
between the RD and the EW universality classes is that there are lateral correlations present 

in an EW process such as RDSR, while these lateral correlations are absent in RD. 

1.2.3 Kardar-Parisi-Zhang (KPZ) 

In order to describe non-equilibrium surface growth, EW equation was extended with 

a nonlinear term which was proposed by Kardar, Parisi and Zhang [22]. By adding a 

nonlinear term to the EW equation, it refects the presence of the lateral growth, KPZ 

equation has the form 

∂h 
= νr 2h + 

λ 
(rh)2 + η (x, t) , (1.4)

∂t 2 

where h = h(x, t) is the height feld, coeffcients ν and λ give the strength of the linear 

damping and the coupling with nonlinear growth, respectively. When λ = 0 in Equa-

tion (1.4), the growth is governed by the linear EW equation. When λ = 0 and ν = 0 

in the Equation (1.4), the growth belongs to the RD universality class. The KPZ univer-

sality class, governed by dynamics given by Equation (1.4) is characterized by roughness 

1 1 3exponent α = , growth exponent β = and dynamic exponent z = . A characteristic 
2 3 2 

signature of the KPZ scaling is the exponent identity α + z = 2, valid in all dimensions. 

1.2.3.1 Ballistic Deposition 
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Figure 1.9 

Time evolution of the virtual time horizon (L=100, Nv=1). 
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width of the simulated VTH provides a measure of the desynchronization in the system 

of processors as the PDES evolves in time. These are basically the two properties studied 

throughout this thesis. This asymptotic lack of synchronization [32, 34] is avoided by 

using new algorithms [28, 31, 16]. 

1.5 Overview of previous work on surface growth for PDES 

In past studies [35], of the performance of PDES, the worst-case scenario, in which 

only one computational volume element Nv = 1 or load was assigned to each processing 

element (PE) was used. It was found that the effcienc y does not go to zero as the num-

ber of PEs goes to infnity . Other simulations showed that when the load per processor 

is increased, the utilization gets signifcantly increased [30, 28, 32, 29]. The steady-state 

behavior of the macroscopic landscape in the saturated phase is governed by the Edwards-

Wilkinson (EW) Hamiltonian [10], which indicates that the density of the local minima 

never approaches zero, even when the number of PEs goes to infnity . This proved that 

the computational phase of the PDES algorithm is scalable. A method to estimate the 

utilization in the general case has been developed [28, 30]. The analogy between the evo-

lution of the simulated time horizon and single-step surface growth models [43, 38, 39] 

was used in the investigation of the dynamic scaling properties of the simulated VTH in 

the general case for Nv > 1. These 1D systems with only nearest-neighbor interactions 

and periodic boundary conditions were considered. These systems have asynchronous dy-

namics. Examples are the Ising model with Metropolis or Glauber dynamics and Internet 

traffc, where the discrete events are the spin-fip and packet transmission/reception, re-
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Figure 3.14 

Time-evolution of the surface squared-width in the RD+BD3 model scaled in p for 
system size L = 500. 
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Figure 3.18 

Scaling in peff given by Equation (3.24) for the RD+BD1 model. 
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Figure 3.19 

Scaling in peff given by Equation (3.24) for the RD+BD2 model. 
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Figure 3.20 

Scaling in peff given by Equation (3.24) for the RD+BD3 model. 
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factors are given in Equations (3.18), (3.19), and (3.20). Explicitly, in these models, in the 

scaling regime after the initial transient, the scaling law is 
� � 

L2α t 
w 2 (p, t) = F r 2µ (p) (3.27) 

r2µ (p) Lz 

where f (p) = rµ with µ = δ. The scaling law which the RD+BD2 model obeys is given 

as 

w 2 (p, t) = 
L2α 

F 
rµ (p) 

� 
r 2µ (p) 

� 
t 

Lz (3.28) 

where f (p) = rµ with µ = 2δ. 

