane (Christoffoleti et al., 2015; Mano and Nemoto, 2012). 

The hydrogen ion concentration outside cell opens potassium channel and pumps 

potassium inside the cell. As a result, water influxes into the cell through aquaporins. The 

acidic condition outside the cell breaks noncovalent bonds between cellulose and 

hemicellulose that loosens the cell wall and allows more water into the cell. Calcium 

increases inside the cell and activates phosphatidylinositol-3-phosphate, which 

phosphorylates NADPH oxidase and produces reactive oxygen species (Grossmann, 

2009). The Auxin Binding Protein 1 at the plasma membrane also activates RAC/ROP 

GTPase. G proteins have a key role in signal transduction in eukaryotic cells as well as an 

important role in cytoskeleton organization modeling the structure and arrangement of 

actin filaments and microtubules. Peroxisomes travel on actin so it affects the mobility of 
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the peroxisomes to remove reactive oxygen species. The abscisic acid (ABA) and 

ethylene induces the cause of death in plant tissues (Grossmann, 2000; Kelley and 

Riechers, 2007; Woodward, 2005). Due to the loss of cell wall structure, reactive oxygen 

species are able to penetrate into the plasma membrane where they can interact with 

phospholipids, promoting unsaturation of plasma membrane lipids, and leakage of the 

cytosol leads to cell death.   

Application Issues 

The ester formulations of 2,4-D have a higher vapor pressure so are generally 

more volatile than the amine formulations. However, the esters are also more soluble in 

the plants cuticle due to lipid solubility than the amines. Amine formulations can 

precipitate out of the solution so they are overall less effective in weed control than ester 

formulations (Sosnoskie et al., 2015). The dimethylamine (DMA) and diglycolamine 

(DGA) formulations of dicamba are more volatile than the BAPMA dicamba formulation 

(Cojocaru et al., 2013).  The movement of spray droplets that land off-target causes spray 

drift. The smaller the droplet and the longer it remains in the air, the higher the chance for 

drift. Vapor drift occurs when applied herbicide evaporates from the target plant and 

aerosolizes to an unintended location. Crops affected by drift at the late vegetation or 

early reproduction stage show the greatest yield reduction. Soybean (Glycine max) and 

cotton (Gossypium hirsutum) plants have 2,4-D and dicamba resistant varieties 

commercially available (Green, 2014; Green and Owen, 2011). According to the 

Missouri Department of Agriculture (MDA), for the 2015 fiscal year (July 1, 2014-June 

30, 2015) only three out of the 90 drift complaints were dicamba related. Compared to 

2016 fiscal year (July 1, 2015-June 30, 2016) where they had 97 cases where 27 were 
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dicamba related. Within an eight-month span of the 2017 fiscal year (July 1, 2016-Feb 

27, 2017), 164 complaints were dicamba related out of 181. (Office of Enforcement and 

Compliance Assurance, 2016). Companies such as Monsanto, Dow Agro, and BASF 

have recently released low volatile versions of dicamba (Engenia and XtendiMax with 

Vapor Grip) and 2,4-D (Enlist Duo) in hopes to reduce the amount of drift that occurs. 

Reuters reports that over one million acres of Xtend soybeans were planted in the United 

States in 2016. Monsanto predicts 15 million acres of Xtend soybeans to be planted in 

2017 in the US and up to 55 million acres of Xtend soybeans will be planted in 2019 

(Plume, 2016).  

Symptoms of Drift 

Symptoms for 2,4-D drift on cotton can appear two days after exposure. Bent 

stem and horizontal leaf petioles are common signs around this time. Four days after 

exposure, petioles start twisting and new leaves begin curling downwards. After a week 

red to dark brown patches start forming (Figure 2.8). One month after exposure, new 

leaves have parallel venation and have finger like projections. Chlorosis and severe 

reddening of petioles are common six weeks after cotton exposure to 2,4-D (Colquhoun 

et al., 2014; Egan et al., 2014; Kelley et al., 2005). 
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Figure 2.8 2,4-D damaged cotton. 

 

Symptoms for dicamba drift on cotton can appear two days after exposure. Two 

days after treatment leaf petioles begin curving. One week later, new leaves begin to 

yellow and the blister at the leaf veins. Around 10 days after exposure, petioles are 

severely curved. After a month, other leaves are chlorotic and the meristem has been 

aborted (Egan et al., 2014; Everitt and Keeling, 2009). 

Herbicide Detection  

LC-MS 

There are methods available to detect both 2,4-D and dicamba in affected crops 

using liquid chromatography and mass spectroscopy (Voyksner et al., 1984; Xu and 

Armstrong, 2013). The issue with this analysis is that the extraction required cleaves the 

salt groups from the auxin herbicides. This is due to the rise of pH after the addition of 
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sodium hydroxide that is required in the sample preparation for the extraction. So 

although it is possible to distinguish between 2,4-D and dicamba using LC/MS, it is 

difficult to differentiate the DMA and DGA formulations of these herbicides using this 

method (Guo et al., 2016).  

FT-IR 

Fourier Transform Infrared spectroscopy (FT-IR) is a fast, accurate, and usually 

non-destructive and requires little to no sample preparation. This would potentially make 

it ideal for analyzing soybean and cotton samples affected by herbicide drift from the 

different formulations of synthetic auxins. An infrared spectrometer analyzes a 

compound by passing infrared radiation, over a range of different frequencies, through a 

sample and measuring the absorptions made by each type of bond in the compound. This 

produces a spectrum, normally a ‘plot’ of % transmittance against wavenumber (Coates, 

2000). Analyzing the infrared spectrum of a sample can give abundant structural 

information of the sample molecules.  Fourier transformation is a mathematical process 

that expresses a waveform as a weighted sum of sines and cosines (Welch, 1967).  

FT-IR uses a Helium Neon (He-Ne) laser. The laser serves as an internal 

wavenumber standard which all the infrared wavenumbers are compared against it. 

Michelson Interferometer splits the infrared light from the laser into two beams of light. 

One beam goes to a stationary mirror and the other goes to an adjustable mirror. The two 

beams of light recombine with one another at the beamsplitter once they are reflected 

back by the mirrors. The beamsplitter is to split the light beam in two. Some of the light 

reflects off the moving mirror and some of the light reflects off the fixed mirror. 

Potassium bromide (KBr) is almost universally used as a substrate material in FT-IR 
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beamsplitter (Jaggi and Vij, 2006). A thin amount of coating of germanium is 

sandwiched between two pieces of KBr. The germanium coating is what actually splits 

the beam. The KBr acts as a substrate for the beamsplitter coating and to protect it from 

the environment. The beamsplitters are usable from 4,000 to 400 cm-1 that covers the 

mid-infrared range. The resulting signal is an interferogram which is a function of the 

distance of the moving mirror position (Griffiths and de Haseth, 2007).  KBr can fog over 

due to high humidity so the FT-IR spectrometer is purged with dry nitrogen to maintain 

desiccation.  

The Deuterated Triglycine Sulfate (DTGS) detector is a pyroelectric bolometer 

which changes in the amount of infrared radiation striking the detector causes the 

temperature of the DTGS element to charge. This change in capacitance with temperature 

results in a measurable voltage across the detector(Griffiths and de Haseth, 2007; Kupper 

et al., 2001). The second major detector used in the mid infrared is the Mercury Cadmium 

Telluride (MCT) detector. The detector element absorbs infrared photons and it results in 

electrons being promoted from the valence band to the conduction band. Once these 

electrons are in the conduction band, they can create an electrical current when a voltage 

is applied.  The electrical current that is generated measures the number of electrons in 

the conduction band and is directly proportional to the number of infrared photons hitting 

the detector. Although more sensitive than DTGS detectors, MCT detectors are required 

to be cooled with liquid nitrogen (Chan and Kazarian, 2006; Jaggi and Vij, 2006).  

A classification model for the applied synthetic auxin herbicides can then be 

created from the spectral data using Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA). PCA is an unsupervised classification method that 
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condenses data into a limited number of components that account for the maximum 

amount of variance (Martínez and Kak, 2001; Saed-Moucheshi et al., 2013). LDA is a 

supervised classification method that takes within group variance and the between group 

variance to construct analysis rules for pre-specified classes. The model can then be used 

to identify unknown samples by their most probable class (Juwei Lu et al., 2003; 

Martínez and Kak, 2001).   
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SINGLE CORN KERNEL AFLATOXIN B1 EXTRACTION AND  

ANALYSIS METHOD 

Introduction 

Aspergillus flavus (A. flavus) is a fungus that commonly grows in the soil and is 

known to infect a variety of crops including cotton, peanuts, and corn.  A. flavus can 

cause ear rot in maize, aflaroot in peanuts, and yellow spot disease in cotton (Guchi, 

2015; Smart et al., 1990; Zeringue et al., 1999). Environmental conditions such as high 

temperatures, high humidity, drought stress, and poor crop storage can cause A. flavus to 

start producing aflatoxins (Trenk and Hartman, 1970). Aflatoxins are secondary 

metabolites of the fungus and are extremely carcinogenic. The four major types of 

aflatoxins are aflatoxin B1, B2, G1, and G2. Aflatoxin B1 and B2 fluoresce blue under 

UV light while aflatoxin G1 and G2 fluoresce green in the presence of UV light. 

Aflatoxin B1 can also be metabolized to aflatoxin M1, which would be found in the milk 

of lactating mammals. Aflatoxin B1 is the most common and carcinogenic of these 

compounds (Figure 3.1). Aflatoxin B1 is converted in vivo to an aflatoxin B1-exo-8, 9-

epoxide by the liver enzyme cytochrome p450 oxidase (Smela et al., 2001). The epoxide 

that is formed is a highly reactive electrophile and has an extremely high regiospecificity 

for the N7 position of the guanine residue in DNA (Greenblatt et al., 1994). It specifically 
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binds to the p53 encoding region to form a DNA adduct (Clewell et al., 2014). This 

results in nonfunctioning p53 proteins that are important tumor suppressors in humans. 

 

Figure 3.1  Structures of aflatoxin B1 and aflatoxin M1. 

 

In 1988 the International Agency for Research on Cancer classified aflatoxin B1 

as a Class 1 human carcinogen (Vainio and Wilbourn, 1992). Therefore, the U.S. Food 

and Drug Administration (FDA) has restricted the amount of aflatoxin in food for human 

consumption to 20 parts per billion (ppb) in the United States. The European Commission 

(EC) limits aflatoxins in food for human consumption to 4 ppb in the European Union 

(Otsuki et al., 2001; Wu and Guclu, 2012). The Council of Agricultural Science and 

Technology has estimated that the US has an annual loss of almost a billion dollars due to 

crop damage from mycotoxins. An estimated $225 million of that are due to aflatoxin 

contamination in maize crops (Robens and Cardwell, 2003). Study of the maize genome 

has increased in recent years in hopes to discover genes that are involved with aflatoxin 

resistance in corn. The DNA from a single corn kernel can be used to analyze the gene 

expression that occurs in Aspergillus flavus inoculated maize. In order to complement 

this procedure, aflatoxin extraction should be equally versatile. Aflatoxin extraction 

methods normally require several (10-250) grams of ground maize, which may not be 
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feasible in determining aflatoxin accumulation for a smaller region of the A. flavus 

infected ear. A single kernel extraction method is needed in order to accurately track 

aflatoxin concentration and maize gene expression at specific A. flavus infected sites on 

the cob. 

Materials and Methods 

All solvents and reagents were Optima LC/MS grade. Methanol, water, formic 

acid, and ammonium acetate were obtained from Fisher Scientific (Fair Lawn, NJ, USA). 

Purified aflatoxin B1 and M1 standards were acquired from Sigma Aldrich (St. Louis, 

MO, USA). 

Maize kernels were flash frozen in liquid nitrogen. The kernels were ground into a 

fine powder with a mortar and pestle. 200 mg of each ground sample was placed into a 

1.5 mL micro-centrifuge tube. Aflatoxin free ground maize was spiked with aflatoxin B1 

to yield two levels of spiked samples (4 ppb and 20 ppb) of aflatoxin B1 for recovery. 

These concentrations were chosen because they are the limit for aflatoxin in food for 

human consumption in the European Union and the United States, respectively. 
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Figure 3.2 Sample preparation workflow detailing single kernel aflatoxin extraction. 

A solution of 1 mL (70/30, v/v) methanol/water was added to each 1.5 mL 
microcentrifuge tube. The samples were mixed for 1 minute and then centrifuged for 5 
minutes at 14,000 rpm. Polytetrafluoroethylene (PTFE) syringe filters (0.45 µm) were 
used to remove any large particles from the samples after centrifugation. The liquid 
extracts were transferred to auto-sampler vials and analyzed using an Agilent 6460 
LC/MS/MS Triple Quadrupole with electrospray ionization (Figure 3.2). Aflatoxin M1 
was added as an internal standard at a concentration of 10 ppb. The calibration curve was 
matrix- matched with extracted aflatoxin-free maize solution.   

Experimental 

The samples were analyzed using an Agilent 6460 LC/MS/MS Triple Quadrupole 

Mass Spectrometer with ESI, using an Agilent 1200 Series High Performance Liquid 

Chromatography (HPLC). The HPLC system consists of a binary pump (G1312B), 

infinity high performance degasser (G1379B), high performance autosampler (G1367E), 

thermostatted column compartment (G1316B), sampler thermostat (G1330B), and 

MassHunter data software. Aflatoxin B1 and M1 were optimized using the Agilent 

Optimization software. Aflatoxin M1 was used as an internal standard (ISTD) at 10 ppb. 

Analyze on the LC/MS

Samples were filtered with 0.45 μm PTFE syringe filter

Centrifuge for 5 minutes at 14000 rpm

Vortex samples for 1 minute

Add 1 mL methanol/water (70/30;v/v) to the tube

Weigh 200 mg of ground corn in 1.5 mL microcentrifuge tube
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The Agilent Optimization software produces the ideal fragmentor voltage and collision 

energy for each MRM transition of aflatoxin B1 and M1 (Table 3.2). 
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Table 3.2 MRM transitions for aflatoxin B1 and aflatoxin M1. 

 

Instrumentation 

An Agilent 6460 LC/MS Triple Quadrupole Mass Spectrometer equipped with 

electrospray ionization (ESI) was used to analyze the aflatoxin concentration of the 

samples. The autosampler temperature was set to 4°C. The HPLC used a Zorbax Eclipse 

Plus-C18 Narrow Bore 2.1 x 50mm, 5µm column with a temperature of 50°C. The 

mobile phase consisted of 5mM ammonium acetate with 0.1% formic acid in HPLC-

grade water and 5mM ammonium acetate with 0.1% formic acid in methanol. The flow 

rate of the mobile phase during the analysis was consistently 0.6 mL/min. The mobile 

phase gradient was transitioned from 95% water to 100% methanol during the six 

minutes of the analysis time. Then for the final three minutes of the run, the mobile phase 

re-versed from 100% methanol back to 95% water. The total run time of the method was 

nine minutes that includes a six-minute analysis time and an additional three minutes for 

the system to get back to equilibrium. The calibration curve was matrix-matched in order 
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to reduce matrix effects. The six-point calibration curve consisted of the concentrations 1 

ppb, 5 ppb, 10 ppb, 25 ppb, 50 ppb, and 100 ppb (Figure 3.3). 

