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variables. The commonly used ATC formulations (Tzevelekos et al. 2003), (Michalek 

and Papalambros 2005a), and (Michalek and Papalambros 2005b) are based on quadratic 

penalty functions. The quadratic penalty functions minimize the consistency constraints 

(equality or inequality) to force targets and responses to match. Ideally, these consistency 

constraints have to be relaxed, allowing inconsistencies between targets and responses 

that are gradually eliminated in the iterative solution process. In proposing the separable 

ordinary Lagrangian function, (Lassiter et al. 2005) considered a large-scale convex 

nonlinear programming problem and decomposed it according to the scheme of ATC. 

They also developed a Lagrangian duality-based coordination approach in which the 

solutions of the resulting subproblems converge to the solution of the original problem. 

By combining the classical Lagrangian Duality (LD) and the Augmented Lagrangian 

Duality (ALD), (Blouin et al. 2005) provided a simple method for decomposition without 

imposing restrictive conditions to alleviate the difficulty of convexity requirement. They 

updated two parameters that have the same role as the weight factors. The modified 

Lagrangian dual formulation and coordination for ATC (Kim et al. 2006) enhances the 

formulation and coordination proposed earlier in the literature, with a guideline to set the 

step size for sub-gradient optimization when solving the Lagrangian dual problem. 

(Tosserams et al. 2006) proposed and investigated ATC problem relaxation with an 

augmented Lagrangian penalty (ALP) function using the method of multipliers (AL) and 

the alternating direction method of multipliers (AL-AD). By means of the augmented 

Lagrangian function relaxation, ill-conditioning is reduced for the ATC problem of the 

inner loop because accurate solutions can be obtained for smaller weight factors. This 

formulation was later adopted by (Li et al. 2008) who used Diagonal Quadratic 



 

4 

Approximation (DQA) for parallelization of ATC. Similarly, (Wang et al. 2010) also 

applied this formulation but used three different methods for updating in the outer loop. 

A new convergent strategy for ATC (Chan 2008), (Han 2008), (Han and Papalambros 

2010) coordinates interactions among subproblems using sequential linearizations. The 

linearity of subproblems is maintained using infinity norms to measure deviations 

between targets and responses. Since all subsystems are linear, they can be solved with 

high efficiency. 

It is important to note that in all of the efforts cited above the design optimization 

problem is treated as deterministic with no uncertainty. More recently, (Kokkolaras et al. 

2006) formally introduced the issues of uncertainty and risk into the design optimization 

of hierarchically decomposed multilevel systems by developing a probabilistic version of 

ATC methodology. We believe this is a very powerful methodology and intend to adopt 

it in this research with some enhancements as will be noted later in the dissertation. 

Reliability-Based Design Optimization 

In design optimization of structural systems, uncertainty is commonly introduced 

as random variability in controllable and/or uncontrollable parameters (e.g., loading, 

material properties, geometry, boundary condition). The mathematical representation and 

propagation of uncertainty help quantify variability in responses that depend on such 

random variables. Probability theory is one of the most common approaches for 

uncertainty quantification. Reliability-based design optimization (RBDO) is a 

combination of probabilistic modeling and mathematical design optimization. 

There are two generic ways of formulating and solving an RBDO problem. In the 

double-loop structure methods, a nested optimization problem or sub-optimization 
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problem is required to estimate the reliability index or the most probable point (MPP) of 

failure. Reliability index approach (RIA) (Nikolaidis and Burdisso 1988;Enevoldsen and 

Sørensen 1994) and performance measure approach (PMA) (Tu et al. 1999) are based on 

reliability analysis.  

The computational cost of the double-loop approaches can be prohibitive when 

the problem involves computationally expensive function evaluations or a large number 

of probabilistic constraints. As a result, many approximate RBDO methods have been 

presented to convert the double-loop structure to single or serial loop to improve 

computational efficiency. The approximate methods include but are not limited to the 

traditional approximation method (TAM), single-loop single-vector (SLSV), safety-factor 

approach (SFA), and sequential optimization and reliability assessment (SORA).  

Grandhi and Wang (1998) computed the structural reliability with a two-point 

adaptive non-linear approximation while using FORM for reaching the constraint 

boundary. Kirjner-Neto et al. (1998) implemented outer approximations algorithms to 

minimize the initial cost of a structure considering the reliability requirement. Yu et al. 