3.6 Conclusions 

In order to know how the nonuniversal properties of the component processes affect the 

universal scaling of a RD + KPZ, further investigations were done. A connection between 

the roughening of the surface during growth processes and the bulk morphology formed 

during the deposition in competitive growth process was made. Using the properties of the 

bulk morphology, the dynamics of universal growth models that combine two alternately 

active component process of various universality classes were studied. It was showed that 

by using the key concept that the height feld rate due to the component process can provide 

a connection between the bulk morphology and surface roughening. Continuum equations 

were derived for RD+KPZ processes, which showed perfect data collapse of the curves 

onto a single curve when scaling was done using bulk properties. An approximate data 

collapse were seen when scaling was done with p. The approximate scaling laws contain 

an information about bulk structure by the value of the scale-dilation exponent δ. For var-

ious examples of competitive growth models RD + correlated processes, where correlated 
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processes belong either to EW or KPZ universality class [19, 48, 25], the approximate 

scaling has worked suffciently . But this type of approximate scaling does not follow for 

the models, where the correlated components are predominantly nonlinear process, in this 

studies RD+BD2. 
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Figure 3.21 

Time-evolution of the surface squared-width in the RD+BD1 model using the scaling law 
of Equation (3.27) where r (p) = 1 − qc (p). 
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Figure 3.22 

Time-evolution of the surface squared-width in the RD+BD2 model using the scaling law 
of Equation (3.28) where r (p) = 1 − qc (p). 
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Figure 3.23 

Time-evolution of the surface squared-width in the RD+BD3 model using the scaling law 
of Equation (3.27) where r (p) = 1 − qc (p). 
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CHAPTER 4 

LOAD BALANCING FOR PDES 

4.1 Overview of Parallel Discrete Event Simulation Surface Growth 

For a large class of interacting systems, as the system evolves in time, the value of 

the local state variables change at discrete instants, synchronizing or not synchronizing 

with other variables depending on the dynamics of the system. The instantaneous changes 

in the local confguration are called discrete events. Simulations of discrete event sys-

tems are discrete event simulations. For synchronous dynamics parallel simulations are 

conceptually simple. Asynchronous discrete event simulations are diffcult to parallelize. 

Parallelization of discrete event simulations is called Parallel Discrete Event Simulations 

(PDES). 

For the PDES scheme to be applied effciently , the virtual time horizon should progress 

at a non-zero rate on average, and the spread of the time horizon should be limited as 

the number of Processing Elements (PEs) increases. The synchronization mechanisms in 

PDES traditionally fall in two main classes: conservative and optimistic. In PDES, the 

computational task is divided among NPE processing elements where each processor has 

its own dynamics. When there are interactions among the individual elements of the sim-

ulated systems, the PEs coordinate with other PEs during the simulation. However, there 
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are cases when some neighbors might belong to the domain of another PE, then message 

passing is required in order to preserve causality. In the PDES scheme, update attempts 

are self-initiated [4] and are independent of the confguration of the system [5,6]. Here a 

less conventional approach is used to analyze the effcienc y and scalability of the class of 

massively parallel conservative PDES schemes, by studying and mapping computationally 

onto a non-equilibrium surface growth model [35, 33]. 

4.1.1 Conservative rule 

The main idea in conservative schemes is to strictly avoid any causality error from occur-

ring. At each update attempt t, on each PE the simulation algorithm randomly selects one 

of the Nv sites. If the selected site is an interior site, the update happens and a random time 

increment is added. This increment is usually sampled from the Poisson distribution with 

unit mean. If the selected site is at the border, the PE can update only if its local time is not 

larger than the local time of its neighbor PE or times of neighboring PEs that interact with 

that border. When Nv = 1, the rule requires that each PE updates only if its local time is 

not larger than the local time of both its left and right neighbors. In the conservative PDES 

scheme [?], an update is performed by a particular PE only if the resulting change in the 

local confguration of the simulated system is guaranteed not to violate causality, other-

wise the PE idles until this condition is met. The evolution of the time horizon exhibits 

kinetic roughening and is governed by the Kardar-Parisi-Zhang (KPZ) equation, which 

plays a very important role in non-equilibrium surface growth. 
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4.1.2 Optimistic rule 