 

 

Figure 3.3 Matrix matched calibration curve for aflatoxin B1 from concentration of 1.0 
ng/mL to 100 ng/mL. 

 

The parameters for the mass spectrometer were the following. The Agilent 6460 

Triple Quadrupole Mass Spectrometer (MS/MS) system coupled to an electrospray 

analyzed the samples while in positive mode. The drying gas temperature was 325°C 

while the gas flow was set to 10 liters per minute. The nebulizer gas pressure was set to 

50 psi and the capillary voltage was 4000V. The Sheath Gas Flow had an output of 11 

liters per minute and the sheath gas temperature reached temperatures of 350°C. The 

delta electron multiplier voltage (EMV) was 800V and the dwell time lasted for 200msec. 

The precursor ion for aflatoxin B1 was 313.1 m/z and 329.1 m/z for aflatoxin M1. While 

in multiple reaction monitoring (MRM) mode, the mass spectrometer was set to look for 

the daughter ions after the precursor ion entered the collision cell. The transitions for 

aflatoxin B1 included 313.1 > 285.1 m/z with a collision energy of 20kEV, 313.1 > 269.1 
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m/z with a collision energy of 25kEV, and 313.1 > 241.1 m/z with a collision energy of 

35kEV. The fragmentor value was 166 for aflatoxin B1 and for aflatoxin M1 was 131. 

The cell accelerator (7) values were the same for both aflatoxin transitions. The two 

transitions used for identifying aflatoxin M1 are 329.1>273.1 m/z and 329.1>229.1 m/z. 

The retention time of aflatoxin M1 was 3.0 minutes and 3.4 minutes for aflatoxin B1 

(Figure 3.4). Agilent MassHunter Quantitative Analysis Workstation Software v. 

B.04.0.225.19 was used to analyze the quantitative data obtained from the samples and 

the calibration curve. 

 

Figure 3.4 Chromatogram of aflatoxin B1 standard at 25 ppb with aflatoxin M1 as the 
internal standard at 10 ppb. 

 

Results and Discussion 

Table 2 demonstrates the average percent recoveries and relative standard 

deviation (RSD) values obtained from the spiked corn samples after performing the 

single maize kernel aflatoxin extraction. The analysis was performed in replicates of five 

at each of the two levels. The average percent recoveries for the 4 ppb and the 20 ppb 
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aflatoxin B1 spiked maize were 90.83% with a RSD of 4.11% and 90.72% with a RSD 

value of 14.45% respectively. Calibration standards were matrix matched with a range 

from 1 ppb to 100 ppb with a linear correlation (R2) of 0.996 as shown in Figure 3.3. In 

The limit of detection (LOD) and limit of quantification (LOQ) were estimated from the 

concentration of aflatoxin B1 required to give a signal to noise ratio of 3:1 and 10:1 

respectively. The LOD was determined to be 0.344 ng/ml and the LOQ was calculated to 

be 1.042 ng/ml (Table 3.3).  The internal standard, aflatoxin M1, injected at 10 ppb 

accounts for possible instrument variation. Aflatoxin M1 was chosen to be the internal 

standard because it has a structure similar to aflatoxin B1 but is not produced by A. 

flavus. Aflatoxin M1 is also less expensive and more readily available commercially than 

the radiolabeled form of aflatoxin B1. Methanol was the preferred solvent for aflatoxin 

extraction due to its compatibility with the ELISA testing and the cost effectiveness over 

other solvents like acetone and acetonitrile  (Bertuzzi et al., 2011; Spanjer et al., 2008). 

This simplified aflatoxin extraction method is analogous to other extractions methods in 

terms of aflatoxin recovery without the need for solid phase extraction or clean up 

columns (Khayoon et al., 2010). The single maize kernel extraction method was needed 

in order to more accurately determine the changes in aflatoxin production, gene 

transcription, and protein production between inoculated and control maize kernels. 

 

  



 

69 

Table 3.3 Average percent recoveries and RSD values obtained from spike corn 
samples. 

  4 ppb spiked maize 20 ppb spiked 

maize 

Aflatoxin B1 % Recovery % Recovery 

Replicate 1 91.65 93.23 

Replicate 2 86.7 113 

Replicate 3 97.38 72.384 

Replicate 4 87.82 87.087 

Replicate 5 90.59 87.88 

Avg % Recovery 90.828 90.716 

RSD (n=5) 4.11 14.45 

LOD (ppb) 0.344 0.344 

LOQ (ppb) 1.042 1.042 

 

Conclusion 

This process demonstrates a fast, simple, and effective analytical method for 

determining aflatoxin concentrations in a single maize kernel using an Agilent 6460 

Triple Quadruple Mass Spectrometer. The detection levels for aflatoxin B1 were below 

both the limit set by the FDA in the United States and the limit set by the EC in the 

European Union. The recovery percentages for aflatoxin B1 were 90.83% for 4 ppb and 

90.72% for 20 ppb with a satisfactory average RSD less than 15%. The single kernel 

extraction method will be a useful technique in determining how aflatoxin producing 

Aspergillus flavus affects infected maize. 
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MONITORING ASPERGILLUS FLAVUS PROGESSION AND AFLATOXIN 

ACCUMULATION IN MAIZE HYBRIDS 

Introduction 

The fungus, Aspergillus flavus (A. flavus), spends most of its life growing as a 

saprophyte in the soil where it plays a major role in the decomposition of plant material 

(Klich, 2007; Mellon et al., 2007; Scheidegger and Payne, 2003). The fungus can develop 

at temperatures ranging from 12°C to 48°C but the ideal temperature for fungal growth is 

37°C (Amaike and Keller, 2011). Aspergillus flavus reproduces by asexual spores known 

as conidia. It can endure harsh winter conditions in its mycelium form due to the 

formation of resistant structures called sclerotia (Wicklow, 1983). Aspergillus flavus is a 

common filamentous fungus that has been known to infect a variety of crops including 

rice, cotton, peanuts, and corn. A. flavus can cause ear rot in corn, aflaroot in peanuts, and 

boll rot or yellow spot disease in cotton (Liu et al., 2006; Rajasekaran et al., 2008; 

Zeringue et al., 1999). Maize kernels are most susceptible to infection in the early 

reproductive stage (R3) approximately three weeks after mid silk has occurred (Jones et 

al., 1980; Zuber and Lillehoj, 1979). Environmental conditions such as high 

temperatures, high humidity, drought stress as well as poor crop storage and insect 

damage can cause A. flavus to start producing aflatoxins (Cardwell et al., 2000; Guo et 

al., 2008; Hell et al., 2003; Trenk and Hartman, 1970). Aflatoxins are secondary 
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metabolites of Aspergillus flavus and are extremely carcinogenic. There are four major 

types of aflatoxins: B1, B2, G1, and G2. Aflatoxins B1 and B2 glow blue under UV light 

while aflatoxins G1 and G2 fluoresce green in the presences of UV light (Hara et al., 

1974). Aflatoxin B2 is the dihydroxy form of aflatoxin B1 while aflatoxin G2 is the 

dihydroxy form of aflatoxin G1.  

Aflatoxin B1 is a procarcinogen because it requires enzymatic bioactiviation 

before it becomes carcinogenic. Aflatoxin B1 is converted in the body to AFB1-8-9-

epoxide by the liver enzyme p450. Cytochrome p450 is a heme-binding enzyme that has 

an important role in the biotransformation of xenobiotics. Cytochrome p450 aids in the 

inactivation of foreign compounds. However in the case of aflatoxin B1, it metabolizes 

aflatoxin B1 into AFB1-exo-8, 9-epoxide (Ayed-Boussema et al., 2011; Yu et al., 2000). 

The AFB1-exo-8, 9-epoxide is formed by epoxidation at the 2,3 double bond.  The 

epoxide that is formed is a highly reactive electrophile and has a high regiospecificity for 

the N7 position of the guanine residue in DNA. It specifically binds to the p53 encoding 

region to form a DNA adduct (Clewell et al., 2014; Essigmann et al., 1977; Smela et al., 

2001). This results in nonfunctioning p53 proteins, which are important tumor 

suppressors in the body. The p53 controls an important cell cycle checkpoint that is 

responsible for maintaining the integrity of the genome. The p53 protein can bind to 

specific DNA sequences and activate the transcription of genes including p53 binding 

sites. When DNA is damaged, p53 has been shown to induce cell cycle arrest or even 

lysis of the cell. Some mutations to p53 eliminate this response and it results in an 

increased frequency of unchecked genetic mutations (Greenblatt et al., 1994; Hollstein et 
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al., 1991). This phenomenon increases the probably that a tumor cell escapes the normal 

system of checks against excessive cell growth.  

In 1988, the International Agency for Research on Cancer classified aflatoxin B1 

as a Class 1 human carcinogen (Vainio and Wilbourn, 1992). The FDA has restricted the 

amount of aflatoxin allowed for human consumption to 20 (µg/kg) parts per billion. 

Products with concentrations higher than 20 ppb are restricted from interstate commerce. 

The FDA restricted levels aflatoxin in dairy cattle feed is also 20 ppb. For beef cattle and 

swine, the limit for aflatoxin in feed are 300 ppb and 200 ppb, respectively (Lizárraga-

Paulín et al., 2011). More than 30 percent of the maize harvested in the US is used for 

ethanol production. If maize contains aflatoxins, it is not cost effective to produce ethanol 

from it (Hertel et al., 2010) as the aflatoxins concentrate in the byproducts. A major 

byproduct of ethanol production is Dried Distillers Grains (DDGS), which are sold to 

farmers to use as feed. During ethanol production, the aflatoxin from the maize is 

transferred into the DDGS.  

In the United States, the estimated economic cost of aflatoxins annually ranges 

between $104.5 million to $1.68 billion dollars (Mitchell et al., 2016; Robens and 

Cardwell, 2003). The United Nations Food and Agriculture Organization on international 

regulations for mycotoxins conducted a study to show that at least 77 countries have 

some sort of regulations for mycotoxins (van Egmond and Jonker, 2004; Wu and Guclu, 

2012). The United States is also the largest producer of maize on the planet producing 

351,000,000 metric tons in 2013. The United States is the second exporter of maize in the 

world shipping 24,178,452 metric tons in 2013 to over 180 different countries. 
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There are a few physical and chemical detoxification methods for reducing the 

amount of aflatoxin in food and feed products. A major problem with chemical 

detoxifications of aflatoxin is the unknown toxicity of the byproducts. Pre-harvest 

measures that can be taken to help prevent aflatoxin contamination are irrigation, earlier 

planting dates, fertilization, insect control, and biological controls such as non-toxigenic 

A.flavus strains like Afla-Guard.  

One of the most effective ways of reducing aflatoxins in corn is by breeding 

resistant lines. The first maize line that was released as resistant to aflatoxin accumulation 

was Mp313E and Mp420 in 1992 (Scott and Zummo, 1992). Mp717 is germplasm line 

that were developed in Mississippi from a cross between Mp420 and Tx601 (Williams 

and Windham, 2006). Due to its relatively early flowering time and resistance to 

aflatoxin accumulation, Mp719 is also an excellent maize line for not only aflatoxin 

resistance but for breeding for more resistant commercial lines of maize as well 

(Williams and Windham, 2012). Maize lines that are resistant to aflatoxin accumulation 

are still the best option for combating this problem yet increased resistance in maize 

hybrids are required. Moreover, there are several proteins Pr10 proteins, 14KDA trypsin-

inhibitor proteins, α-amylase, and PER1 (Peroxidredoxin antioxidant) whose gene 

expression increased in aflatoxin resistant maize but are difficult to transfer to offspring 

in order to make more resistance lines (Chen et al., 2010; Tripathi et al., 2009; Yan et al., 

2015). There is still a great deal to learn about influential genes and proteins as well as 

how they interact to contribute to aflatoxin resistance. The purpose of this experiment is 

to track the correlations between aflatoxin accumulation and A. flavus fungal biomass for 

the first several weeks after inoculation, as well as the spreading of the fungus and the 
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aflatoxin throughout the inoculated ear of corn. This will allow for better understanding 

of the pathogen/host interactions and how the fungus progresses over time. 

Methods and Materials 

First Year 

GA209 x T173 and Mp313E x Mp717 maize hybrids were planted and allowed to 

self-pollinate. Hybrids were assigned to single row plots that were 4 m long and spaced 

0.97 m apart with irrigation. GA209 x T173 is the aflatoxin accumulation susceptible 

maize hybrid while Mp717 x Mp313E is the resistant maize hybrid to aflatoxin 

accumulation (Table 4.1). The average temperature was 24.8C (76.6F) with a total 

rainfall of 28.52cm (11.23in). Two and three weeks after pollination two ranges of 

GA209 x T173 hybrid and two ranges of Mp313E x Mp717 maize hybrid were each 

inoculated with toxin producing Aspergillus flavus NRRL 3357.  

Table 4.1 Type of maize hybrid used in the experiments each year. 

Aflatoxin 

Susceptibility 

Maize Hybrids 

 (First Year) 

Maize Hybrids  

(Second Year) 

Maize Hybrids  

(Three Year) 

Susceptible Hybrid GA209 x T173 GA209 x T173 GA209 x T173 

Susceptible and 

Resistant Hybrid 

N/A Mp313E x T173 GA209 x Mp313E 

Resistant Hybrid Mp717 x Mp313E Mp717 x Mp313E Mp717 x Mp313E 

 

A device was created using sewing needles and a mold to inoculate the corn in a 

three by three-kernel grid similar to the pinbar technique (Zummo and Scott, 1989). The 

needles were then dipped into a suspension containing 3x108 A. flavus conidia and used 
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to infect the maize through the husk (Figure 4.1). Collections of the inoculated maize 

cobs were made 2, 3, 7, 14, 21, 28, and 35 days after inoculation. A randomized complete 

block design with n=72 was used. The main plot was the maize genotype with three reps. 

The treatment was the number of days after pollination. The experimental unit was the 

number of days after inoculation. Maize samples were collected and stored at -80°C until 

the aflatoxin and DNA extractions could be performed. 

 

Figure 4.1 Inoculation device used to inject A. flavus into maize hybrids. 

 

The single maize kernel aflatoxin extraction method was used to extract and 

quantify aflatoxin (Reid et al., 2016). Maize kernels were flash frozen in liquid nitrogen. 

The corn kernels (200 mg) was ground with a mortar and pestle into a fine powder and 

extracted with 1 mL of a 70% methanol/water solution was added to the tube. The 

samples were shaken for 2 minute and then centrifuged for 5 minutes at 3000. The extract 

was filtered through a 0.45 μm PTFE syringe filters. An Agilent 6460 LC/MS Triple 

Quadruple, which uses electrospray ionization (ESI), was used to analyze the aflatoxin 
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concentration of the samples. The autosampler temperature was set to 4°C. A Zorbax 

Eclipse Plus-C18 Narrow Bore 2.1 x 50mm, 5µm column was used with a temperature of 

50°C. The mobile phase consisted of 5mM ammonium acetate with 0.1% formic acid in 

HPLC-grade water and 5mM ammonium acetate with 0.1% formic acid in methanol.  