(1997) proposed a mixed design approach in which a FORM-based RBDO is performed 

only if the probability of the failure of the deterministic optimum solution is acceptable. 

Koch and Kodiyalam (1999) proposed a variable-complexity technique in which the 

accuracy of FORM solutions and the efficiency of Mean-Value First-Order Reliability 

Method (MVFORM) are put together for more efficient RBDO. Lee and Kwak (1995) 

suggested using the Neumann expansion technique to reduce the computational cost of 

obtaining the MPP. Papadrakakis and Lagaros (2002) examined the combination of 

neural networks and evolution strategies using Monte Carlo simulation (MCS) method 
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exploiting the importance sampling technique to estimate both deterministic and 

probabilistic constraints. Kharmanda et al. (2002) developed a technique to combine the 

design and random variables into a single albeit more complex Hybrid Design Space 

(HDS) for a simultaneous (single-loop) solution of the reliability and optimisation 

problems. The proposed HDS-based method is shown to be much more computationally 

efficient when compared with the traditional double-loop procedure. Mohsine et al. 

(2004) proposed a modification to the HDS-based method called the Improved Hybrid 

Method (IHM) by minimizing the standard deviations as optimization variables, and 

showed more minimized objective function can be obtained than HDS method. 

Kharmanda et al. (2004) introduced a new methodology called the Safety Factor (SF) 

approach based on the sensitivity study of the limit state function for the reliability 

evaluation at a reduced computational cost. The SF approach was later applied to 

problems involving highly non-linear and non-normal random variables (Kharmanda and 

Olhoff, 2007). Choi et al. (2001) introduced a general Design Potential Concept (DPC) 

for RBDO with smooth and non-smooth probabilistic constraints. The second-order 

reliability method (SORM) and the extreme case probability analysis are used to obtain 

the design potential surfaces in the unified system space. They also provided the 

extension of DPC for extreme cases, for instance the structures with very small 

probability of failure. Youn and Choi (2004a) compared three different approaches, the 

approximate moment, reliability index, and performance measure, to evaluate 

probabilistic constraints in RBDO and suggest that the PMA is more efficient than the 

other two approaches while providing more accurate and stable solutions for non-linear 

limit-state functions. Yang and Gu (2004) found that the Single-Loop-Single-Vector 
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(SLSV) approach of Chen et al. (1997) provides the best solution in terms of accuracy 

and efficiency compared to traditional approximation method (TAM), safety-factor 

approach (SFA) of Wu and Wang (1998) and Wu et al. (2001), and sequential 

optimization and reliability assessment (SORA) of Du and Chen (2002). Wang and 

Kodiyalam (2002) proposed a single-level approach for probabilistic and robust design 

with non-normal distributions. This is the same as SLSV and the normal tail 

transformation is used to find the equivalent means and standard deviations for non-

normally distributed variables. It is shown that the single-level approach is very efficient 

and robust. Zou and Mahadevan (2006) proposed a decoupled approach to solve an 

RBDO problem by using direct reliability analysis which allows the use of simulation-

based methods for highly nonlinear reliability constraints. The reliability analysis is 

performed only for the potentially active reliability constraints which improves the 

efficiency of the proposed approach. Agarwal et al. (2007) have replaced the inverse 

FORM in PMA by its first-order KKT necessary optimality conditions at the upper-level 

optimization problem and show that the new approach provides improved robustness and 

better convergence characteristics as compared to a unilevel variant given by Kuschel and 

Rackwitz (2000). 

Design Optimization of Hierarchically Decomposed Multilevel Systems under 

Uncertainty 

Kokkolaras et al. (2006) formally introduced the notion of uncertainty and risk 

into the design optimization of hierarchically decomposed multilevel systems by 

developing a probabilistic version of ATC methodology, which they refer to as PATC. 

They assume that standard deviations of random variables are available only at the 
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bottom level of the hierarchy, and use a bottom-up coordination strategy that requires 

uncertainty propagation. The objective function in each element is expressed in terms of 

deviation from target values cascaded down from the corresponding element immediately 

above it. To reduce error in uncertainty propagation, they use the advanced mean value 

(AMV) method (Wu et al. 1990) in evaluating the probability of violating a design 

constraint under the presence of uncertainty. Recently, Liu et al. (2006) suggested a more 

general formulation of PATC whereby the interrelated random variables may be 

described by general probabilistic characteristics. In this research, the general framework 

of ATC methodology is adopted with several enhancements to prior approaches (e.g., 

Kokkolaras et al. 2006) as noted later in this section. As for uncertainty propagation and 

associated constraints, the current approaches in PATC address the consistency of the 

first two statistical moments (i.e., mean and variance) of random linking variables and 

shared random responses, while using AMV method for probabilistic design optimization 

in each element. 