Unlike the conservative mechanism, the optimistic approach [21] allows causality errors 

to occur. At each t, the simulation algorithm allows each PE to make updates, regardless 

whether these events are certain. When the conservative rule would force a PE to wait, the 

optimistic rule may allow causality to be violated. However, when such an event occurs, 

a causality error is detected and a rollback mechanism is invoked to undo the effects of 

all events that have been processed prematurely. They are then re-executed in order. The 

optimistic rule will not be studied further in this thesis. 

Figure 4.1 

Short range connections in PDES for a linear chain. 

Short range connections in PDES for a linear chain 
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4.2 The basic conservative scheme 

The main approach is to produce a mapping [35] between non-equilibrium surface 

growth and the progress of the evolution of the simulated time horizon. Korniss etal. 

wanted to understand and analyze the asymptotic scalability properties of PDES schemes 

by using frameworks of modern statistical physics, namely non-equilibrium surface growth 

[1]. The evolution of the simulated time horizon was used to determine the scalability 

properties of the corresponding PDES scheme. Here we provide additional details com-

pared to the PDES introduction in Section 1.4. 

4.2.1 The basic conservative scheme for Nv = 1 

The basic conservative synchronization scheme frst introduced by Lubachevsky [40], 

is that at each parallel step t, PEs which have their local simulated time not greater than the 

local stimulated times of their virtual neighbors, can increment or update their local time 

by an exponentially distributed random amount. An ideal system consisting of L identical 

processing elements is considered. They are arranged so the system is one-dimensional 

and has periodic boundary conditions. Each PE has Nv lattice sites or spin sites per pro-

cessor. At a particular time the algorithm can randomly pick and update any of the Nv 

sites. There are also constraints on the communication between the PEs depending upon 

the value of Nv. The state of the system depends on the processing element operations, 

however update attempts are not synchronized by a global clock. In the simplest case there 

is one spin site per PE, Nv = 1. The system is a closed spin chain, and a spin-fip attempt 

at the kth PE depends on the two nearest-neighbor spins located on the (k − 1)th and the 
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(k + 1)th PEs as shown in Figure 4.1. The update is not made until information is received 

from these neighbors to the kth PE. In this conservative PDES scheme each PE has its own 

local simulated time τk for its portion of the problem, and generates the time for the next 

update attempt. Update attempts are simulated as independent random processes. These 

may be either Poisson processes in which the random time interval between two succes-

sive attempts is exponentially distributed with unit mean, or uniformly distributed update 

processes. A processor is allowed to update its local time if there is no causality violation, 

otherwise it remains idle until this restriction is met. The time step t is the index of the 

simultaneously performed update attempts. The simplest case for the communication rule 

between PEs is that the update attempt is allowed when the local simulated time of the 

kth PE is less than both of its nearest-neighbors, otherwise the PE idles (waits) until this 

restriction is satisfed. This is the rule for Nv = 1, where there is one spin site per proces-

sor. The periodicity condition requires communication between the frst and the last PEs. 

Initially τk (0) = 0 for each site. In other words, the virtual time interface is initially fat. 

The simulated time of the frst update attempt is determined by τk (1) = τk (0) + ηk (0), 

where {ηk} are the kth random time increment, randomly chosen independently on each 

PE and at each parallel step t. For every parallel step, each PE must compare its local 

simulated time to the local simulated times of both its nearest-neighbors, it must check: 

τk ≤ min{τk−1 (t) , τk−1 (t)}. If the local time is a minimum compared with its neighbors, 

then the change of state of the site is performed and its local simulated time is incremented 

by the random amount, τk (t + 1) = τk (t) + ηk (t). Otherwise, the change of state is not 

performed and the local simulated time remains the same, τk (t + 1) = τk (t) i.e. the PE 