The flow rate of the mobile phase during the analysis was consistently 0.6 mL/min. The 

mobile phase gradient was transitioned from 95% water to 100% methanol during the six 

minutes of the analysis time. For the final three minutes of the run, the mobile phase 

reversed from 100% methanol back to 95% water. The total run time of the method was 

nine minutes, which includes a six-minute analysis time and an additional three minutes 

for equilibration.  

 

Figure 4.2 Chromatogram of aflatoxin B1 sample with aflatoxin M1 as the internal 
standard at 10 ppb 
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The calibration curve was matrix-matched in order to reduce matrix effects. The 

six-point calibration curve consisted of the concentrations 1ppb, 5 ppb, 10 ppb, 20 ppb, 

50 ppb, and 100 ppb. The Agilent 6460 Triple Quadrupole Mass Spectrometer (MS/MS) 

system coupled to an electrospray analyzed the samples while in positive mode. The 

drying gas temperature was 325°C while the gas flow was set to 10 liters per minute. The 

nebulizer gas pressure was set to 50 psi and the capillary voltage was 4000V. The sheath 

gas flow had an output of 11 liters per minute and the sheath gas temperature reached 

temperatures of 350°C. The delta electron multiplier voltage (EMV) was 800V and the 

dwell time lasted for 200msec. The retention time of aflatoxin M1 was 3.0 minutes and 

3.4 minutes for aflatoxin B1 (Figure 4.2). The precursor ion for aflatoxin B1 was 313.1 

and 329.1 for aflatoxin M1. While in multiple reaction monitoring (MRM) mode, the 

mass spectrometer was set to look for certain daughter ions after the precursor ion entered 

the collision cell. The transitions for aflatoxin B1 included 313.1 > 285.1 with a collision 

energy of 20kEV, 313.1 > 269.1 with a collision energy of 25kEV, and 313.1 > 241.1 

with a collision energy of 35kEV. The fragmentor value was 166 for aflatoxin B1 and 131 

for aflatoxin M1. The cell accelerator (7) values were the same for both aflatoxin 

transitions. The two transitions used for identifying aflatoxin M1 are 329.1>273.1 and 

329.1>229.1 (Table 4.2). Agilent MassHunter Quantitative Analysis Workstation 

Software v. B.04.0.225.19 was used to analyze the quantitative data obtained from the 

samples and the calibration curve. This method can also be used to check for the presence 

of other types of aflatoxins being produced by A. flavus. 
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Table 4.2  MRM transitions for aflatoxin B1 and aflatoxin M1. 

 

 

The maize and fungal DNA was extracted from 100 milligrams of the ground 

corn kernel using a modified CTAB method (Cetyl Trimethyl Ammonium Bromide) for 

plant tissue (Cota-Sánchez et al., 2006). Two 250 μL aliquots of the buffer was added to 

the 100 mg ground corn kernel samples. The samples were then placed into a 60°C water 

bath for 15 minutes. Two aliquots of 200 μL of the chloroform/octanol solution was 

added to each sample. The samples were then inverted 50 times in order to thoroughly 

mixed. Once that was completed, the samples were centrifuged at 3000 rpm for 15 

minutes. The supernatant was then transferred into clean micro centrifuge tubes. 300 μL 

of isopropanol was added to the tubes. The samples were inverted 15 times to properly 

mix the solution. The samples were centrifuged at 3000 rpm for 15 minutes at 4°C, 

decanted, and 300 μL of 90% ethanol was pipetted into the tubes. Then the samples were 

centrifuged again at 3000 rpm for 5 minutes at 4°C. Finally, the samples were decanted 

and the pellets were allowed to air dry. The pellets were suspended in 100 μL of TE 

buffer. The CTAB method is ideal for DNA extraction because of its ability to remove 
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the high number of polysaccharides and phenolic compounds that are found in plant 

tissue, which could interact irreversibly with nucleic acid. A Nano Drop ND-1000 

Spectrophotometer (Nano Drop Technologies, Inc., Wilmington, DE) was used to 

determine the quality and quantity of DNA. The fungal biomass of the inoculated maize 

samples was determined by using quantitative real time polymerase chain reaction 

(qPCR).  

The fungal biomass of the inoculated maize samples was determined by using 

quantitative real time polymerase chain reaction (qPCR). The forward primer and reverse 

primer for the fungal quantification Af2 (forward primer: 5 -

ATCATTACCGAGTGTAGGGTTCCT-3; reverse primer: * 5-

GCCGAAGCAACTAAGGTACAGTAAA-3; amplicon 73 bp) designed in the internal 

transcribed spacer 1 (ITS1) sequence (Mideros et al., 2009). The forward and reverse 

primers for the maize quantification Zmt3 (forward primer: 5 -

TCCTGCTCGACAATGAGGC-3; reverse primer: 5 -TTGGGCGCTCAATGTCAA-3; 

amplicon 63 bp) were used for amplifying maize α-tubulin. 5 μL of Power SYBR green 

PCR Master Mix, 0.5 μL of the forward primer, 0.5 μL of the reverse primer, 2.0 μL of 

DNA-free water, and 2.0 μL of sample DNA at a concentration of 10 ng/μL were 

combined to make up the 10 μL reaction volume. The Roche LightCycler 480 instrument 

(Roche Diagnostics Corporation, Indianapolis, IN) was used to determine the fungal 

biomass. The temperature profile for denaturation, melting curve, gradual heating, and 

cooling step conditions for the qPCR were as follows: denature at 95°C for 10 min, 45 

cycles at 95°C for 10s, 60°C for 5s, 72°C for 10s, 95°C for 10s, anneal at 65°C for 1 min, 

97°C for 5s, and cool at 40°C for 10s. Two standard curves for both maize and fungal 
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DNA at concentrations of 10, 1.0, 0.1, 0.01, 0.001, and 0.0001 ng/μL were both ran with 

the DNA samples. Statistical analysis was done using SAS (SAS Institute In.; Cary, 

NC) 9.3 software. 

Second Year 

The three different maize hybrids that were used in the experiment were GA209 x 

T173 (susceptible cross), Mp313E x T173 (resistant and susceptible cross), and Mp313E 

x Mp717 (resistant cross). The maize hybrids were allowed to self-pollinate to ensure that 

the ears have as many kernels as possible. The total rainfall measured at 33.15cm 

(13.05in) while the average temperature was 24.6C (76.3F). The top ear from each 

plant was inoculated with A. flavus isolate NRRL 3357 or water as a control in a 3 by 3-

kernel grid. Each row contained three inoculated maize plants. The inoculated maize was 

then be collected 3, 7, 14, 21, 28, and 35 days after infection. This experiment was 

carried out using a split plot design with n=162. The block was the plot. The main plot 

unit (MPU) is the range, the main plot factor (MPF) are the different maize varieties, the 

simple plot unit (SPU) is the row, and the simple plot factor is the number of days after 

inoculation. Each of the 7 days were randomly assigned to a row. There were ten rows 

within a range. The maize varieties were also randomly assigned to each range. There 

were three plots with each plot containing three ranges. Significance was tested at 

α=0.05. Statistical analysis was done using SAS (SAS Institute In.; Cary, NC) 9.4 

software. The twelve-point calibration curve consisted of the concentrations 1, 5, 10, 25, 

50, 100, 200, 400, 600, 800, and 1000 ppb (Figure 4.3). The aflatoxin concentration using 
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LC/MS and the DNA quantification using real time PCR were carried out the same way 

as year one.  

 

Figure 4.3 Matrix matched calibration curve for aflatoxin B1 from concentration of 1.0 
ppb to 1000 ppb. 

 

Third Year 

The three maize hybrids used in this experiment are GA209 x T173 (susceptible 

cross), GA209 x Mp313E (resistant and susceptible cross), and Mp313E x Mp717 

(resistant cross). The maize hybrids were self-pollinated. The mean temperature was 

25.7C (78.3F) with total rainfall of 24.05cm (9.47 in). The top ear from each plant were 

inoculated with Aspergillus flavus isolate NRRL 3357 or water as a control in a 3 by 3-

kernel grid 21 days after silk maturation.  

There were three inoculated maize plants for each row.  The inoculated maize 

were then collected 3, 7, 10, 14, 21, 28, and 35 days after infection. The extractions for 

both aflatoxin and DNA in the infected maize were performed the same way as in year 
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one and two. The aflatoxin and DNA quantification using LC/MS and real time PCR 

respectively were performed the same way as in year two. The statistical analysis was 

done the same as year two with n=189.  

Results 

First Year 

The inoculated resistant maize line Mp717 x Mp313E had less fungal biomass 

overall then susceptible line GA209 x T173 but there was no significant difference 

(P=0.2741). The fungus spread farther form the point of inoculation in the infected 

GA209 x T173 maize than the Mp717 x Mp313E inoculated maize. The aflatoxin 

accumulation was significantly higher in GA209 x T173 maize lines than the Mp717 x 

Mp313E inoculated maize, and it was significantly different (P<0.0001). There was no 

aflatoxin detected in the maize hybrids 2 days after inoculation with A. flavus (Table 4.3).  

Table 4.3 Mean aflatoxin concentration in ppb of GA209xT173 and Mp717 x 
Mp313E. 

 

The maize inoculated 21 days after silk maturation had a linear correlation 

between fungal biomass and aflatoxin accumulation for both the resistance and 

susceptible lines. The maize inoculated 14 days after silk emergence had significantly 
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less aflatoxin (P<0.0001).  GA209 x T173 started producing aflatoxin as early as three 

days after inoculation while Mp717 x Mp313E does not. The average aflatoxin 

concentration in maize was significantly different between 14 days, 21 days, and 28 days 

after inoculation and 2 days and 3 days after inoculation (P<0.0001). On average, maize 

inoculated 21 days after silk maturation had more aflatoxin accumulation regardless of 

resistance. The mean fungal biomass for the maize hybrid, Mp717 x Mp313E, is very 

similar on 7, 14, and 21 days after inoculation (Table 4.4).   

 

Table 4.4 Average fungal biomass of GA209xT173 and Mp717 x Mp313E. 

 Day 2 Day 3 Day 7 Day 14 Day 21 Day 28 

GA209xT173    

(n=36) 

0.00004 ± 

0.00003 

0.001 ± 

0.00093 

0.00273 ± 

0.00255 

0.00667 ± 

0.0099 

0.0102 ± 

0.01724 

0.00266 ± 

0.00368 

Mp717xMp313E 

(n=36) 

0.00004 ± 

0.00007 

0.00009 ± 

0.00013 

0.00339 ± 

0.00311 

0.00353 ± 

0.00598 

0.00318 ± 

0.00224 

0.001 ± 

0.0013 

 

Second Year 

The mean aflatoxin concentrations of the Aspergillus flavus infected maize 

collected three days after inoculation were 579.12 ± 436.17 ppb for Mp313E x Mp717, 

1234.76 ± 1818.1 ppb for Mp313E x T173, and 2.39 ± 3.72 ppb for GA209 x T173. It 

was significantly higher for Mp313E x T173 when compared to the other hybrids 

(P<0.0001). For the samples collected seven days after inoculation, the aflatoxin 

concentrations were 1030.84 ± 676.38 ppb for Mp313E x T173, 1552.18 ± 1736.95 ppb 

for Mp313E x Mp717, and 2415.54 ± 3017.98 ppb for GA209 x T173. The susceptible 
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hybrid contained more aflatoxin on average, there was a significant difference 

(P<0.0001). The aflatoxin concentrations of samples collected 14 days after inoculation 

were 3936.07 ± 1951.41 ppb for GA209 x T173, 3692.54 ± 1471.96 ppb for Mp717 x 

Mp313E, and 2927.56 ± 2672.19 ppb for Mp313E x T173. There was no significant 

difference between susceptible maize hybrid and the other hybrids. Infected maize 

collected 21 days after inoculation had aflatoxin concentrations of 5852.07± 3137.22 ppb 

for GA209 x T173, 4935.66 ± 1280.93 ppb for Mp313E x Mp717, and 3069.88 ± 

1276.14 ppb for Mp313E x T173. There was a significant difference between all the 

maize hybrids with the susceptible hybrid having more aflatoxin concentration. 4137.19 

± 1253.09 ppb for GA209 x T173, 5774.67 ± 4221.02 ppb for Mp313E x Mp717, and 

3936.23 ± 2107.39 ppb for Mp313E x T173 were the aflatoxin concentrations for the 

collected maize 28 days after inoculation (Table 4.5). There was a significant difference 

between Mp313E x Mp717 and the other maize hybrids (P<0.0001).  

 

Table 4.5 Mean aflatoxin concentration of maize hybrids comparing days after 
inoculation (DAI). 

 3 DAI 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

GA209 x 

T173 (n=54) 

2.39 ± 3.72 2415.54 ± 

3017.98  

3936.07 ± 

1951.41 

5852.07± 

3137.22 

4137.19 ± 

1253.09 

4565.48 ± 

3166.08  

Mp313E x 

T173 (n=54) 

1234.76 ± 

1818.1  

1030.84 ± 

676.38  

2927.56 ± 

2672.19 

3069.88 ± 

1276.14 

3936.23 ± 

2107.39 

3842.37 ± 

1991.37 

Mp313E x 

Mp717 

(n=54) 

579.12 ± 

436.17 

1552.18 ± 

1736.95 

3692.54 ± 

1471.96 

4935.66 ± 

1280.93 

5774.67 ± 

4221.02 

5080.66 ± 

2764.39 
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The aflatoxin concentrations of samples collected 35 days after inoculation were 

4565.48 ± 3166.08 ppb for GA209 x T173, 5080.66 ± 2764.39 ppb for Mp313E x 

Mp717, and 3842.37 ± 1991.37 ppb for Mp313E x T173. There was only a significant 

difference between the susceptible maize hybrid and the susceptible/resistant maize cross 

(P<0.0001). Maize collected 21 days, 28 days, 35 days, and 14 days after inoculation was 

significantly higher in aflatoxin concentration than maize collected 3 and 7 days after 

inoculation (P<0.0001). There was no difference between samples collected after 3 and 7 

days of inoculation. There was an insignificant difference between all the three technical 

reps preformed for each maize sample in the experiment. Overall, there was a significant 

difference between the aflatoxin concertation in Mp717 x Mp313E and Mp313E x T173 

with the resistant hybrid containing more aflatoxin (P<0.0001). 

There was no significant difference between the number of days after inoculation 

in fungal biomass (P=0.6450). The only significant different for the mean biomass was 

for the maize collected 14 days after inoculation were Mp313E x Mp717 with higher 

biomass when compared to the other hybrids. Mp717 x Mp313E had the least amount of 

average fungal biomass at 0.01138 ± 0.0166 0.01663ng/μL, followed by Mp313E x T173 

at 0.01591 ± 0.00233 ng/μL, and with the most was GA209 x T173 at 0.01791± 

0.03719ng/μL (Table 4.6).  
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Table 4.6 Average A. flavus biomass of maize hybrids at the inoculation site 
comparing days after inoculation. 