 In the current research, we propose a more efficient formulation of the 

augmented Lagrangian based on exponential method of multipliers, which is then 

integrated with an efficient method for probabilistic design optimization. Moreover, with 

development and availability of process integration software, different simulation codes 

are integrated into a computational design tool. 

The goal of this research is to develop a computational design tool that is capable 

of optimizing hierarchically decomposed multiscale product-material systems under 

uncertainty. To achieve this goal, the following activities are pursued: 
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Activity 1 – Explore capabilities of current ATC formulations; this activity is 

focused on an empirical investigation of the numerical behavior of ATC in solving 

multilevel optimization of hierarchical systems based on the Augmented Lagrangian 

Penalty formulation and four different solution strategies. It also includes examination of 

the solution accuracy and efficiency depending on how a problem is decomposed, and 

establishing general guidelines on the role of coordination strategy and influence of 

selected parameters on the solution of the ATC problem. 

Activity 2 – Propose a new ATC formulation and solution strategy; this activity is 

aimed at developing a more efficient approach for solving multilevel optimization 

problems based on the exponential method of multipliers within the framework of ATC. 

In each element, the consistency constraints are combined with the objective function to 

formulate an augmented Lagrangian with an exponential penalty function.  

Activity 3 – Develop a new approach for probabilistic ATC; this activity explores 

different approaches for solving a probabilistic design optimization problem. More 

specifically, it examines the use of efficient single loop single vector approach for 

reliability-based design optimization with normal and non-normal distributions and its 

integration with Augmented Lagrangian (AL) formulation of ATC for solution of 

hierarchical multilevel optimization problems under uncertainty. 

Activity 4 – Develop a computational framework for coupled hierarchical 

material-product simulations; this activity focuses primarily on development of a 

prototype design tool that can solve problems involving multiple simulation software and 

codes. The application of this tool is demonstrated in design optimization of a product-

material system using all-at-once and ATC approaches. 
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Activity 5 – Apply the developed approaches to analytical and engineering design 

problems; multiple analytical problems with different number of design variables, design 

constraints, and decomposition models are solved as part of this activity. In addition, the 

application of deterministic and probabilistic ATC for multilevel optimization of a 

product-material system is investigated. 

The primary contribution of this research is the development of exponential 

penalty function in ATC framework and its integration with an efficient reliability-based 

design optimization approach to improve the computational efficiency of probabilistic 

ATC. The secondary accomplishments are the development of the computational design 

tool that can implement the proposed formulation and solution techniques and its 

application to multilevel optimization of product-material systems under uncertainty. 

The remaining portion of this dissertation is organized as follows: Chapter 2 

discusses the numerical behavior of ATC using augmented-Lagrangian penalty function 

with four different coordination strategies. Chapter 3 provides details of the integration of 

reliability-based design optimization method in ATC framework. Chapter 4 presents new 

approach in ATC using exponential method of multipliers. Chapter 5 gives details of the 

design optimization of a material-product system. The optimization of the material-

product system in Chapter 5 under uncertainty is described in Chapter 6. Chapter 7 

discusses the computational design framework developed for material-product simulation 

and optimization. Chapter 8 summarizes the research findings and suggests some insights 

for future work. 
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CHAPTER II 

COMPARISON OF ALTERNATIVE STRATEGIES FOR MULTILEVEL 

OPTIMIZATION OF HIERARCHICAL SYSTEMS 

Analytical target cascading (ATC) (Michelena et al. 1999; Kim et al. 2003) was 

developed for systems such as that shown in figure 2.1. In the initial formulation of ATC 

(Kim et al. 2000, 2001, 2002, 2003), deviation tolerances are defined for the responses 

and targets as well as the linking (or shared design) variables. The multilevel 

optimization problem is solved while minimizing the deviation tolerances and satisfying 

the design constraints. 

ATC solution has been shown to converge to a point that satisfies the necessary 

optimality conditions of the original design optimization problem (Michelena et al. 