97 




 �

4.3.1 Analyzes of the Simulated time horizon 

The focus of past studies was mainly on the worst-case scenario where one compu-

tational object per PE was considered. Some studied were performed for Nv ≥ 2 with 

one virtual time per PE. In this thesis the performance of the PDES conservative scheme 

is studied for uneven distribution of computational objects per PEs, when the number of 

virtual times per PE is more than one. What happens when the load per site is uneven ini-

tially and when the load balancing is done what happens after t time steps? To understand 

the performance and scalability of the basic conservative scheme, two basic properties of 

PDES were studied [35, 30], namely frst, the average utilization hui which is simply the 

average fraction of non-idling PEs, which corresponds to the average rate of progress of 

the simulation and second, the average width of the virtual time horizon, which is crucial 

for the measurement part of the algorithm. It was pointed out that in order to study this 

property, one must determine the statistical spread of the time horizon [15]. This quantity 

can be characterized by 

* 
N 

+ 
X 

2 w 2 (t) =
1 

(τi (t) − τ̄ (t)) (4.1)
N 

i=1 

where τ̄ (t) is the mean progress or the average height of the time horizon. The angular 

brackets denotes the ensemble average, namely an average over independent confgura -

tions. The analogy between the time evolution of the simulated time horizon and non-

equilibrium surface growth was used. The short range interactions among the PEs can 

be treated as the short range communication scheme between the system components and 

can be treated in a similar manner to an interaction among sites of any non-equilibrium 
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Figure 4.19 

Mean interface width for half and half for different L and Nv = 1 and Nv = 2, one 
virtual time per PE. 
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Figure 5.5 

Utilization comparison between static case and dynamic load distribution. 
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The utilization for the load distribution for the example of the middle processor having 

Nv = 100 and rest of the processors having Nv = 1 initially for system size L = 100 

was equal to the utilization for the system having all two site per PE. This can be seen 

in Figure 5.6. Also swapping of the boundary sites where done at every time step, every 

10 steps, and so on. The utilization for all these were also equal to the utilization for the 

system having all two site per PE. 
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Figure 5.6 

Utilization in conservative PDES for uneven and even load per PEs. 
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The interface width for the above example is shown in Figure 5.7. It also shows that 
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initially when the load is unevenly distributed the width increases, but after t time steps it 

saturates to about the width of a system having Nv = 2 for every PE. 
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Figure 5.7 

Mean interface width in conservative PDES for uneven and even load per PEs. 

5.2 Conclusions 

A different approach has been implemented in order to improve the utilization for 

PDES. Instead of only one virtual time per PE, more than one virtual time per PE is im-

plemented. Also instead of static distribution of load, uneven load distribution is studied 

using this approach. It is seen that the utilization increased when the dynamic load bal-
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ancing was done in comparison to the static case. Also the interface width saturated and 

did not diverge, which was seen in the previous chapter. 
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CHAPTER 6 

SUMMARY AND OUTLOOK 

6.1 Summary 

Growing interfaces for competitive growth processes involving two-component growth 

that mixes random deposition (RD) with a correlated growth process, belonging to either 

KPZ or EW universality class, occurring with probability p are studied. Growth processes 

can be defned and characterized by the interface width. Scaling is used to study various 

roughening processes, which had allowed one to study and predict independent quantities 

and functional dependencies exponents. Competitive growth model called RDSR/RD in 

which the microscopic growth rule follows either that of the random deposition with sur-

face relaxation (RDSR) model with probability p or random deposition (RD) with proba-

bility 1 − p is one model studied. This system exhibits a transition at a characteristic time 

from RD to EW. Other model called BD/RD where BD occurred with probability p and 

random deposition (RD) with probability1 − p is studied. This system exhibits a transition 

at a characteristic time from RD to KPZ. It was shown that δ is a non-universal parameter 

and it only refects the particulars of the deposition. Also it was shown that the composite 

systems are in the universality class of the correlated growth process, when one of the 