 3 DAI 7 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

GA209 x 

T173 

(n=18) 

0.00062 ± 

0.00101 

0.00384 ± 

0.00566 

0.01793 ± 

0.02175487 

0.00734 ± 

0.00935 

0.05729 ± 

0.0867 

0.01989 ± 

0.0205 

Mp313E x 

T173 

(n=18) 

0.008332 ± 

0.001237 

0.018885 ± 

0.0253 

0.006016 ± 

0.00502 

0.012800 ± 

0.0024 

0.04175 ± 

0.0487 

0.004868 

±0.0049 

Mp313E x 

Mp717 

(n=18) 

0.00429 ± 

0.003179 

0.001176 ± 

0.003609 

0.01323 ± 

0.00473 

0.00756 ± 

0.01133 

0.02639 ± 

0.0407 

0.007868 ± 

0.0082 

 

The spread of Aspergillus flavus biomass at the inoculation site and first row was 

significantly greater than at the second and third row (P<0.0001). There was significant 

more fungal spread between 35 DAI and 28 DAI when compared to the 21 DAI, 14 DAI, 

7 DAI, and 3 DAI maize samples (P<0.0001). A. flavus spread farther from the 

inoculation site in Mp313E x T173 when compared to the other maize hybrids but it was 

not significant. There was no significant difference overall between the maize genotypes 

when it came to the mean fungal biomass (Figure 4.4).  
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Figure 4.4 Mp313E x T173, resistant/susceptible hybrid 28 days after A. flavus 
inoculation. 

 

Third Year 

The mean aflatoxin concentrations of the Aspergillus flavus infected maize 

collected three days after inoculation were 8.48 ± 9.59 ppb for Mp313E x Mp717, 3.30 ± 

3.89ppb for GA209 x Mp313E, and 32.50 ± 29.28 ppb for GA209 x T173. It was 

significantly higher for the susceptible maize hybrids when compared to the other hybrids 

(P<0.0001). For the samples collected seven days after inoculation, the aflatoxin 

concentrations were 9.45 ± 8.21 ppb for GA209 x Mp313E, 98.51 ± 76.69 ppb for 

Mp313E x Mp717, and 101.81 ± 56.81 ppb for GA209 x T173. There was significant 

difference between the other maize hybrids and GA209 x Mp313E which contained less 

aflatoxin on average (P<0.0001). 319.65 ± 183.80 ppb for Mp717 x Mp313E, 350.73 ± 

288.92 ppb for GA209 x T173, and 71.64 ± 55.07 ppb were the aflatoxin concentrations 

ten days after inoculation with A. flavus. The aflatoxin concentrations of samples 

collected 14 days after inoculation were 750.21 ± 416.83 ppb for GA209 x T173, 896.36 
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± 504.82 ppb for Mp717 x Mp313E, and 339.80 ± 229.34 ppb for GA209 x Mp313E. 

Infected maize collected 21 days after inoculation had aflatoxin concentrations of 

1638.60 ± 768.27 ppb for GA209 x T173, 2634.92 ± 1148.85 ppb for Mp313E x Mp717, 

and 726.37 ± 191.89 ppb for GA209 x Mp313E (Table 4.7). There was significantly less 

aflatoxin contamination in the susceptible/resistant maize hybrid when compared to the 

two other maize hybrids (P<0.0001).   

Table 4.7 Mean aflatoxin concentration of maize hybrids comparing days after 
inoculation (DAI). 

 3 DAI 7 DAI 10 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

GA209 x T173 

(n=63) 

32.50 ± 

29.28 

101.81 ± 

56.81 

350.73 ± 

288.92 

750.21 ± 

416.83 

1638.60 ± 

768.27  

2224.05 ± 

384.01  

3756.99 ± 

814.62 

GA209 x 

Mp313E (n=63) 

3.30 ± 

3.89 

9.45 ± 

8.21 

71.64 ± 

55.07 

339.80 ± 

229.34 

726.37 ± 

191.89 

1737.59 ± 

911.55 

2577.69 

±1029.69 

Mp717 x 

Mp313E (n=63) 

8.48 ± 

9.59 

98.51 ± 

76.69 

319.65 ± 

183.80  

896.36 ± 

504.82 

2634.92 ± 

1148.85 

3427.53 ± 

1349.88 

3729.34 ± 

1544.98 

 

There was a significant difference between all the maize hybrids. 2224.05 ± 

384.01 ppb for GA209 x T173, 3427.53 ± 1349.88 ppb for Mp313E x Mp717, and 

1737.59 ± 911.55 ppb for GA209 x Mp313E were the aflatoxin concentrations for the 

collected maize 28 days after inoculation. There was no significant difference. The 

aflatoxin concentrations of samples collected 35 days after inoculation were 3756.99 ± 

814.62 ppb for GA209 x T173, 3729.34 ± 1544.98 ppb for Mp313E x Mp717, and 

2577.69 ± 1029.69 ppb for GA209 x Mp313E. Overall GA209 x Mp313E contained 

significantly less mean aflatoxin accumulation at 780.74± 1064.65 ppb when compared 
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to the two other maize lines; although Mp313E x Mp717 did contain more average 

aflatoxin concentration at 1587.8 ± 1747 ppb than GA209 x T173 at 1233.98 ± 1338.47 

ppb (P<0.0001). Maize collected 35 days after inoculated was significantly higher in 

aflatoxin concentration then all other collection days (P<0.0001). The aflatoxin 

concentration was also significantly higher in 28, 21, and 14 after inoculation than maize 

collected 3, 7, and 10 days after inoculation (P=<0.0001). There are no significant 

difference between samples collected three, seven, and ten days after inoculation. 

Table 4.8 Average A. flavus biomass of maize hybrids at the inoculation site 
comparing days after inoculation. 

 3 DAI 7 DAI 10 DAI 14 DAI 21 DAI 28 DAI 35 DAI 

GA209 x T173 

(n=21) 

0.00867 

± 

0.00913   

0.00777 ± 

0.00345 

0.01668 

± 0.011 

0.03517 ± 

0.0316 

0.07066 

± 0.1 

0.0138 ± 

0.0119 

0.14276 ± 

0.1296 

GA209 x 

Mp313E (n=21) 

0.00921 

± 0.0108 

0.01088 ± 

0.0066 

0.08251 

± 

0.01162  

0.0512 ± 

0.061520 

0.08591 

± 0.1255 

0.01525 

± 

0.01596 

0.013135 

± 0.1328 

Mp717 x 

Mp313E (n=21) 

0.00813 

± 0.0076  

0.004657 

± 0.0005 

0.01561 

± 0.0088 

0.01982 ± 

0.0148 

0.05541 

± 0.0751  

0.01236 

± 0.0118 

0.12694 ± 

0.1389 

 

The fungal biomass of the maize collected 35 days after inoculation was higher 

from the maize gathered at all the other dates after inoculation (DAI) with A. flavus. 

GA209 x Mp313E had the greatest amount of average fungal biomass at 0.05908 ± 

0.0883 ng/μL, followed by GA209 x T173 at 0.0423 ± 0.071 ng/μL, and Mp717 x 

Mp313E with the least at 0.0347 ± 0.065 ng/μL (Table 4.8). There was no significant 

difference overall between the maize genotypes when it came to the mean fungal biomass 
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although GA209xMp313E had the most on average. The spread of Aspergillus flavus 

biomass at the inoculation site and first row was significantly greater than at the second 

and third row (P<0.0341). There was a significant difference in fungal spread between 28 

DAI when compared to the 21 DAI, 14 DAI, 10 DAI, 7 DAI, and 3 DAI maize sample 

(Figure 4.5). There was no significant difference in fungal spread from the inoculation 

site between the maize hybrids. 

 

Figure 4.5 GA209 x T173, susceptible hybrid 28 days after A. flavus inoculation. 

 

Discussion 

First Year 

It was questioned if A. flavus started producing aflatoxin in traceable amounts as 

early as 2 days after inoculation. The level of detection (LOD) for aflatoxin B1 was 0.344 

ppb.  According to our data, we were not able to detect any aflatoxin B1 within the corn 
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samples that were tested two days after inoculation with A. flavus. However, there was 

consistent data to suggest that aflatoxin accumulation can begin as soon as 3 days after 

inoculation. The inoculated resistant maize line Mp717 x Mp313E had less fungal 

biomass overall then susceptible line GA209 x T173. The aflatoxin accumulation was 

higher in GA209 x T173 maize lines than the Mp717 x Mp313E inoculated maize. There 

was a significantly different (P=0.0001). GA209 x T173 started producing aflatoxin as 

early as three days after inoculation while Mp717 x Mp313E did not. On average, maize 

inoculated 21 days after silk maturation had more aflatoxin accumulation regardless of 

resistance.  

Second Year 

The susceptible/resistant maize hybrid, Mp313E x T173, had a significantly 

higher aflatoxin concentration three days after inoculation when compared to the other 

two maize hybrids in the experiment. The susceptible maize hybrid, GA209 x T173, 

contained higher amounts of aflatoxin accumulation for 7, 14, and 21 days after 

inoculation. Overall aflatoxin contamination was greater in the resistant maize hybrid, the 

susceptible maize hybrid possessing the second most amount of aflatoxin, and the 

susceptible/resistant maize cross, Mp313E x T173, containing the least. The overall 

fungal biomass of A. flavus in the inoculated maize did not significantly differ between 

the different genotypes or the days after inoculation. The spread of the A.flavus from the 

inoculation site was not significantly different comparing the maize lines. The maize 

samples collected 28 days after inoculation had more fungal biomass when compared to 

the rest of the samples. The susceptible maize hybrid, GA209 x T173, had the most 

aflatoxin concentration and A. flavus biomass while Mp313E x T173 had the least. The 
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susceptible/resistant maize cross Mp313E x T173 often had less A. flavus biomass and 

mean aflatoxin accumulation when compared to the rest of the maize hybrids. There was 

not significant difference between the genotypes in the spread of the fungus however, the 

fungus did travel father in the inoculated Mp313E x T173 maize.  

Third Year 

The susceptible maize hybrid, GA209 x Mp313E, had significantly less aflatoxin 

21 days after inoculation when compared to the other two maize hybrids in the 

experiment. GA209 x Mp313E consistently showed less aflatoxin production for every 

collection date when compared to Mp717 x Mp313E and GA209 x T173. GA209 x T173 

contained higher amounts of aflatoxin accumulation 3, 10, and 35 days after inoculation 

but not significantly so. Aflatoxin was higher in Mp717 x Mp313E for 7, 14, 21, and 28 

days after inoculation. Overall aflatoxin contamination was greater in the resistant maize 

hybrid, the susceptible hybrid possessing the second most amount of aflatoxin, and the 

susceptible/resistant maize cross, Mp313E x T173, containing the least. The fungal 

biomass of Aspergillus flavus in the inoculated maize did not significantly differ between 

the different genotypes. The fungal biomass was higher 35 days after inoculation when 

compared to the other inoculation dates however; the fungal biomass did not differ 

significantly. The spread of the A. flavus from the inoculation site was not significantly 

different when comparing maize lines. The maize samples collected 28 and 35 days after 

inoculation had significantly more fungal biomass farther out when compared to the rest 

of the samples.  
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Conclusion 

From the results of this study, aflatoxin accumulation does not seem to be directly 

correlated with the amount of fungal biomass of A. flavus. With the exception of the first 

year, the resistant maize hybrid lead overall in aflatoxin accumulation but had the least 

amount of fungal biomass in all three years of the experiment. The pinbar technique for 

inoculation was used as oppose to the side needle, which is commonly used for breeding 

new resistant lines of maize. Wounding techniques that simulate insect damage may 

bypass the resistance of the pericarp layers to natural infections resulting in higher 

aflatoxin concentrations (Scott and Zummo, 1992; Williams et al., 2013; Zummo and 

Scott, 1989). The aflatoxin resistant lines have been noted to express higher 

concentrations of stress related and/or antifungal proteins due to having a higher number 

of these genes (Warburton et al., 2015; Williams et al., 2015). Peroxidases, chitnases, 

trypsin inhibitors, and α-amylase are proteins known to either impede the progression of 

A. flavus, slow the production of aflatoxin by A. flavus, or cause the degradation of 

aflatoxin (Chen et al., 2005; Dowd and Johnson, 2016; Hawkins et al., 2015). The 

production of aflatoxin seems to begin decelerating after 21 days after inoculation. This 

could be due to A. flavus not getting as much nutrients from the kernels or natural plant 

defenses eventually overcoming the infection.  
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STORAGE CONDITIONS EFFECT ON ASPERGILLUS FLAVUS BIOMASS AND 

AFLATOXIN CONCENTRATION IN INOCULATED MAIZE 

Introduction 

Maize (Zea mays) is the second most produced crop in the world. By 2050, maize 

is estimated to become the number one crop globally (Alston and Pardey, 2014). 

Although maize is used for human consumption and the production of biofuels, the 

majority of maize is used as animal feed. Crop storage is an essential part of global 

agriculture and food security. There are several established storage systems for maize 

including bags, bulk, cribs, and metal silos (Tefera et al., 2011; Tubbs et al., 2016; 

Williams et al., 2017). According to Food and Agriculture Organization, between 5-25% 

annually of all food grains are lost during storage (FAOSTAT 2014). To avoid 

postharvest losses from storage pests and pathogens, local farmers are forced to sell what 

they produce almost immediately after harvest.  

Aspergillus flavus is a fungus that causes ear rot in maize. The majority of A. 

flavus infections occur post-harvest during storage. It also under certain conditions 

produces a hazardous byproduct known as aflatoxin. Aflatoxin B1 was classified as a 

Group I carcinogen by the International Agency for Research on Cancer (IARC) 

(Tomatis, 1988; Vainio and Wilbourn, 1992). Group I carcinogens are substances that 

have been proven to cause cancer or tumors in humans. The FDA imposed a limit of 20 
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ppb for aflatoxin in food for human consumption. The potential annual economic cost of 

aflatoxins in the United States is between $104.5 million and $1.68 billion dollars 

(Mitchell et al., 2016; Robens and Cardwell, 2003).  

Temperature, humidity, moisture content, and insects are the main factors in 

postharvest A. flavus infection. A. flavus prefers to grow at 37C but has been known to 

develop at temperatures as low as 12C and as high as 48C (Paraginski et al., 2014; 

Schindler et al., 1967; Xu et al., 2007). It also favors a moisture content of at least 15%, 

and between 70-90% humidity (Niaz et al., 2011; Trenk and Hartman, 1970).  The 

purpose of this experiment is to assess if certain storage conditions can reduce the growth 

of Aspergillus flavus and aflatoxin accumulation of harvested maize.  

