TABLE OF CONTENTS

DEDICATION ...ttt et i
ACKNOWLEDGEMENTS .....ooiiiiiiiiiet ettt il
LIST OF TABLES ...t s e viil
LIST OF FIGURES ..ottt X
CHAPTER

.. INTRODUCTION ...ccoiiiiiiiiiiiiieieciectet ettt 1

II.  ADDITIVE MANUFACTURING OF BIOMEDICAL IMPLANTS: A
FEASIBILITY ASSESSMENT VIA SUPPLY-CHAIN COST

ANALY SIS ettt ettt te et e sse e se e e e neenseenseenaens 8
2.1 INrOAUCLION ..o 8
2.2 LItErature TEVIEW ..cc.eeeuieiiieiieiiie ettt sttt ettt ettt e saeeeaeeas 14
2.2.1 Literature related to process-level cost studies..........cceeververcirennnnn. 14
2.2.2 Literature related to system-level cost studies..........cccevuerveneriucnnene 17

23 Cost models with deterministic and stochastic demands ........................ 20
2.3.1 Cost model with deterministic demand...............ccceeveeiereenieniiennene 20
2.3.2  Stochastic model for uncertain demand .............cocceoiiiiiiniiniinnnen. 33

2.4 Sample average approXimation ...........cceeecueereeeiieenieriieenieeeeeseeesieeseeens 35
241 StePS OF SAA ..ot 36
2.4.2 Computational efficiency of the proposed algorithms ...................... 40

2.5 Numerical StUAY.......ooviuiiiiiiiieiie e 42
2.5.1 Case study for additive manufacture of biomedical implants ........... 44
2.5.1.1 ATR QNALYSIS ...veeeevieieiieeeiie ettt 45
2.5.1.2 Demand ANalySiS........ccceerieriieniienieeiieeeeiee e 48

2.5.1.3 Result diSCUSSION ...ceuveeriiiiiiiiieeiieiiieeeeeeeeee e 51

2.5.2  Cost parameters impacting economic decisions..........cccceecvererruennnene 52
2.6 CONCIUSIONS ..cuutiiiiiiiieiiie ettt ettt et 55

III.  DISTRIBUTED OR CENTRALIZED? HYBRID SUPPLY CHAIN
CONFIGURATION OF ADDITIVELY MANUFACTURED
BIOMEDICAL IMPLANTS FOR SOUTHEASTERN US STATES................ 61

3.1 TOETOAUCTION e e e et e e e e e e e ns 61












3.9

3.10

3.11

4.1

4.2

43

44

4.5

Comparing CONFIGOPT with other deployment configurations.................. 116
Cost savings from CONFIGOPT as a percentage of total network cost........ 116

Optimal AM facility deployment in the southeastern USA for various

SCEIIATIOS ..uteenuteeutierueeenteesuteenteesateenbeesueeeabeesaeeenbeessteenbeesaeeenbeeaseesnbeanseeenseennne 119
Pictorial representation of scenario aggregation performed in eSSA .......... 146
Comparison between SAA and eSAA algorithm...........cccooeeiviiiiiencieennnn. 147
Effect of sample size on computation time .........cccecveecveerveeiieeneeeineennennnnen 176
Effect of number of replications on computation time.............cccveeevveennnenn. 176
Effect of cluster size on computation time ..........ccceeveeereereeecieeneeenieenreeenenn 177

xi



CHAPTER I

INTRODUCTION

The provision of on-demand personal care specifically tailored to the need of a
patient is an important aspect of high-quality and efficient healthcare delivery. Due to the
fact that the anatomy of every single patient is unique, there is a significant need to
customize such biomedical implants as hip implants, knee implants dental crowns and
braces, cardiovascular stents and other implants for surgical procedures. These patient-
specific customized implants usually possess complex features which are laborious to
produce using the conventional traditional manufacturing (TM) methods which are
subtractive in nature. However, advanced manufacturing techniques such as additive
manufacturing (AM) provide the opportunity to fabricate the implants from the ground-
up, layer-by-layer using a variety of metallic, plastic or ceramic materials, on a patient-
by-patient basis. With additive manufacturing, one can employ computer tomography to
obtain a patient’s anatomy data, from which a CAD model of the implant is generated
and used to build a patient-specific customized implant. Among the customized implants
produced using AM technology include skull ([142], [158], [37], [141]), knee joint
([59]), elbow ([151]), and hip joint ([116]). These devices possess a combination of
relatively high value and small physical volume which is suitable for the applications of
AM. Specifically, Kablooe Design has used AM to manufacture a device for the
treatment of benign prostatic hyperplasia (BHP) [146] while Siemens has switched to