2003). Using a formulation of ATC with similarities to that in (Kim et al. 2000), the 

inequality constraints on deviation tolerances were brought into the objective function to 

form an augmented objective function; this formulation included the addition of weight 

factors to the deviation tolerances. The scaled tolerance formulation (Kim et al. 2000) 

was used by Tzevelekos et al. (2003) to investigate the numerical behavior of the ATC 

methodology and the local convergence properties of different coordination strategies. 

They examined the effects of linking variables, subproblem solution accuracy, and the 

number of significant digits on numerical stability. 
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Figure 2.1 An illustrative model of a hierarchically decomposed multilevel system 

 

The commonly used ATC formulations are based on quadratic penalty (QP) 

functions (Tzevelekos et al. 2003), (Michalek and Papalambros 2005a), (Michalek and 

Papalambros 2005b), (Tosserams 2004). Numerical experiments with these formulations 

show significant computational effort to obtain accurate solutions. The QP functions 

minimize the consistency constraints (equality or inequality) to force targets and 

responses to match. Ideally, these consistency constraints have to be relaxed, allowing 

inconsistencies between targets and responses that are gradually eliminated in the 

iterative solution process. For the QP function, in general, large weight factors are 

required to find accurate solutions (Bertsekas 1999). Due to lack of a mathematical 

relationship between weight factors and solution accuracy, the weight factors are given 

arbitrarily large values that may cause computational difficulties (Michalek and 

Papalambros 2005,2005a; Tosserams 2004). 

An iterative method was presented by Michalek and Papalambros (2005) for 

finding the minimal penalty weight factors that provide converged solutions within user-

specified inconsistency tolerances, and its effectiveness was demonstrated through 

several examples. This method contains an inner and an outer loop. The inner loop solves 
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the decomposed ATC problem with a coordination scheme. The outer loop updates the 

penalty weight factors based on information obtained from the inner loop. The iterative 

method calculates the Lagrange multipliers and derivatives of the response function to 

update the weight factors. 

In the separable ordinary Lagrangian (OL) approach, a large-scale convex 

nonlinear programming problem is formulated and decomposed using the ATC (Lassiter 

et al. 2005). By combining the classical Lagrangian duality and the augmented 

Lagrangian duality, a simple method was proposed in (Blouin et al. 2005) for 

decomposition without imposing restrictive conditions to alleviate the difficulty of 

convexity requirement. The modified Lagrangian dual formulation and coordination 

enhances the ATC performance (Kim et al. 2006) over those proposed earlier in the 

literature. ATC problem relaxation with an augmented Lagrangian penalty (ALP) 

function using the method of multipliers (AL) and the alternating direction method of 

multipliers (AL-AD) was proposed and investigated by Tosserams et al. (2006). By 

means of the ALP relaxation, ill-conditioning is reduced in the inner loop because 

accurate solutions can be obtained for smaller weight factors. This formulation was later 

adopted in (Li et al. 2008) that used Diagonal Quadratic Approximation (DQA) and 

Truncated DQA (TDQA) for parallelization of ATC. Similarly, the ALP formulation was 

also applied in (Wang et al. 2010), but three different updating methods were used in the 

outer loop.  

In this chapter, the (ALP) function using the method of multipliers with four 

different coordination strategies (i.e., AL, AL-AD, DQA, and TDQA) is used to study the 

numerical behavior of ATC. Moreover, the role of two penalty parameters that can have 
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large influence on solution accuracy and computational cost is investigated. The effects 

of the penalty parameter updating coefficient in the outer loop and the initial guessed 

values for the decision variables to start the multilevel optimization process are examined 

by solving three example problems. 

 Overview of ATC 

For a decomposed system with   levels and   elements, as shown in figure 2.2, 

the subscripts    denote the  th element in the  th level (Tosserams et al. 2006). 

  

Figure 2.2 Variable allocation in a hierarchical system 

 

The vector of local variables is denoted by     with     as the vector of target 

variables shared by element    and its parent at level    ;    is the set of elements at 

level   (e.g.,            in figure 2.2);                 is the set of children of 

element    (e.g.,          );     is the local objective;     is the vector of local 

inequality constraints; and     is the vector of local equality constraints. Hence, an all-in-

one (AIO) problem of such a system is defined as 
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     (2.1) 

                                                        
    

               

In the ATC formulation adopted from Tosserams et al. (2006), response copies 

    are introduced to make the objective function and constraints separable, which leads 

to the addition of consistency constraints expressed as              , where     is a 

measure of inconsistency between the targets and the corresponding responses in element 

  . Moreover, the objective function is augmented by the addition of a penalty term   that 

leads to the relaxed form of the AIO problem formulated as   

                                       
 
    

                            

                            (2.2) 

                    

                                             
  

               

where               in the hierarchy.  