Methods and Materials 

The three different maize hybrids that were used in the experiment were GA209 x 

T173 (susceptible cross), Mp313E x T173 (resistant and susceptible cross), and Mp313E 

x Mp717 (resistant cross). GA209 x T173 (susceptible cross), GA209 x Mp313E 

(resistant and susceptible cross), and Mp313E x Mp717 (resistant cross) were the three 

maize hybrids used the following year (Table 5.1).  

Table 5.1 Maize hybrid used in both years of maize storage experiment.  

Aflatoxin Susceptibility of Maize First Year Second Year 

Susceptible Maize Hybrid GA209 x T173 GA209 x T173 

Resistant and Susceptible Maize 

Hybrid 

Mp313E x T173 GA209 x Mp313E 

Resistant Maize Hybrid Mp313E x Mp717 Mp313E x Mp717 
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The maize hybrids were self-pollinated to guarantee that the ears have as many 

kernels as possible. The field was irrigated. Approximately 21 days after silk emergence, 

the top ear from each plant was inoculated with Aspergillus flavus isolate NRRL 3357 or 

water as a control in a 3 by 3-kernel grid. There will be three inoculated maize plants for 

each row. Approximately two months after inoculation with Aspergillus flavus during 

harvest, GA209 x T173, Mp313 x T173, and Mp717 x Mp313E maize hybrids were 

collected and split into four groups. The first group was immediately analyzed and used 

as a control for the other three groups. The samples in the second group was baked in a 

large wooden oven for seven days at 40°C and then processed. This drying down process 

is common amongst farmers. The samples in the third group would also be baked for 

seven days and then stored in a dry container for eight weeks before processing. The 

samples in the final group were stored in a dry container for eight weeks prior to 

processing. There were six samples of each of the three maize hybrids in each group. 

Maize hybrids inoculated with water acted as a control. The experiment was completed 

using a randomized complete block design with n=72. The block was the maize 

genotype. The treatment was the storage option. The experimental unit was the row of 

maize. Significance was tested at α=0.05. Statistical analysis was done using SAS (SAS 

Institute In.; Cary, NC) 9.4 software. 

Maize kernels were flash frozen in liquid nitrogen. The corn kernels were then 

ground with a mortar and pestle into a fine powder. 200 milligrams of each ground kernel 

was placed into a 1.5 mL micro-centrifuge tubes. Then 1 mL of a 70% methanol/water 

solution was added to the tube. The samples were shaken for two minute and then 

centrifuged for five minutes at 3000. 0.45 μm PTFE syringe filters were used to purify 
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the samples after centrifugation. An Agilent 6460 LC/MS Triple Quadruple, which uses 

electrospray ionization (ESI), was used to analyze the aflatoxin concentration of the 

samples. The autosampler temperature was set to 4°C. The HPLC used a Zorbax Eclipse 

Plus-C18 Narrow Bore 2.1 x 50mm, 5µm column with a temperature of 50°C. The 

mobile phase consisted of 5mM ammonium acetate with 0.1% formic acid in HPLC-

grade water and 5mM ammonium acetate with 0.1% formic acid in methanol.  The flow 

rate of the mobile phase during the analysis was consistently 0.6 mL/min. The mobile 

phase gradient was transitioned from 95% water to 100% methanol during the six 

minutes of the analysis time. Then for the final three minutes of the run, the mobile phase 

reversed from 100% methanol back to 95% water. The total run time of the method was 

nine minutes, which includes a six-minute analysis time and an additional three minutes 

for the system to get back to equilibrium. The calibration curve was matrix-matched in 

order to reduce matrix effects. The twelve-point calibration curve consisted of the 

following concentrations: 1 ppb, 5 ppb, 10 ppb, 20 ppb, 50 ppb, 100 ppb, 200 ppb, 400 

ppb, 600 ppb, 800 ppb, and 1000 ppb. The Agilent 6460 Triple Quadrupole Mass 

Spectrometer (MS/MS) system coupled to an electrospray analyzed the samples while in 

positive mode. The drying gas temperature was 325°C while the gas flow was set to 10 

liters per minute. The nebulizer gas pressure was set to 50 psi and the capillary voltage 

was 4000V. The Sheath Gas Flow had an output of 11 liters per minute and the sheath 

gas temperature reached temperatures of 350°C. The delta electron multiplier voltage 

(EMV) was 800V and the dwell time lasted for 200msec. The precursor ion for aflatoxin 

B1 was 313.1 and 329.1 for aflatoxin M1. While in multiple reaction monitoring (MRM) 

mode, the mass spectrometer was set to look for certain daughter ions after the precursor 
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ion entered the collision cell. The transitions for aflatoxin B1 included 313.1 > 285.1 with 

a collision energy of 20kEV, 313.1 > 269.1 with a collision energy of 25kEV, and 313.1 

> 241.1 with a collision energy of 35kEV. The fragmentor value was 166 for aflatoxin B1 

and 131 for aflatoxin M1. The cell accelerator (7) values were the same for both aflatoxin 

transitions. The two transitions used for identifying aflatoxin M1 are 329.1>273.1 and 

329.1>229.1. The retention time of aflatoxin M1 was 3.0 minutes and 3.4 minutes for 

aflatoxin B1. Agilent MassHunter Quantitative Analysis Workstation Software v. 

B.04.0.225.19 was used to analyze the quantitative data obtained from the samples and 

the calibration curve. This method can also be used to check for the presence of other 

types of aflatoxins being produced by A. flavus. 

The maize DNA were extracted from 100 milligrams of the ground corn kernel 

using the CTAB method (Cetyl Trimethyl Ammonium bromide) for plant tissue. 250 μL 

of the buffer was added twice to the 100 milligrams ground corn kernel samples in tubes 

for a final volume of 500 μL. The samples were then placed into a 60°C water bath for 15 

minutes. 200 μL of the chloroform/octanol mixture was added to each sample twice. The 

samples were then inverted 50 times in order to thoroughly mix the solution. Once that 

was completed, the samples were centrifuged at 3000 rpm for 15 minutes. The 

supernatant was then transferred into clean micro centrifuge tubes. 300 μL of isopropanol 

was added to the tubes. The samples were inverted 15 times to properly mix the solution. 

Then the samples were set in the freezer overnight. The samples were centrifuged at 3000 

rpm for 15 minutes at 4°C. Once the samples were decanted, 300 μL of 90% ethanol was 

pipetted into the tubes. Then the samples were centrifuged again at 3000 rpm for 5 

minutes at 4°C. Finally, the samples were decanted and the pellets were allowed to air 
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dry. The pellets were suspended in 100 μL of TE buffer. The CTAB method is ideal for 

DNA extraction because of its ability to remove the high number of polysaccharides and 

phenolic compounds that are found in plant tissue, which could interact irreversibly with 

nucleic acid. A Nano Drop ND-1000 Spectrophotometer (Nano Drop Technologies, Inc., 

Wilmington, DE) was used to determine the quality and quantity of DNA. The fungal 

biomass of the inoculated maize samples was determined by using quantitative real time 

polymerase chain reaction (qPCR).  

The forward primer and reverse primer for the fungal quantification Af2 (forward 

primer: 5 -ATCATTACCGAGTGTAGGGTTCCT-3; reverse primer: * 5-

GCCGAAGCAACTAAGGTACAGTAAA-3; amplicon 73 bp) designed in the internal 

transcribed spacer 1 (ITS1) sequence. The forward and reverse primers for the maize 

quantification Zmt3 (forward primer: 5 -TCCTGCTCGACAATGAGGC-3; reverse 

primer: 5 -TTGGGCGCTCAATGTCAA-3; amplicon 63 bp) amplifying maize α-tubulin. 

5 μL of Power SYBR green PCR Master Mix, 0.5 μL of the forward primer, 0.5 μL of the 

reverse primer, 2.0 μL of DNA-free water, and 2.0 μL of sample DNA at a concentration 

of 10 ng/μL were combined to make up the 10 μL reaction volume. The Roche 

LightCycler 480 instrument (Roche Diagnostics Corporation, Indianapolis, IN) was used 

to determine the fungal biomass. The temperature profile for denaturation, melting curve, 

gradual heating, and cooling step conditions for the qPCR were as follows: denature at 

95°C for 10 min, 45 cycles at 95°C for 10s, 60°C for 5s, 72°C for 10s, 95°C for 10s, 

anneal at 65°C for 1 min, 97°C for 5s, and cool at 40°C for 10s. Two standard curves for 

both maize and fungal DNA at concentrations of 10, 1.0, 0.1, 0.01, 0.001, and 0.0001 

ng/μL were both ran with the DNA samples. 
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Results and Discussion 

The collect and process method had a mean fungal biomass of 0.00958 ± 0.058 

ng/μL and an average aflatoxin concentration of 5403.145 ± 2619.835 ppb. The mean 

aflatoxin accumulation and fungal biomass of the bake and process method were 

3119.135 ± 1935.912 ppb and 0.07281 ± 0.176 ng/μL, respectively. The bake and store 

method had a mean aflatoxin concentration of 3975.518 ± 1389.85 ppb and an average 

fungal biomass of 0.00889 ± 0.016 ng/μL. The average fungal biomass and aflatoxin 

accumulation of the store and process method were 0.00825 ± 0.010 ng/μL and 3326.083 

± 1781.933 ppb respectively (Figure 5.1).  

 

Figure 5.1 Average aflatoxin concentration of inoculated maize stored using different 
methods (n=72).  
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There was a significant difference in the aflatoxin levels between the collect and 

process method and the other storage methods (P=0.0033). The fungal biomass was 

higher in the maize that underwent the bake and process method although it was not 

significant (P=0.111). The susceptible x resistant maize hybrids had the highest amount 

of A. flavus biomass while the resistant maize hybrids had greatest amount of aflatoxin. 

The eight-week storage method had the least amount of fungal biomass (Table 5.2). The 

bake and process method had the least amount of aflatoxin accumulation when compared 

to the other methods.  

Table 5.2 Mean A. flavus biomass concentration (ng/µL) of inoculated maize stored 
using different methods with p.  

Method GA209xT173 Mp313ExT173 
GA209xT173 

Mp313ExMp717 

Process (n=18) 0.0215 ± 0.0195 0.0019 ± 0.0021 0.0054 ± 0.0062 

Bake/Process (n=18) 0.0014 ± 0.0011 0.2160 ± 0.2626 0.0011 ± 0.0006 

Bake/Store (n=18) 0.0047 ± 0.0044 0.0006 ± 0.0002 0.0214 ± 0.0243 

Store (n=18) 0.0140 ± 0.0126 0.0084 ± 0.0095 0.0023 ± 0.0009 

 

The maize inoculated with water was not often infected with Aspergillus flavus 

and the aflatoxin concentration in those that were did not exceed one parts per billion. 

The storage method had significantly higher fungal biomass and aflatoxin concentration 

(P=0.00258). The resistant hybrid, Mp717 x Mp313E, had significantly lower aflatoxin 

accumulation when compared to the other hybrids (P=0.0004).   
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Conclusion 

The resistant maize hybrid, Mp717 x Mp313E, in the experiments contained the 

highest levels of aflatoxin compared to the other maize hybrids but the lowest fungal 

biomass. The average aflatoxin concentration was lowest in the susceptible/resistant 

maize hybrids. Although the fungal biomass was higher in the bake and process method; 

it was not significantly worst when compared to the other methods. In terms of aflatoxin 

concentration, the collect and process method was significantly worst for aflatoxin 

concentration. This experiment suggests that the storage method of maize has little effect 

on the amount of fungal biomass and aflatoxin in maize kernels that were previously 

infected with Aspergillus flavus. 
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IDENTIFYING AUXIN HERBICIDIES FORMULATIONS USING FT-IR 

Introduction 

Weeds are undesirable plants that grow competitively with other plants around 

them. There are around 8,000 distinct species of weeds. They are usually characterized by 

having ample seed production, swift population establishment, and vegetative 

reproductive structures (Heap, 2014; Pimentel et al., 1997). These properties allow weeds 

to produce potentially thousands of seeds per plant while most crops produce a few 

hundred seeds per plant. Weeds are detrimental to crops because they compete for the 

same resources (water, sunlight, nutrients etc.). The speed of their population 

establishment makes it easier for weeds to outcompete crops (Mullin, 2009). This results 

in potential crop yield loss. Harmful organisms such as bacteria, virus, fungi, insects, and 

weeds cause 34% of the total potential crop loss in global agriculture (Pimentel, 2005). 

The lower the available soil moisture, the higher the potential yield loss due to weeds. 

Before the use of herbicides, weed management was labor-intensive involving removal 

by hand weeding or tillage. Herbicide use in earnest began in the United States after 

World War II. Herbicides were often used either prior to seeding or before plant 

emergence to avoid damaging the crop. Over 95% of maize (Zea mays), soybeans 

(Glycine max), and cotton (Gossypium hirsutum) crops in the United States have 

herbicides applied to them. More than a third (35%) of the United States Agricultural 
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GDP is composed of maize, soybean, and cotton crops (FAOSTAT 2014). There are 

several types of herbicides that can be sorted into two main categories: selective and 

nonselective. Selective herbicides use mechanisms that exploit physiological variance 

that only effect specific plant species. Acetolactate synthase (ALS) inhibitors and 

synthetic auxins are widely used example of selective herbicide (Green, 2014). 

Nonselective herbicides effect most plant species focusing on biological pathways that 

are widely conserved. 5-enylpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors 

such as glyphosate are a popular example of a nonselective herbicide.  

Glyphosate 

Monsanto first released Glyphosate (Roundup) in 1974. Glyphosate is currently 

the most popular herbicide used in the United States (Figure 6.1). It is unique because it 

was the first modern non-selective herbicide that inactivated in the soil. When applied to 

plants, EPSPS is inhibited by glyphosate (Steinrucken and Amrhein, 1980). It catalyzes 

the transfer of the enolpyruvyl moiety of phosphoenol pyruvate (PEP) to shikimate-3-

phosphate (S3P). This is a key in the synthesis of aromatic amino acids for hormones and 

plant metabolites. The active site of the EPSPS enzyme in higher plants is highly 

conserved (Gao et al., 2014). Glyphosate is competitive with respect to PEP binding to 

EPSPS but uncompetitive with respect to S3P and the resulting S3P complex is very 

stable. Phenylalanine, tyrosine, and tryptophan are the aromatic amino acids that are 

synthesized from this pathway (Duke and Powles, 2008). 
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Figure 6.1 Molecular structure of glyphosate. 

 

Developed in the 1990s, glyphosate resistant crops express CP4, which is a type 

of EPSPS protein that is insensitive to glyphosate. Soybeans were the first glyphosate-

resistant crop to be released in 1996 (Barrows et al., 2014; Brookes and Barfoot, 2013; 

Green, 2014; Green and Owen, 2011). Two years later, both corn and cotton had 

glyphosate tolerant lines available. The United States is the leading producer of both 

maize and soybeans in the world. It is third in global production of cotton behind China 

and India. Since the release of glyphosate resistant crops, only a modest increase as been 

seen in the yield of these crops (Pimentel, 2005). However, there is an economic benefit. 