1



AM technology for the production of customized hearing aids. Moreover, Dental labs
have used AM to produce customized dental crowns for patients. The AM technology
has enabled these companies to localize the manufacture and distribution of end products,
shorten the production time of the customized devices by up to 80%, and significantly
reduce labor cost [34]. The US military has identified the use of AM within the combat
field whereby thousands of different surgical instrument designs, customized instruments
and sterile surgical kits stored on digital media or remotely accessed via the Internet,
could be printed and used in field surgical settings [74].

Instead of ordering traditionally-manufactured implants from suppliers who are
usually located far away from the hospitals, adopting AM technologies for fabricating
biomedical implants at the site of operational hospitals may lead to faster response, lower
inventory level, and reduced delivery costs [59]. In the case of TM-supplied implants,
there is a long waiting time between when an implant is ordered and when it is received
for use in surgery due to the need of customization [148]. The customization requirement
makes keeping safety stock of products at the warehouse of TM vendors either
impossible or extremely expensive. In other words, a large portion of the products may
stay in the warehouse for a long period thereby ting up capital in inventory, increasing
obsolescence risk and reducing stored product quality due to oxidation.

Despite the obvious benefits of AM, the decision to switch from TM to AM is not
straightforward and requires a careful analysis. For one, the AM machines are expensive
and require a significant initial investment outlay as well as maintenance and operating
cost. Besides, implants manufactured via AM usually require expensive raw materials

and may even undergo post-processing steps such as surface cleaning, smoothing or even
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heat treatment after fabrication which could involve additional traditional manufacturing
technologies and supply chain network. All these factors significantly drive up the
production cost of AM in comparison to TM. Consequently, a decision support system is
needed to help decision makers in making objective make-or-buy decisions.

Costs associated with AM can be grouped into two categories: process-level or
well-structured costs such as labor, material, and machine costs; and system-level or ill-
structured costs related to inventory, transportation, delivery, etc [162]. Most of the
existing studies focus on the analysis of process-level costs, which are usually evaluated
based on individual AM processes. For example, some researchers examined the costs
associated with AM machines and materials ([122], [17], [8], [4], [83], [84]); while others
considered the costs of energy consumption ([94], [98], [145]). Some studies provided
qualitative and general discussion regarding the designs and management policies of AM
supply chains ([95], [17], [60]). However, no studies, to the best of our knowledge, have
performed a quantitative investigation of the supply chain’s integrated cost with AM
facilities. Cost reduction arising from these system-level cost parameters could result in
significant benefits in the production of biomedical implants in ways that have not yet
been fully envisaged ([59], [65]). Therefore, quantifying the supply chain level costs of
AM, benchmarked against its TM counterpart, is essential to better assess the feasibility
of adopting AM supply chains for the biomedical implant application, identifying the
system level barriers that hinder the adoption of AM technologies, and recommending the
specific applications in which the adoption of AM technologies may be economically
beneficial. In Chapter 11, we propose a stochastic cost model to quantify the supply-chain

level costs associated with the production of biomedical implants using AM techniques,
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and investigate the economic feasibility of using such technologies to fabricate
biomedical implants at the sites of hospitals. The problem is formulated in the form of a
two-stage stochastic programming model, which minimizes the total cost of using TM
and AM and determines the number of AM facilities to be established and volume of
product flow between manufacturing facilities and hospitals. A customized Sample
Average Approximation (SAA) approach is developed to obtain the solutions. We apply
the cost model to a real-world case study that focuses on the use of biomedical implants
for hospitals in the state of Mississippi (MS), and identify the conditions and cost
parameters that have significant impact on the economic feasibility of AM. We find that
the ratio between the unit production costs of AM and TM (ATR), as well as product lead
time and demands, are key cost parameters that determine the economic feasibility of
AM. A manuscript based on the content of this chapter has been published in Additive
Manufacturing in July, 2016.