It is now possible to decompose the relaxed AIO problem in equation (2.2) into 

separate subproblems (e.g.,     for element   ) involving only a subset of decision 

variables      given by 
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                   (2.3) 

                     

                                         
  

In QP, OL, and ALP, the penalty term takes the form  

                   
 
 (2.4) 

            
     (2.5) 

             
               

 
 (2.6) 

 

The ALP method contains two loops. In the inner loop, the decomposed ATC 

problem is solved for fixed penalty parameters (  and  ) whereas in the outer loop, an 

algorithm is applied to update both   and   as 

                              (2.7) 

              (2.8) 

 

where the penalty parameter updating coefficient   is required to be    for convex 

objective functions (Tosserams et al. 2006). 

The double-loop approach in AL avoids setting arbitrarily large weight factors 

that can often cause ill-conditioning in the solution. The weight factors are updated using 

the information obtained from the inner loop. Whereas the inner loop is very 

computationally expensive, the outer loop is very inexpensive. It has been shown in the 
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literature that the AL method can significantly reduce the computational cost of solving a 

problem with ATC without loss of accuracy. 

Alternative Coordination Strategies 

For the ALP formulation, the four alternative coordination strategies are described 

by the algorithms outlined in figures 2.3 and 2.4. 

 

   
 

                     (a)                                                                      (b) 

Figure 2.3 Flowcharts of (a) AL and (b) AL-AD algorithms 

 

For AL and AL-AD in figure 2.3, the outer-loop convergence criterion is satisfied 

when the reduction of inconsistencies in two successive solutions is sufficiently small 
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(i.e.,                , where k denotes the outer loop counter and   is a user-defined 

termination tolerance). The inner loop convergence criterion is reached when the 

difference in the objective function values in two consecutive inner loop iterations is less 

than          .  

     

                                      (a)                                                       (b) 

Figure 2.4 Flowcharts of (a) DQA and (b) TDQA algorithms 

 

In the DQA and TDQA algorithms in figure 2.4, the convergence criteria are 

defined as 

                                                      (2.9) 

                                       (2.10) 
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where     and      are the inner and outer loop termination tolerances with     

        and        . 

Illustrative Example Problems 

The effect of   on the accuracy and computational cost has not been addressed in 

the literature. Although it has been mentioned that   can take a wide range of values, it is 

unclear what value must be chosen with respect to the desired levels of accuracy and 

computational cost as well as the selected ATC solution methodology and coordination 

strategy. Furthermore, since in ATC the initial values for response/target and linking 

variables are selected at random, it is unclear what effects these values would have on the 

ATC results. 

To examine these effects, three different example problems are solved using the 

four different methods of ATC described in the previous section. For each method, the 

solution starts from different initial guessed values (IGV) that correspond to different 

randomly selected design points relative to the optimum point. The solution is repeated 

for 20 different values of   and every IGV.  

Two performance metrics are considered: the computational cost that is captured 

by the number of function evaluations, and the error, which is defined as 

 

              (2.11) 

 

where    is the exact optimum design point and      is the solution found by ATC. All 

of the ATC formulations cited were developed into separate MATLAB codes and used to 

solve the following example problems. 
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Problem 1 

This is a 7-variable geometric programming problem with the AIO formulation 

expressed as 

               
    

  (2.12) 

                                  
  
     

 

  
      

                               
  
    

  

  
      

                                                
    

    
     

    

                                             
    

    
    

    

              

where the point of optimum is at     [2.15, 2.06, 1.32, 0.76, 1.07, 1.0, 1.47] with all 

four constraints active.  

This problem is decomposed into a two-level hierarchy (Tosserams 2004) with a 

single element at the top level and another element at the bottom level. Local variables in 

the top element are              along with      
  as the objective function subject to 

the inequality constraint    and equality constraint   . Variables              are the 

local design variables for the bottom element with the objective function      
  and 

constraints          . The response/target variable for the two elements is   . The initial 

values for the penalty parameters are defined as  
      and       . The starting 

design point is                      for all the formulations. The ten initial guessed 

values (IGV), i.e., IGV #1, … #10 for    are chosen as {0, 2, 4, 6, 8, 10, 20, 40, 70, 100}. 