For selective herbicides to be as effective, a combination of them used at a higher volume 

is required. With the release of glyphosate resistant crops, farmers went from purchasing 

up to 11 unique herbicides to apply to their fields to just glyphosate. Glyphosate resistant 

crops have save U.S. farmers a calculated $1.2 billion dollars annually due to the 

reduction in herbicide purchases and application (Carpenter and Gianessi, 1999; Gianessi, 

2005). This has led to 93% of all soybean, 85% of all corn, and 80% of all cotton crops 

grown in the United States now being glyphosate resistant. The increased application of 

glyphosate as the primary herbicide over several years has led to a rise in glyphosate 

resistant weeds (Foresman and Glasgow, 2008). Rigid ryegrass, horseweed, ragweed, 
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Palmer Amaranth, Italian ryegrass, water hemp, and goosegrass have all become tolerant 

to glyphosate (Christoffoleti et al., 2015; Sammons and Gaines, 2014).  

Glyphosate resistance in weeds is achieved in a variety of diverse ways. 

Glyphosate can be transported in the phloem where it is sequestered in the vacuole from 

the cytosol. This reduces the amount of glyphosate available to enter the chloroplast and 

inhibit EPSPS. Glyphosate can be released into the cell at a nontoxic rate or potentially 

stay in the vacuole indefinitely (Ge et al., 2010; González-Torralva et al., 2012). A 

mutation of the EPSPS Prot106 codon or an increase in the amount of EPSPS produced 

are other ways that weeds can become glyphosate resistant (Délye et al., 2013). 

Worldwide, 24 species of weeds have developed glyphosate resistance (Edwards et al., 

2014).  

Synthetic Auxins 

The use of synthetic auxins as additional herbicides has increased to combat the 

rise of glyphosate tolerate weeds. Broadleaf (dicot) plants are damaged and killed by 

synthetic auxins such as dicamba and 2,4-dichlorophenoxyactic acid (2,4-D). 2,4-D and 

dicamba have been used for weed control since their discovery during World War II 

(Gianessi, 2013). Dicamba and 2,4-D act as the natural hormone indole-3-acetic acid 

(IAA) regulator of several plant regulatory functions (Figure 6.2).  
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Figure 6.2 Different formulations of the herbicide 2,4-D.  

 

Auxins attaching to the Auxin Binding Protein 1 induces proton pump 

hyperactivity due to the decreases in pH because of the accumulation of protons outside 

the extracellular membrane (Christoffoleti et al., 2015; Mano and Nemoto, 2012). The 

hydrogen ion concentration outside the cell causes the opening of the potassium channel 

to move potassium inside the cell. As a result, water influxes into the cell through 
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aquaporins. The acidic condition outside the cell breaks noncovalent bonds between 

cellulose and hemicellulose, which loosens the cell wall and allows more water into the 

cell. Calcium increases inside the cell and activates phosphatidylinositol-3-phosphate, 

which phosphorylates NADPH oxidase and produces reactive oxygen species 

(Grossmann, 2000, 2009). The Auxin Binding Protein 1 at the plasma membrane also 

activates RAC/ROP GTPase. G proteins have a key role in signal transduction in 

eukaryotic cells as well as a vital role in cytoskeleton organization modeling the structure 

and arrangement of actin filaments and microtubules. Peroxisomes travel on actin so it 

affects the mobility of the peroxisomes to remove reactive oxygen species. The abscisic 

acid (ABA) and ethylene induces the death of plant tissues (Kelley and Riechers, 2007; 

Woodward, 2005). The loss of cell wall structure allows reactive oxygen species to 

penetrate the plasma membrane where they can interact with phospholipids, promoting 

unsaturation of plasma membrane lipids, reactive oxygen species, and leakage of the 

cytosol is what leads to cell death. Soybean and cotton plants have 2,4-D and dicamba 

resistant varieties commercially available like Xtend soybeans from Monsanto and Enlist 

cotton from Dow AgroSciences. 

The main issue with the surging popularity of synthetic auxins is their tendency to 

drift after application due to their volatility. The movement of spray droplets that land 

off-target causes spray drift. The smaller the droplet and the longer it remains in the air, 

the higher the chance for drift. Vapor drift occurs when applied herbicide evaporates 

from the target plant and aerosolizes to an unintended location. Crops affected by drift at 

the late vegetation or early reproduction stage show the greatest reduction of yield. 

Companies such as Monsanto, Dow Agro, and BASF have recently released low volatile 
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versions of dicamba (Engenia) and 2,4-D (Enlist Duo) in hopes to reduce the amount of 

drift that occurs when used with commercially resistant variety. The dimethylamine 

(DMA) and diglycolamine (DGA) formulations of dicamba are more volatile than the 

newly released BAPMA dicamba formulation. Reuters reports that over one million acres 

of, the dicamba resistant variety, Xtend soybeans were planted in the United States in 

2016. Monsanto predicts 15 million acres of Xtend soybeans to be planted in 2017 in the 

US and up to 55 million acres of Xtend soybeans will be planted in 2019 (Plume, 2016).  

A common analytical method used to detect both 2,4-D and dicamba in affected 

crops is liquid chromatography coupled to mass spectroscopy. The issue with this 

analysis is that the extraction cleaves the salt groups from the auxin herbicides. This is 

due to the rise of pH after the addition of sodium hydroxide that is required in the sample 

preparation for the extraction. So, although it is possible to distinguish between 2,4-D and 

dicamba using LC/MS, it is difficult to differentiate the DMA and DGA formulations of 

these herbicides using this method. Fourier Transform Infrared spectroscopy (FT-IR) is a 

fast, accurate, and usually non-destructive and requires little to no sample preparation 

(Figure 6.3). This would potentially make it ideal for analyzing soybean and cotton 

samples affected by herbicide drift from the different formulations of synthetic auxins. 
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Figure 6.3 Thermo Nicolet 6700 FT-IR Spectrometer. 

 

Materials and Methods 

To simulate drift, soybean plants in the R3 stage were sprayed at a rate of (1/64X) 

with Banvel (dimethylamine salt of dicamba), Clarity (diglycolamine salt of dicamba), 

MON76980 (diglycolamine salt of dicamba), Engenia (BAMPA salt of dicamba), and 

Roundup with untreated soybeans used as a control. Cotton plants in the reproductive 

stage were sprayed at a rate of (1/128X) to with Unison (2,4-D), Weedar64 (2,4-D amine 

salt), Weedone LV4 (2,4-D ester salt), 2,4-D Choline, and Roundup with untreated cotton 

plants used as a control. The rates were normalized to equal amounts of acid equivalence. 

The plants were collected immediately, 3, 7, 14, and 28 days after application and placed 

in a -80°C. The samples were ground with a mortar and pestle using liquid nitrogen and 

analyzed using a Thermo Nicolet 6700 FT-IR spectrometer with a liquid nitrogen-cooled 
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MCT High-D detector, a KBr beam splitter, and the Smart ARK accessory. 

Approximately 1 gram of sample was placed onto a ZnSe horizontal attenuated total 

reflectance crystal for each analysis. The ZnSe horizontal attenuated total reflectance 

crystal had an angle of incidence of 60° that allows for 10 reflections of infrared light to 

pass through the crystal for each scan with 64 scans per spectra. The spectra were 

collected from 4000 to 650 cm-1. Spectra were baseline corrected, normalized to the area 

under the curve, and converted to the first derivative using the Savitzky-Golay algorithm 

using OMNIC 7.3 and the Unscrambler X 10.3 software. Derivation of the spectra was 

done in order to remove linear baseline effect as well as potentially reveal hidden spectral 

feature in overlapping peaks. For statistical analysis, the spectra region of 1800-800 cm-1 

was used because the only other significant peak was a broad OH from the water in the 

plant (Figure 6.4).  

 

Figure 6.4 Infrared spectra of soybean plants 28 days after herbicide application. 
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Results and Discussion 

This first step to creating a model was first analyzing the spectra using Principal 

Component Analysis. Principal Component Analysis (PCA) involves a mathematical 

modeling procedure that clarifies the relationships between samples and their variables. It 

take the original information and condenses it into a number of variables called principal 

components, which explains various amounts of the original dataset. The first principal 

component accounts for the greatest amount of variance while the second principal 

component is the second most variance. Explained variance is a measure of the amount of 

variation considered by the model. For the soybean samples collected 28 days after the 

application of herbicides, there was 96% total explained variance with initial seven 

principal components. The first three principal components accounted for 86% of the 

explained variance. Distinct clustering of the five sample types can be observed using a 

3D PCA graph of the initial three principal components (Figure 6.5). The explained 

variance from the principal component analysis for the soybean samples collected 14 day, 

7 day, 3 day, and immediately after herbicide application were 92%, 92%, 91%, and 96% 

respectively. The loading plot illustrates the importance of the wavelengths 1687-1560 

cm-1 for distinguishing between the herbicide applied samples. Peaks between 1687 and 

1560 cm-1 are more than likely from the aromatic ring of the dicamba as well as the 

primary or secondary amine from the salts attached to the dicamba formulations.  
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Figure 6.5 Principal component analysis of soybean 28 days after herbicide 
application. 

 

The cotton samples retrieved 28 days after herbicide application had 92% of the 

total explained variance. 91% of the total variance was explained with only the first three 

principal components. A 3D PCA was constructed using the original three principal 

components. Separation between the six clusters are easily distinguishable. The cotton 

plants analyzed 14 day, 7 day, 3 day, and immediately after herbicide application had an 

explained variance from the principal component analysis of 83%, 91%, 91%, and 95% 
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respectively. The loading plot shows that peaks 1633-1556 cm-1 and 1395-1350 cm-1 are 

important wavelengths when detecting variation between the samples. The peaks between 

1633 and 1556 cm-1 are possibly from the aromatic ring of the auxin herbicides and the 

primary or secondary amines from the salts attached to 2,4-D herbicides. The peaks from 

1395-1350 cm-1 are indicative of a carboxylic acid group, which is present in the majority 

of the 2,4-D formulations.  

Linear Discriminant Analysis (LDA) is a supervised, classification method to 

identify unknown samples. LDA uses the parameters of the samples from the PCA to 

consider the within group and between group variance. A classification model was 

created for each of the soybean and cotton plant collection dates. The model accuracy for 

the soybean samples analyzed initially, 3 days, 7 days, and 14 days after herbicide 

application was 89%, 92%, 84%, and 91% respectively. Soybean plants collected 28 days 

after application had an accuracy of 92.6%. It successfully classified all the groups using 

except for mistakenly classifying Clarity as MON76980. This is most likely because both 

Clarity and MON76980 are both the formulation of dicamba with the diglycolamine salt 

attached. When the model was adjusted by categorizing MON76980 and Clarity the 

same, the accuracy of the model increased to 98.04% (Figure 6.6). All unknowns samples 

ran in the model were then correctly identified.  
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Figure 6.6 Linear discriminant analysis of soybean 28 days after herbicide application. 

The cotton plants analyzed 14 days, 7 days, 3 days, and immediately after herbicide 
application had a model accuracy from the linear discriminant analysis of 84%, 90%, 
87%, and 90% respectively. The accuracy of the classification model for the cotton plants 
collected 28 days after herbicide application was 88.1%. Unknowns put through the 
model for validation were all properly recognized except for Unison being mistaken for 
Roundup.  

Conclusion 

Using these statistical techniques, the various herbicides were successfully 

differentiated up to 28 days after application. Promising models have been developed that 

can determine which type of 2,4-D and dicamba were applied to soybean or cotton plants 

up to 28 days after application.  In the future, more samples will analyzed in order to 

increase the precision of the model, and more unknowns will need to be run to increase 

the robustness of the model. These models will hopefully allow us to determine unknown 

herbicide applications due to drift in crops to help solve and ultimately diminish drift 

cases.  
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OPTIONS PS=55 LS=85 NODATE; 

DATA AFLATOXIN; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 329\aflatoxin.dat'; 

INPUT DAP MAIZE DAI AFLATOXIN; 

RUN; 

PROC MEANS SUM MEAN MAXDEC=2 FW=10; 

VAR AFLATOXIN; 

CLASS DAP MAIZE DAI; 

TYPES DAP*MAIZE DAP MAIZE*DAI MAIZE DAI; 

RUN; 

PROC GLM; 

CLASS DAP MAIZE DAI; 

MEANS DAI / LSD LINES; 

MEANS MAIZE / LSD LINES E = MAIZE*DAP; 

PROC PRINT; 

RUN; 

 

 

The SAS System 

 

The MEANS Procedure 

Analysis Variable : AFLATOXIN  

DAI N Obs Sum Mean Std Dev 

1 12 0.00 0.00 0.00 

2 12 186.06 15.50 35.09 

3 12 1382.23 115.19 128.03 

4 12 3034.06 252.84 182.98 

5 12 2760.36 230.03 195.91 

6 12 1855.72 154.64 153.84 
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Analysis Variable : AFLATOXIN  

MAIZE N Obs Sum Mean Std Dev 

1 36 5703.90 158.44 177.83 

2 36 3514.53 97.63 145.63 

 

Analysis Variable : AFLATOXIN  

PLOT N Obs Sum Mean Std Dev 

1 36 2838.40 78.84 135.61 

2 36 6380.02 177.22 177.10 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

PLOT 2 1 2 

MAIZE 2 1 2 

DAI 6 1 2 3 4 5 6 

 

Number of Observations Read 72 

Number of Observations Used 72 

 



 

130 

 

The SAS System 

 

The GLM Procedure 

  

Dependent Variable: AFLATOXIN  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 12 963743.748 80311.979 4.98 <.0001 

Error 59 951843.254 16132.937     

Corrected Total 71 1915587.002       

 

R-Square Coeff Var Root MSE AFLATOXIN Mean 

0.503106 99.20476 127.0155 128.0337 

 

Source DF Type I SS Mean Square F Value Pr > F 

PLOT 1 174209.2755 174209.2755 10.80 0.0017 

MAIZE 1 66573.9024 66573.9024 4.13 0.0467 

DAI 5 670895.1131 134179.0226 8.32 <.0001 

MAIZE*DAI 5 52065.4570 10413.0914 0.65 0.6660 
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Source DF Type III SS Mean Square F Value Pr > F 

PLOT 1 174209.2755 174209.2755 10.80 0.0017 

MAIZE 1 66573.9024 66573.9024 4.13 0.0467 

DAI 5 670895.1131 134179.0226 8.32 <.0001 

MAIZE*DAI 5 52065.4570 10413.0914 0.65 0.6660 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 59 

Error Mean Square 16132.94 

Critical Value of t 2.00100 

Least Significant Difference 103.76 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

  A 252.84 12 4 

  A       

  A 230.03 12 5 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

  A       

B A 154.64 12 6 

B         

B C 115.19 12 3 

  C       

D C 15.50 12 2 

D         

D   0.00 12 1 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 59 

Error Mean Square 16132.94 

Critical Value of t 2.00100 

Least Significant Difference 59.905 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A 158.44 36 1 

        

B 97.63 36 2 
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Figure A.1 Year one aflatoxin data. 
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OPTIONS PS=55 LS=85 NODATE; 