component process is random deposition (RD). The only effects of the RD admixture are 
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the dilation of the fundamental time and height scales. As a result there is a slowdown in 

the dynamics of build up the correlations. It acts like a magnifying effects which can help 

in revealing hidden features of a correlated growth. In order to study dynamic properties 

of competitive growth models, a mean-feld approach is used to develop and understand 

the universal behavior. The method to develop the continuum growth equations which 

can refect the universal dynamics of the competitive model has not been yet completely 

formalized. Rather the scaling properties of simulated interfaces provide the information 

whether or not the deduced equation correctly refects its dynamics. In this study three 

classes of competitive growth models (CGM) i.e. (i) EW + KPZ (ii) EW + RD and (iii) 

RD + KPZ are considered. Study for done for case (ii) and (iii), because for these cases 

the universal scaling properties for both the universality classes are known. A physical as-

sumption is made that during growth processes the roughening of the surface must refect 

the structures formed in the bulk of the deposited material. A connection between sur-

face roughening and the bulk morphology during the deposition in the competitive growth 

model is investigated. The continuum equation derived shows that the model dependent 

coeffcients do refect the bulk structure. It was showed that by using the key concept that 

the height feld rate due to the component process can provide a connection between the 

bulk morphology and surface roughening. An approximate data collapse was seen when 

scaling was done with p. The approximate scaling law Equation (2.20) contains an in-

formation about bulk structure by the value of the scale-dilation exponent δ. This type 

of approximate scaling does not follow for the models, where the correlated components 

are predominantly nonlinear process, in this studies RD+BD2. For various examples of 
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competitive growth models RD + correlated processes, where correlated processes belong 

either to EW or KPZ universality class [19, 48, 25], the approximate scaling has worked 

suffciently . For various variants for BD models this type of scaling was performed and 

studied when combined with RD as one of the composite component processes. 

Non-equilibrium surface growth analysis are also applied to a study of the static and 

dynamic load balancing for a conservative update algorithm for Parallel Discrete Event 

Simulations (PDES). The time evolution of the interface width, which is the measure of 

the desynchronization in the conservative PDES, was used to probe the dynamic scaling 

properties of the simulated time horizon. The scaling of the interface width has two dis-

tinct regions, namely the growth phase and the saturation phase. It was found that scaling 

agreed with the KPZ universality class. For the PDES scheme to be applied effciently , 

the virtual time horizon should progress at a non-zero rate on average, and the spread of 

the time horizon should be limited as the number of Processing Elements (PEs) increases. 

This was observed when there was one volume element per PE having one virtual time 

per PE. It is shown that when the static distribution is done for different size of volume 

elements per PE having one virtual time per PE, the utilization and the saturation values of 

the interface width increased when compared to PEs having only one volume element per 

PE. Also it is seen that the diverging width of the simulated time horizon diverges as the 

size of the volume element per PE becomes larger which is related to the memory require-

ment per PE. A different implementation to improve and enhance the performance of the 

algorithm was implemented. Instead of only one virtual time per PE, more than one virtual 

time per PE is implemented. Also instead of static distribution of load, uneven load distri-
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bution is studied using this approach. For uneven load distributions in conservative PDES 

simulations, the simulated (virtual) time horizon (VTH) per Processing Element (PE) and 

the simulated time horizon per volume element Nv are used to study the PEs progress in 

terms of utilization.It is seen that the utilization increased when the dynamic load balanc-

ing was done in comparison to the static case. Also the interface width saturated and did 

not diverge, which was seen in the previous chapter. 

6.2 Outlook 

Despite of many studies and efforts [26, 19, 2, 27, 45, 18], aimed at fnding theoretical 

fndings to describe the universal behavior, the case study of KPZ+RD dynamics has been 

so far an unsolved problem. The approach studied here can be used to describe the dynam-

ics of two-component processes where the components are correlated. Bulk morphology 

should be considered and can be used to understand the dynamics of these types of growth 

processes. 
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