For AL and DQA,   is given different values in the range of                    , 

whereas for AL-AD and TDQA,    . The IGV for    and   are chosen arbitrarily to 
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simply diversify the iterative solution process. The termination tolerance is chosen as 

                  . 

 

    (a)                                             (b)                                           (c) 

Figure 2.5 Cost trends for AL-based solution of Problem 1 using (a)       , (b) 

      , and (c)        

 

 

    (a)                                             (b)                                           (c) 

Figure 2.6 Cost trends for DQA-based solution of Problem 1 using (a)       , (b) 

      , and (c)        

 

Figures 2.5 and 2.6 show the plots of function evaluations number (cost) versus   

for AL and DQA, respectively, using different IGV for   . These figures show that the 

cost is affected by the choice of  . The optimum   value to minimize cost depends on the 
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termination tolerance used, but it appears to be near 1.5 or 2.3 for most cases. For 

different IGV, the relationship between cost and   is similar, but it is not necessarily 

monotonic. Due to this similarity, only the upper and lower bounds are shown for each 

case using the corresponding IGV numbers. It appears that the value of   also has an 

influence on the error, especially for larger tolerances as shown in figure 2.7. 

 

                                            (a)                                                                      (b)  

Figure 2.7 Error trends for (a) AL and (b) DQA solutions of Problem 1 using x5 = 6 

with                    

 

Figure 2.8 Cost and error trends from different solutions of Problem 1 using     for 

AL and DQA with (a)       , (b)       , and (c)        
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Figure 7.2  Flow diagram for integration of computer programs for multilevel product-

material design. 

 

Using the DOT design optimization library inside VisualDOC, we chose the 

modified method of feasible directions (MMFD) for solution of element 11 and 

sequential linear programming (SLP) for solution of elements 22 and 33. The 

optimization solver parameters were kept at their default values.  Since the exponential 
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terms in the augmented Lagrangian function can be very large due to the order of some 

design variable values, the optimization solver can fail. To alleviate this problem, the 

values of response/target variables are normalized before implementing the EPF 

formulation.  

We chose the double-loop strategy (EPF I) in this study. The two possible 

coordination strategies for the three-level hierarchy are shown in Figure 3. In scheme I, 

the number of ATC iterations for all three elements are identical, which is not desirable 

as the computational cost is considerably different among the three elements. The 

optimization problem in element 11 is very computationally expensive. The scheme II is 

preferable to avoid extraneous solutions of element 11 due to discrepancies between 

target/responses of elements 22 and 33. In this scheme, convergence between levels two 

and three is obtained first before communicating with element 11. The inner loop 

convergence is reached when reduction in the objective function of the relaxed problem 

between two consecutive inner loop iterations is less than the termination tolerance 

           . The outer loop convergence criterion is defined based on reduction of the 

inconsistencies in two successive solutions with tolerance of           . 
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                              (a)             (b) 

Figure 7.3  Multilevel coordination scheme (a) I and (b) II. 

 

Bottom level element 

The input parameters to this optimization problem are target values for nano-

enhanced matrix material properties. Beside this input parameters, which is the part of 

ATC method, the preprocessing section discussed in previous is applicable here. This 

level optimization problem is designed similar to what is described about the nano-

enhanced matrix properties in micro-level material model and design. Based on equation 

(5.8), the only design variable is volume fraction of CNF (    ). The constituent material 

properties are held fixed as well as the geometric properties of the nanofiber. In this 

optimization problem, the objective function is minimization of the inconsistency 

between Young’s modulus (   ) and Poisson’s ratio (   ) of the nano-enhanced matrix 

and its targets from the upper level element     
     

  . The         corresponding to 

optimum design variables are extracted and sent to the top level element. 

Level 3

Level 2

Level 1
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Figure 7.4 Micro-level material model and design computational element 

 

Middle level element 

In this element, the responses    
     

  come from the lower level element, which 

is part of the ATC approach. The design variables of this optimization problem are as 

follows:                      . The rule of mixtures, and the orthotropic ply, face sheet 

laminate, and sandwich plate stiffness properties calculations are performed sequentially. 

The conventional fiber properties represent the Young’s modulus and Poisson’s ratio 

(     ). 