DATA BIOMASSFINAL; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 329\fungalbiomass.dat'; 

INPUT DAP MAIZE DAI REP $ BIOMASS; 

RUN; 

PROC MEANS SUM MEAN MAXDEC=2 FW=10; 

VAR BIOMASS; 

CLASS DAP MAIZE DAI REP; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS DAP MAIZE DAI REP; 

MODEL BIOMASS = DAP MAIZE DAI MAIZE*DAI; 

MEANS DAI / LSD LINES; 

MEANS MAIZE / LSD LINES; 

RUN; 

 

The SAS System 

 

The MEANS Procedure 

Analysis Variable : BIOMASS  

DAI N Obs Sum Mean Std Dev 

1 12 0.00 0.00 0.00 

2 12 0.01 0.00 0.00 

3 12 0.04 0.00 0.00 

4 12 0.06 0.01 0.01 

5 12 0.08 0.01 0.01 

6 12 0.02 0.00 0.00 
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Analysis Variable : BIOMASS  

MAIZE N Obs Sum Mean Std Dev 

1 36 0.14 0.00 0.01 

2 36 0.07 0.00 0.00 

 

Analysis Variable : BIOMASS  

PLOT N Obs Sum Mean Std Dev 

1 36 0.10 0.00 0.01 

2 36 0.10 0.00 0.01 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

PLOT 2 1 2 

MAIZE 2 1 2 

DAI 6 1 2 3 4 5 6 

 

Number of Observations Read 72 

Number of Observations Used 72 
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The SAS System 

 

The GLM Procedure 

  

Dependent Variable: BIOMASS  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 12 0.00059561 0.00004963 1.25 0.2741 

Error 59 0.00234731 0.00003978     

Corrected Total 71 0.00294292       

 

R-Square Coeff Var Root MSE BIOMASS Mean 

0.202387 219.4019 0.006308 0.002875 

 

Source DF Type I SS Mean Square F Value Pr > F 

PLOT 1 0.00000012 0.00000012 0.00 0.9559 

MAIZE 1 0.00007223 0.00007223 1.82 0.1830 

DAI 5 0.00040742 0.00008148 2.05 0.0849 

MAIZE*DAI 5 0.00011584 0.00002317 0.58 0.7134 
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Source DF Type III SS Mean Square F Value Pr > F 

PLOT 1 0.00000012 0.00000012 0.00 0.9559 

MAIZE 1 0.00007223 0.00007223 1.82 0.1830 

DAI 5 0.00040742 0.00008148 2.05 0.0849 

MAIZE*DAI 5 0.00011584 0.00002317 0.58 0.7134 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 59 

Error Mean Square 0.00004 

Critical Value of t 2.00100 

Least Significant Difference 0.0052 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

  A 0.006672 12 5 

  A       

B A 0.005099 12 4 



 

145 

Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

B A       

B A 0.003062 12 3 

B A       

B A 0.001830 12 6 

B         

B   0.000546 12 2 

B         

B   0.000040 12 1 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 59 

Error Mean Square 0.00004 

Critical Value of t 2.00100 

Least Significant Difference 0.003 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A 0.003876 36 1 

A       

A 0.001873 36 2 
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Figure A.2 First year A. flavus biomass data. 
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OPTIONS PS=55 LS=85 NODATE; 

DATA AFLATOXIN; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 435\aflatoxin.dat'; 

INPUT PLOT MAIZE DAI REP $ AFLATOXIN; 

RUN; 

PROC MEANS SUM MEAN MAXDEC=2 FW=10; 

VAR AFLATOXIN; 

CLASS PLOT MAIZE DAI; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS PLOT MAIZE DAI; 

MODEL AFLATOXIN = PLOT MAIZE DAI MAIZE*DAI; 

MEANS DAI / LSD LINES; 

MEANS MAIZE / LSD LINES; 

RUN; 

 

 

 

The SAS System 

 

The MEANS Procedure 

Analysis Variable : AFLATOXIN  

DAI N Obs Sum Mean Std Dev 

1 27 16346.42 605.42 1157.08 

2 27 44987.07 1666.19 2051.88 

3 27 95005.51 3518.72 2056.01 

4 27 124718.47 4619.20 2329.38 

5 27 124632.76 4616.03 2834.75 

6 27 121396.63 4496.17 2631.30 
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Analysis Variable : AFLATOXIN  

MAIZE N Obs Sum Mean Std Dev 

1 54 188178.64 3484.79 2948.83 

2 54 144374.73 2673.61 2123.84 

3 54 194533.49 3602.47 2939.93 

 

Analysis Variable : AFLATOXIN  

PLOT N Obs Sum Mean Std Dev 

1 54 145841.24 2700.76 2435.19 

2 54 161481.26 2990.39 2446.59 

3 54 219764.36 4069.71 3064.98 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

PLOT 3 1 2 3 

MAIZE 3 1 2 3 

DAI 6 1 2 3 4 5 6 

 

Number of Observations Read 162 

Number of Observations Used 162 
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The SAS System 

 

The GLM Procedure 

  

Dependent Variable: AFLATOXIN  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 19 539735086 28407110 6.25 <.0001 

Error 142 645908981 4548655     

Corrected Total 161 1185644066       

 

R-Square Coeff Var Root MSE AFLATOXIN Mean 

0.455225 65.55024 2132.758 3253.623 

 

Source DF Type I SS Mean Square F Value Pr > F 

PLOT 2 56210846.7 28105423.4 6.18 0.0027 

MAIZE 2 27623880.0 13811940.0 3.04 0.0511 

DAI 5 401438003.0 80287600.6 17.65 <.0001 

MAIZE*DAI 10 54462355.9 5446235.6 1.20 0.2977 
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Source DF Type III SS Mean Square F Value Pr > F 

PLOT 2 56210846.7 28105423.4 6.18 0.0027 

MAIZE 2 27623880.0 13811940.0 3.04 0.0511 

DAI 5 401438003.0 80287600.6 17.65 <.0001 

MAIZE*DAI 10 54462355.9 5446235.6 1.20 0.2977 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 142 

Error Mean Square 4548655 

Critical Value of t 1.97681 

Least Significant Difference 1147.5 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

A 4619.2 27 4 

A       

A 4616.0 27 5 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

A       

A 4496.2 27 6 

A       

A 3518.7 27 3 

        

B 1666.2 27 2 

B       

B 605.4 27 1 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 142 

Error Mean Square 4548655 

Critical Value of t 1.97681 

Least Significant Difference 811.38 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

  A 3602.5 54 3 

  A       

B A 3484.8 54 1 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

B         

B   2673.6 54 2 

Figure A.3 Second year aflatoxin data. 
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OPTIONS PS=55 LS=85 NODATE; 

DATA BIOMASS; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 435\fungalbiomass.dat'; 

INPUT PLOT MAIZE DAI $ BIOMASS; 

RUN; 

PROC MEANS SUM MEAN STD MAXDEC=2 FW=10; 

VAR BIOMASS; 

CLASS PLOT MAIZE DAI; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS PLOT MAIZE DAI; 

MODEL BIOMASS = PLOT MAIZE DAI MAIZE*DAI; 

MEANS DAI / LSD LINES; 

MEANS MAIZE / LSD LINES; 

RUN; 

 

 

 

The MEANS Procedure 

Analysis Variable : BIOMASS  

DAI N Obs Sum Mean Std Dev 

1 9 0.05 0.01 0.01 

2 9 0.10 0.01 0.01 

3 9 0.11 0.01 0.01 

4 9 0.08 0.01 0.01 

5 9 0.38 0.04 0.06 

6 9 0.10 0.01 0.01 
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Analysis Variable : BIOMASS  

MAIZE N Obs Sum Mean Std Dev 

1 18 0.32 0.02 0.04 

2 18 0.29 0.02 0.02 

3 18 0.21 0.01 0.02 

 

Analysis Variable : BIOMASS  

PLOT N Obs Sum Mean Std Dev 

1 18 0.19 0.01 0.01 

2 18 0.22 0.01 0.02 

3 18 0.41 0.02 0.04 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

PLOT 3 1 2 3 

MAIZE 3 1 2 3 

DAI 6 1 2 3 4 5 6 

 

Number of Observations Read 54 

Number of Observations Used 54 
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The SAS System 

 

The GLM Procedure 

  

Dependent Variable: BIOMASS  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 19 0.01211811 0.00063780 0.84 0.6450 

Error 34 0.02568475 0.00075543     

Corrected Total 53 0.03780286       

 

R-Square Coeff Var Root MSE BIOMASS Mean 

0.320561 180.5113 0.027485 0.015226 

 

Source DF Type I SS Mean Square F Value Pr > F 

PLOT 2 0.00161256 0.00080628 1.07 0.3552 

MAIZE 2 0.00034380 0.00017190 0.23 0.7977 

DAI 5 0.00791718 0.00158344 2.10 0.0899 

MAIZE*DAI 10 0.00224457 0.00022446 0.30 0.9771 
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Source DF Type III SS Mean Square F Value Pr > F 

PLOT 2 0.00161256 0.00080628 1.07 0.3552 

MAIZE 2 0.00034380 0.00017190 0.23 0.7977 

DAI 5 0.00791718 0.00158344 2.10 0.0899 

MAIZE*DAI 10 0.00224457 0.00022446 0.30 0.9771 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 34 

Error Mean Square 0.000755 

Critical Value of t 2.03224 

Least Significant Difference 0.0263 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

A 0.04182 9 5 

        

B 0.01239 9 3 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

B       

B 0.01150 9 2 

B       

B 0.01088 9 6 

B       

B 0.00943 9 4 

B       

B 0.00534 9 1 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 34 

Error Mean Square 0.000755 

Critical Value of t 2.03224 

Least Significant Difference 0.0186 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A 0.017917 18 1 

A       

A 0.015911 18 2 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A       

A 0.011851 18 3 

Figure A.4 Second year A. flavus biomass data. 
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OPTIONS PS=55 LS=85 NODATE; 

DATA AFLATOXIN; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 537\aflatoxin.dat'; 

INPUT PLOT MAIZE DAI REP $ AFLATOXIN; 

RUN; 

PROC MEANS SUM MEAN MAXDEC=2 FW=10; 

VAR AFLATOXIN; 

CLASS PLOT MAIZE DAI; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS PLOT MAIZE DAI; 

MODEL AFLATOXIN = PLOT MAIZE DAI MAIZE*DAI; 

MEANS DAI / LSD LINES; 

MEANS MAIZE / LSD LINES; 

RUN; 

 

 

 

 

 The MEANS Procedure 

Analysis Variable : AFLATOXIN  

DAI N Obs Sum Mean Std Dev 

1 27 398.50 14.76 21.56 

2 27 1887.93 69.92 68.73 

3 27 6687.17 247.67 231.11 

4 27 17880.42 662.24 453.60 

5 27 44990.00 1666.30 1109.30 

6 27 64549.54 2390.72 1196.85 

7 27 90576.19 3354.67 1256.37 
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Analysis Variable : AFLATOXIN  

MAIZE N Obs Sum Mean Std Dev 

1 63 77756.08 1234.22 1338.47 

2 63 49177.55 780.60 1064.65 

3 63 100036.11 1587.87 1747.70 

 

Analysis Variable : AFLATOXIN  

PLOT N Obs Sum Mean Std Dev 

1 63 59639.63 946.66 1105.91 

2 63 100756.14 1599.30 1855.83 

3 63 66573.98 1056.73 1181.96 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

PLOT 3 1 2 3 

MAIZE 3 1 2 3 

DAI 7 1 2 3 4 5 6 7 

 

Number of Observations Read 189 

Number of Observations Used 189 
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The SAS System 

 

The GLM Procedure 

  

Dependent Variable: AFLATOXIN  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 22 330980798.0 15044581.7 41.36 <.0001 

Error 166 60378189.7 363724.0     

Corrected Total 188 391358987.7       

 

R-Square Coeff Var Root MSE AFLATOXIN Mean 

0.845722 50.22036 603.0954 1200.898 

 

Source DF Type I SS Mean Square F Value Pr > F 

PLOT 2 15381334.7 7690667.4 21.14 <.0001 

MAIZE 2 20633466.0 10316733.0 28.36 <.0001 

DAI 6 274207987.4 45701331.2 125.65 <.0001 

MAIZE*DAI 12 20758009.9 1729834.2 4.76 <.0001 
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Source DF Type III SS Mean Square F Value Pr > F 

PLOT 2 15381334.7 7690667.4 21.14 <.0001 

MAIZE 2 20633466.0 10316733.0 28.36 <.0001 

DAI 6 274207987.4 45701331.2 125.65 <.0001 

MAIZE*DAI 12 20758009.9 1729834.2 4.76 <.0001 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 166 

Error Mean Square 363724 

Critical Value of t 1.97436 

Least Significant Difference 324.07 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

A 3354.7 27 7 

        

B 2390.7 27 6 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

        

C 1666.3 27 5 

        

D 662.2 27 4 

        

E 247.7 27 3 

E       

E 69.9 27 2 

E       

E 14.8 27 1 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 166 

Error Mean Square 363724 

Critical Value of t 1.97436 

Least Significant Difference 212.16 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A 1587.9 63 3 

        

B 1234.2 63 1 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

        

C 780.6 63 2 

Figure A.5 Third year aflatoxin data. 
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OPTIONS PS=55 LS=85 NODATE; 

DATA BIOMASS; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 537\fungalbiomass.dat'; 

INPUT PLOT MAIZE DAI $ BIOMASS; 

RUN; 

PROC MEANS SUM MEAN STD MAXDEC=2 FW=10; 

VAR BIOMASS; 

CLASS PLOT MAIZE DAI; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS PLOT MAIZE DAI; 

MODEL BIOMASS = PLOT MAIZE DAI MAIZE*DAI; 

MEANS DAI / LSD LINES; 

MEANS MAIZE / LSD LINES; 

RUN; 

 

 

 

 

 

 

 

The MEANS Procedure 

Analysis Variable : BIOMASS  

DAI N Obs Sum Mean Std Dev 

1 9 0.08 0.01 0.01 

2 9 0.07 0.01 0.00 

3 9 0.34 0.04 0.07 

4 9 0.32 0.04 0.04 

5 9 0.64 0.07 0.09 

6 9 0.12 0.01 0.01 
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Analysis Variable : BIOMASS  

DAI N Obs Sum Mean Std Dev 

7 9 1.28 0.14 0.12 

 

Analysis Variable : BIOMASS  

MAIZE N Obs Sum Mean Std Dev 

1 21 0.89 0.04 0.07 

2 21 1.24 0.06 0.09 

3 21 0.73 0.03 0.07 

 

Analysis Variable : BIOMASS  

PLOT N Obs Sum Mean Std Dev 

1 21 1.08 0.05 0.09 

2 21 0.76 0.04 0.07 

3 21 1.02 0.05 0.07 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

PLOT 3 1 2 3 

MAIZE 3 1 2 3 

DAI 7 1 2 3 4 5 6 7 

 

Number of Observations Read 63 

Number of Observations Used 63 
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The SAS System 