 

Conventional fiber properties + 

                                             

Number of layers in each face sheet +                                    

          ). 
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The optimum values for        are send up to the top level element with the 

corresponding values for       extracted from the output of structural sandwich plate 

simulation. Also, optimum values for         are provided to the lower level element as 

target values. 

 

 

Figure 7.5 Macro-level material model and design computational element 

 

Top level element 

At the structural-level model and design, the overall dimensions of the sandwich 

plate and the boundary conditions, the applied in-plane loads (         ) along with the 
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core material properties (        ) are fixed input parameters to the analysis code. The 

design variables                  are the input values for the analysis in this section. 

The information flow at this level is given as: 

                                                 . 

 

 

 

Figure 7.6 Structural level model and design computational element 

 

The flowchart presented in Figure 7.2, is for deterministic problems. To consider 

the uncertainty in ATC framework, we alter each deterministic problem which converts 

the non-deterministic problem in a way that our deterministic framework faces minimum 

changes. In figure 7.7, the non-deterministic version of the top optimization problem 

presented in figure 7.6 is shown. 
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Figure 7.7 Non-deterministic structural level model and design computational element 
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CHAPTER VIII 

SUMMARY AND FUTURE WORK 

The augmented Lagrangian penalty formulation and four different coordination 

strategies were used to examine the numerical behavior of Analytical Target Cascading 

(ATC) for multilevel optimization of hierarchical systems. The coordination strategies 

considered include augmented Lagrangian using the method of multipliers and alternating 

direction method of multipliers, diagonal quadratic approximation, and truncated 

diagonal quadratic approximation. Properties examined include computational cost and 

solution accuracy based on the selected values for the different parameters that appear in 

each formulation. The different strategies were implemented using two- and three-level 

decomposed example problems. While the results showed the interaction between the 

selected ATC formulation and the values of associated parameters, they clearly 

highlighted the impact they could have on both the solution accuracy and computational 

cost. 

The Single Loop Single Vector (SLSV) approach for reliability-based design 

optimization (RBDO) was integrated with Augmented Lagrangian (AL) formulation of 

analytical target cascading for solution of hierarchical multilevel optimization problems 

under uncertainty. In the proposed SLSV+AL approach, the uncertainties were 

propagated by matching the required moments of connecting responses/targets and 

linking variables present in the decomposed system. The accuracy and computational 
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efficiency of SLSV+AL were demonstrated through the solution of four benchmark 

problems and comparison of results with those from other optimization methods reported 

in the literature. 

An exponential penalty function (EPF) formulation based on method of 

multipliers was presented for solving multilevel optimization problems within the 

framework of analytical target cascading. The original all-at-once constrained 

optimization problem was decomposed into a hierarchical system with consistency 

constraints enforcing the target-response coupling in the connected elements. The 

objective function was combined with the consistency constraints in each element to 

formulate an augmented Lagrangian with EPF. The EPF formulation was implemented 

using double-loop (EPF I) and single-loop (EPF II) coordination strategies and two 

penalty-parameter-updating schemes. Four benchmark problems representing nonlinear 

convex and non-convex optimization problems with different number of design variables 

and design constraints were used to evaluate the computational characteristics of the 

proposed approaches. The same problems were also solved using four other approaches 

suggested in the literature, and the overall computational efficiency characteristics were 

compared and discussed. 

Through micromechanical modeling of a carbon nanofiber (CNF) enhanced 

thermoset polymer material and macromechanical modeling of laminated plates, a 

hierarchical analysis framework was developed and used in design optimization of hybrid 

multiscale composite sandwich plates. Both CNF waviness and CNF-matrix interphase 

properties were included in the model. By decomposing the sandwich plate, structural 

and material designs were combined and treated as a multilevel optimization problem. 
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The application problem considered the minimum-weight design of an in-plane loaded 

sandwich plate with a honeycomb core and laminated composite face sheets that were 

reinforced by both conventional continuous fibers and CNF-enhanced polymer matrix. 

Besides global buckling, shear crimping, intracell buckling, and face sheet wrinkling 

were also treated as design constraints. The results of the multilevel sandwich plate 

optimization problem were presented and discussed. 

Several topics can be considered for further investigation as part of future work. 