 

The GLM Procedure 

  

Dependent Variable: BIOMASS  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 22 0.14222492 0.00646477 1.25 0.2635 

Error 40 0.20680925 0.00517023     

Corrected Total 62 0.34903418       

 

R-Square Coeff Var Root MSE BIOMASS Mean 

0.407481 158.5538 0.071904 0.045350 

 

Source DF Type I SS Mean Square F Value Pr > F 

PLOT 2 0.00270766 0.00135383 0.26 0.7709 

MAIZE 2 0.00653881 0.00326941 0.63 0.5366 

DAI 6 0.12625968 0.02104328 4.07 0.0028 

MAIZE*DAI 12 0.00671878 0.00055990 0.11 0.9999 
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Source DF Type III SS Mean Square F Value Pr > F 

PLOT 2 0.00270766 0.00135383 0.26 0.7709 

MAIZE 2 0.00653881 0.00326941 0.63 0.5366 

DAI 6 0.12625968 0.02104328 4.07 0.0028 

MAIZE*DAI 12 0.00671878 0.00055990 0.11 0.9999 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 40 

Error Mean Square 0.00517 

Critical Value of t 2.02108 

Least Significant Difference 0.0685 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

A 0.14276 9 7 

        

B 0.07066 9 5 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N DAI 

B       

B 0.03827 9 3 

B       

B 0.03552 9 4 

B       

B 0.01380 9 6 

B       

B 0.00867 9 1 

B       

B 0.00777 9 2 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 40 

Error Mean Square 0.00517 

Critical Value of t 2.02108 

Least Significant Difference 0.0448 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A 0.05908 21 2 

A       

A 0.04227 21 1 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A       

A 0.03470 21 3 

Figure A.6 Third year A. flavus biomass data. 
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CHAPTER V SUPPLEMENTAL MATERIAL 
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Data Harvest; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 435\harvest.dat'; 

INPUT MAIZE METHOD REP $ AFLATOXIN; 

RUN; 

PROC MEANS SUM MEAN MAXDEC=3 FW=12; 

VAR AFLATOXIN; 

CLASS MAIZE METHOD REP; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS MAIZE METHOD REP; 

MODEL AFLATOXIN = MAIZE METHOD REP; 

MEANS METHOD/LSD LINES; 

MEANS MAIZE/LSD LINES; 

RUN; 

 

The MEANS Procedure 

Analysis Variable : AFLATOXIN  

REP N Obs Sum Mean 

1 24 87988.522 3666.188 

2 24 96319.304 4013.304 

3 24 100522.038 4188.418 

 

Analysis Variable : AFLATOXIN  

METHOD N Obs Sum Mean 

1 18 97256.612 5403.145 

2 18 56144.433 3119.135 

3 18 71559.320 3975.518 

The SAS System 
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Analysis Variable : AFLATOXIN  

METHOD N Obs Sum Mean 

4 18 59869.498 3326.083 

 

Analysis Variable : AFLATOXIN  

MAIZE N Obs Sum Mean 

1 24 91529.225 3813.718 

2 24 78460.419 3269.184 

3 24 114840.220 4785.009 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

MAIZE 3 1 2 3 

METHOD 4 1 2 3 4 

REP 3 1 2 3 

 

Number of Observations Read 72 

Number of Observations Used 72 
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The SAS System 

 

The GLM Procedure 

  

Dependent Variable: AFLATOXIN  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 7 89143683.9 12734812.0 3.46 0.0033 

Error 64 235518233.0 3679972.4     

Corrected Total 71 324661917.0       

 

R-Square Coeff Var Root MSE AFLATOXIN Mean 

0.274574 48.49191 1918.325 3955.970 

 

Source DF Type I SS Mean Square F Value Pr > F 

MAIZE 2 28301195.40 14150597.70 3.85 0.0265 

METHOD 3 57451462.01 19150487.34 5.20 0.0028 

REP 2 3391026.52 1695513.26 0.46 0.6329 

 

Source DF Type III SS Mean Square F Value Pr > F 

MAIZE 2 28301195.40 14150597.70 3.85 0.0265 
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Source DF Type III SS Mean Square F Value Pr > F 

METHOD 3 57451462.01 19150487.34 5.20 0.0028 

REP 2 3391026.52 1695513.26 0.46 0.6329 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 64 

Error Mean Square 3679972 

Critical Value of t 1.99773 

Least Significant Difference 1277.4 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N METHOD 

A 5403.1 18 1 

        

B 3975.5 18 3 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N METHOD 

B       

B 3326.1 18 4 

B       

B 3119.1 18 2 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 64 

Error Mean Square 3679972 

Critical Value of t 1.99773 

Least Significant Difference 1106.3 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

  A 4785.0 24 3 

  A       

B A 3813.7 24 1 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

B         

B   3269.2 24 2 

Figure B.1 Aflatoxin data for harvest samples for both years.  
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Data Harvests; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 435\harvests.dat'; 

INPUT MAIZE METHOD REP $ BIOMASS; 

RUN; 

PROC MEANS SUM MEAN MAXDEC=3 FW=12; 

VAR BIOMASS; 

CLASS MAIZE METHOD REP; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS MAIZE METHOD REP; 

MODEL BIOMASS = MAIZE METHOD REP; 

MEANS METHOD/LSD LINES; 

MEANS MAIZE/LSD LINES; 

RUN; 

 

The MEANS Procedure 

Analysis Variable : BIOMASS  

REP N Obs Sum Mean Std Dev 

1 24 0.404 0.017 0.058 

2 24 0.543 0.023 0.076 

3 24 0.843 0.035 0.129 

 

Analysis Variable : BIOMASS  

METHOD N Obs Sum Mean Std Dev 

1 18 0.172 0.010 0.014 

2 18 1.310 0.073 0.176 

3 18 0.160 0.009 0.016 
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Analysis Variable : BIOMASS  

METHOD N Obs Sum Mean Std Dev 

4 18 0.148 0.008 0.010 

 

Analysis Variable : BIOMASS  

MAIZE N Obs Sum Mean Std Dev 

1 24 0.249 0.010 0.014 

2 24 1.361 0.057 0.154 

3 24 0.181 0.008 0.014 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

MAIZE 3 1 2 3 

METHOD 4 1 2 3 4 

REP 3 1 2 3 

 

Number of Observations Read 72 

Number of Observations Used 72 

 



 

208 

 

The SAS System 

 

The GLM Procedure 

  

Dependent Variable: BIOMASS  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 7 0.09592665 0.01370381 1.76 0.1111 

Error 64 0.49838604 0.00778728     

Corrected Total 71 0.59431269       

 

R-Square Coeff Var Root MSE BIOMASS Mean 

0.161408 354.7051 0.088246 0.024879 

 

Source DF Type I SS Mean Square F Value Pr > F 

MAIZE 2 0.03658756 0.01829378 2.35 0.1036 

METHOD 3 0.05514375 0.01838125 2.36 0.0797 

REP 2 0.00419534 0.00209767 0.27 0.7647 

 

Source DF Type III SS Mean Square F Value Pr > F 

MAIZE 2 0.03658756 0.01829378 2.35 0.1036 
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Source DF Type III SS Mean Square F Value Pr > F 

METHOD 3 0.05514375 0.01838125 2.36 0.0797 

REP 2 0.00419534 0.00209767 0.27 0.7647 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 64 

Error Mean Square 0.007787 

Critical Value of t 1.99773 

Least Significant Difference 0.0588 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N METHOD 

A 0.07281 18 2 

        

B 0.00958 18 1 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N METHOD 

B       

B 0.00889 18 3 

B       

B 0.00825 18 4 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 64 

Error Mean Square 0.007787 

Critical Value of t 1.99773 

Least Significant Difference 0.0509 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A 0.05672 24 2 

A       

A 0.01039 24 1 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A       

A 0.00753 24 3 

Figure B.2  A. flavus biomass data for harvest samples in both years. 
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Data Water; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 435\waters.dat'; 

INPUT MAIZE METHOD REP $ BIOMASS; 

RUN; 

PROC MEANS SUM MEAN MAXDEC=3 FW=12; 

VAR BIOMASS; 

CLASS MAIZE METHOD REP; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS MAIZE METHOD REP; 

MODEL BIOMASS = MAIZE METHOD REP; 

MEANS METHOD/LSD LINES; 

MEANS MAIZE/LSD LINES; 

RUN; 

Data Water; 

INFILE 'C:\Users\cxr1\OneDrive\Statistics\Exp 435\water.dat'; 

INPUT MAIZE METHOD REP $ AFLATOXIN; 

RUN; 

PROC MEANS SUM MEAN MAXDEC=3 FW=12; 

VAR AFLATOXIN; 

CLASS MAIZE METHOD REP; 

WAYS 1; 

RUN; 

PROC GLM; 

CLASS MAIZE METHOD REP; 

MODEL AFLATOXIN = MAIZE METHOD REP; 

MEANS METHOD/LSD LINES; 

MEANS MAIZE/LSD LINES; 

RUN; 

 

The SAS System 

 

The MEANS Procedure 

Analysis Variable : BIOMASS  

REP N Obs Sum Mean Std Dev 

1 12 0.00321193 0.00026766 0.00087531 

2 12 0.00467739 0.00038978 0.00129739 

3 12 0.00174647 0.00014554 0.00045330 
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Analysis Variable : BIOMASS  

METHOD N Obs Sum Mean Std Dev 

1 9 0.00007379 0.00000820 0.00000690 

2 9 0.00015891 0.00001766 0.00001234 

3 9 0.00005981 0.00000665 0.00000522 

4 9 0.00934328 0.00103814 0.00167463 

 

Analysis Variable : BIOMASS  

MAIZE N Obs Sum Mean Std Dev 

1 12 0.00019892 0.00001658 0.00001442 

2 12 0.00016479 0.00001373 0.00001101 

3 12 0.00927208 0.00077267 0.00150656 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

MAIZE 3 1 2 3 

METHOD 4 1 2 3 4 

REP 3 1 2 3 

 

Number of Observations Read 36 

Number of Observations Used 36 
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The SAS System 

 

The GLM Procedure 

  

Dependent Variable: BIOMASS  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 7 0.00001207 0.00000172 2.76 0.0258 

Error 28 0.00001749 0.00000062     

Corrected Total 35 0.00002956       

 

R-Square Coeff Var Root MSE BIOMASS Mean 

0.408405 295.2642 0.000790 0.000268 

 

Source DF Type I SS Mean Square F Value Pr > F 

MAIZE 2 4.5907287E-6 2.2953643E-6 3.68 0.0383 

METHOD 3 7.1243441E-6 2.3747814E-6 3.80 0.0210 

REP 2 3.5792681E-7 1.789634E-7 0.29 0.7530 

 

Source DF Type III SS Mean Square F Value Pr > F 

MAIZE 2 4.5907287E-6 2.2953643E-6 3.68 0.0383 
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Source DF Type III SS Mean Square F Value Pr > F 

METHOD 3 7.1243441E-6 2.3747814E-6 3.80 0.0210 

REP 2 3.5792681E-7 1.789634E-7 0.29 0.7530 

 



 

221 

 

The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 28 

Error Mean Square 6.246E-7 

Critical Value of t 2.04841 

Least Significant Difference 0.0008 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N METHOD 

A 0.0010381 9 4 

        

B 0.0000177 9 2 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N METHOD 

B       

B 0.0000082 9 1 

B       

B 0.0000066 9 3 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for BIOMASS 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 28 

Error Mean Square 6.246E-7 

Critical Value of t 2.04841 

Least Significant Difference 0.0007 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A 0.0007727 12 3 

        

B 0.0000166 12 1 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

B       

B 0.0000137 12 2 
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The SAS System 

 

The MEANS Procedure 

Analysis Variable : AFLATOXIN  

REP N Obs Sum Mean Std Dev 

1 12 1.87054300 0.15587858 0.33060541 

2 12 1.55569500 0.12964125 0.19540523 

3 12 1.98358560 0.16529880 0.27967507 

 

Analysis Variable : AFLATOXIN  

METHOD N Obs Sum Mean Std Dev 

1 9 0.52973700 0.05885967 0.09577273 

2 9 0.67296400 0.07477378 0.12244201 

3 9 0.18911860 0.02101318 0.03421051 

4 9 4.01800400 0.44644489 0.39081456 

 

Analysis Variable : AFLATOXIN  

MAIZE N Obs Sum Mean Std Dev 

1 12 2.46258260 0.20521522 0.23982685 
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Analysis Variable : AFLATOXIN  

MAIZE N Obs Sum Mean Std Dev 

2 12 2.88083700 0.24006975 0.36588224 

3 12 0.06640400 0.00553367 0.01076830 
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The SAS System 

 

The GLM Procedure 

Class Level Information 

Class Levels Values 

MAIZE 3 1 2 3 

METHOD 4 1 2 3 4 

REP 3 1 2 3 

 

Number of Observations Read 36 

Number of Observations Used 36 
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The SAS System 

 

The GLM Procedure 

  

Dependent Variable: AFLATOXIN  

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 7 1.45891511 0.20841644 5.65 0.0004 

Error 28 1.03199342 0.03685691     

Corrected Total 35 2.49090853       

 

R-Square Coeff Var Root MSE AFLATOXIN Mean 

0.585696 127.7553 0.191982 0.150273 

 

Source DF Type I SS Mean Square F Value Pr > F 

MAIZE 2 0.38437894 0.19218947 5.21 0.0119 

METHOD 3 1.06634178 0.35544726 9.64 0.0002 

REP 2 0.00819440 0.00409720 0.11 0.8952 

 

Source DF Type III SS Mean Square F Value Pr > F 

MAIZE 2 0.38437894 0.19218947 5.21 0.0119 
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Source DF Type III SS Mean Square F Value Pr > F 

METHOD 3 1.06634178 0.35544726 9.64 0.0002 

REP 2 0.00819440 0.00409720 0.11 0.8952 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 28 

Error Mean Square 0.036857 

Critical Value of t 2.04841 

Least Significant Difference 0.1854 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N METHOD 

A 0.44644 9 4 

        

B 0.07477 9 2 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N METHOD 

B       

B 0.05886 9 1 

B       

B 0.02101 9 3 
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The SAS System 

 

The GLM Procedure 
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The SAS System 

 

The GLM Procedure 

  

t Tests (LSD) for AFLATOXIN 

 

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. 

Alpha 0.05 

Error Degrees of Freedom 28 

Error Mean Square 0.036857 

Critical Value of t 2.04841 

Least Significant Difference 0.1605 

 

Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

A 0.24007 12 2 

A       

A 0.20522 12 1 
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Means with the same letter 

are not significantly different. 

t Grouping Mean N MAIZE 

        

B 0.00553 12 3 

 

Figure B.3 A. flavus biomass and aflatoxin data from water inoculated maize. 
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CHAPTER VI SUPPLEMENTAL MATERIAL 
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Figure C.1 Linea discriminant analysis for cotton 28 days after 2,4-D application. 
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Figure C.2 Principal component analysis of cotton 28 days after 2,4-D application.  
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