For example, convergence of the method is demonstrated by example, but it would 

strengthen the proposed approach to include mathematically rigorous discussion of 

convergence properties. Also, the feasibility of implementing the exponential method of 

multipliers in non-hierarchical system can be studied. In this study, aleatory uncertainty 

was considered and just the first two moments of each target/response distribution were 

matched. In future work, the possibility of matching more distribution characteristics 

with comparable computational cost can be investigated. The probabilistic ATC can be 

extended to reliability-based design optimization under epistemic uncertainty.
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Alternative approaches for choosing the penalty parameters are considered, where 

   
            

         or    
        

     
  and    

        
     

     with no 

dependence on values of the multipliers. For this case,           or    
    

    
         

        
  with    . For the updating approach with dependence on values 

of the multipliers,    
            and    

       as well as    
        

  and 

   
        

  with    . These approaches were applied in the solution to Problem 2 of 

Chapter IV according to EPF I approach. Same initial design point                      

was selected for all approaches with        and       . 

Table A.1 Comparison of results in Problem 2 of Chapter 4 with different parameter 

updating approaches 

  
No. of 

Func. Evals 
  

CPU 

Time, s 
  

W
it

h
o
u
t 

D
ep

en
d
en

cy
 

Fixed     

3830 0.00622 2.12 0.01 

5745 0.00042 3.02 0.001 

7462 0.00005 3.81 0.0001 

10101 0.00002 5.03 0.00001 

Updating     

3939 0.00048 2.17 0.01 

5317 0.00006 2.84 0.001 

7257 0.00001 3.84 0.0001 

9047 0.00002 4.72 0.00001 

W
it

h
 D

ep
en

d
en

cy
 

Fixed     

4881 0.03387 2.56 0.01 

8853 0.00318 4.35 0.001 

13119 0.00028 6.32 0.0001 

17189 0.00002 8.17 0.00001 

Updating     

4235 0.00100 2.26 0.01 

5909 0.00009 3.07 0.001 

8180 0.00002 4.15 0.0001 

10053 0.00002 5.05 0.00001 

 



 

168 

Results in Table A.1 show that for the same level of accuracy, the number of 

function evaluations and CPU time are generally reduced when the penalty parameters 

are kept independent of the multipliers.  Also, by allowing the penalty parameters to be 

updated during the optimization process, solution efficiency improves.
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APPENDIX B 

EFFECT OF DECOMPOSITION
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Problem 3 of Chapter IV is solved using three different decompositions. 

Decomposition 1, as shown in figure B.1(a), consists of two elements, element 1 at the 

top level and element 2 at the bottom. The target/response variables are    and   , 

                 are the local variables for element 1 and                             

are the local variables for elements 2. The objective function is assigned to element 1. 

The constraints   ,   ,   ,    are allocated to elements 1 and the others to element 2. 

Decomposition 2 shown in figure B.1(b) also consists of two elements as in the previous 

case, but the target/response variables are    and    ,                      are the local 

variables for element 1 and                        are the local variables for elements 2. 

The objective function is decomposed into two parts,   
  assigned to element 1 and   

  to 

element 2. The constraints   ,   ,   ,   ,    are allocated to elements 1 and the others to 

element 2. Decomposition 3 is the three-level hierarchy presented in figure (4.9).  

Figure B.2 displays the number of function evaluations and the CPU time versus 

the absolute solution error e for termination tolerances τ = 10
−2

, 10
−3

, 10
−4

, 10
−5

. The 

initial values for the penalty parameters in EPF I and EPF II are set to        and 

      . The starting point for all decompositions is 

                                                                         .  
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Figure B.1 Hierarchical decompositions 1 and 2 of Problem 3 of Chapter IV 

 

The results show that the form of decomposition affects computational efficiency. 

For all the cases considered, decomposition 1 is more efficient than the other two. 

Moreover, EPF II (single-loop) is more computationally efficient than EPF I regardless of 

the decomposition used. In particular, EPF II for decomposition 1 requires the least 

number of function evaluations and CPU time whereas EPF I for decomposition 3 

requires the most.  Comparing the two-level decompositions 1 and 2, it appears that EPF 

I_1 requires 61% less function evaluations than EPF I_2, whereas EPF II_1 requires 32% 

less function evaluations than EPF II_2. In terms of CPU time, EPF I_1 is 78% faster 

than EPF I_2, whereas EPF II_1 is 16% faster than EPF II_2. 
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           (a)                                                                        (b) 

Figure B.2 Function evaluations (a) and CPU time (b) versus solution error in 

Problem 3 of Chapter 4 for decompositions 1, 2, and 3 

 