In a large network coverage area, an important factor that influences the extent of
benefits reaped by the patient, hospital and the AM provider is the AM deployment
configuration. AM deployment determines how close the manufacturing point is to a
hospital and this can have a huge impact on the supply chain cost. This is particularly true
when we extend the network beyond the state of Mississippi to cover the states in the
southeastern region of the country or the entire country. The choice of deployment
approach (central, distributed, or hybrid) remains an open question that requires a careful
investigation due to the relatively high AM machine, raw material and personnel costs, as
well as uncertainties in the demand of implants in the future ([60], [86]). A centralized

deployment whereby the AM facility is centrally located will save on machine investment

4



cost and personnel cost but incur extra transportation cost since the manufacturing point
will generally be located farther away from the hospitals. A distributed deployment on
the other hand will result in lower transportation cost but higher initial investment in AM
machines and personnel costs. Khajavi et al. [70] are among the few researchers that have
conducted a quantitative study on AM deployment. However, the authors compare only
two extreme ends of the AM deployment configuration spectrum: one centralized AM
location; and an AM facility at all the customer locations, and apply their study to the
AM of military aircraft spare parts. It is reasonable to observe that for expensive raw
materials such as the ones used in the manufacture of biomedical implants and which are
usually not available locally, their procurement and inventory decisions need to be
incorporated in the AM deployment problem to enhance the realization of the full
benefits of AM. In Chapter III, we propose a continuous approximation (CA) model that
quantifies the supply chain network cost associated with AM-produced biomedical
implants and incorporates raw material procurement quantities in the model. We present
an optimization algorithm that calculates the locations of the AM machines and the
hospitals that they serve (otherwise known as the AM facility’s influence area), and the
quantity of raw materials to be kept in inventory at a central raw material warehouse
(CRW) and distributed AM facilities to minimize the total network cost and achieve a
satisfactory level of patient satisfaction. We apply the cost model to a real-world case
study that focuses on the use of biomedical implants in hospitals in 12 states of
southeastern USA, and identify the conditions and cost parameters that have significant
impact on both the AM technology deployment methods and total network cost. We find
that the demand for biomedical implants in the region, fixed investment cost of AM
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machines, labor cost for operating the machines and transportation cost raw materials and
implants are among the major factors that determine how distributed the AM facilities
should be, and impact the AM supply chain network cost. A manuscript based on this
chapter has been submitted to Additive Manufacturing in September, 2016.

The continuous approximation approach in Chapter III provides a means of
modeling a large scale problem where a large number of hospitals and demand points are
distributed in a wide area and obey the slow-varying property. However, in Chapter IV,
we present an enhanced sample average approximation (eSAA) technique which
significantly improves the SAA approach utilized in Chapter Il and yields solutions faster
without assuming the slow-varying property of demand and hospital locations. In the
basic SAA method, choosing an inappropriate sample size can lead to the generation of
low quality solutions with high computational burden, and determining the right sample
size can be quite challenging ([73], [61]). In order to overcome this challenge, our eSAA
method utilizes clustering techniques to dynamically update the sample sizes and offers
high quality solutions in a reasonable amount of time. We apply the proposed approach to
three test problem types (facility location problem, single-sink transportation problem
and supply transportation problem). A number of numerical experiments (e.g., impact of
different clustering techniques, fixed vs. dynamic clusters) are performed for various
problem instances to illustrate the effectiveness of the proposed method. Results indicate
that on average, eSAA with fixed clustering size and dynamic clustering size solves our
test facility location problem almost 631% and 699% faster than the basic SAA
technique, respectively. The promising result shows that formulating our AM deployment
problem of Chapter III as a mixed integer programming problem and applying the eSAA
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could be a strong alternative to the continuous approximation approach utilized therein. A
manuscript based on the content of this chapter has been accepted for publication in the
International Journal of Production Economics in September, 2016.

Thus, the proposed contributions of this dissertation are as follows:

1. In this research, we formulate a more realistic model that captures both process-
level and system-level costs. This model is used to quantitatively study and
analyze the economic feasibility of using AM technology in the fabrication of
biomedical implants at various demand levels, and provide managerial insights on
key cost parameters that affect AM initiatives. The hospitals in the state of
Mississippi are used as a case study. Such a model can be modified to suit similar
analysis in other application areas such as automotive, aviation and energy
production.

2. This research is the first to formulate a continuous approximation model that
recommends the optimal configuration that minimizes the total network cost in
the deployment of AM facilities for the manufacture of biomedical implants. This
model takes into account that the expensive raw materials used in these implants
are usually not locally available and must be ordered from remote sources,
thereby necessitating the inclusion of reliable inventory decisions in the AM
deployment problem. We apply our model to a large network involving the entire
southeastern region of USA, and conduct sensitivity analysis on the factors that
affect how centralized or distributed the AM facilities should be.

3. This research proposes a novel algorithmic approach that enhances the sample
average approximation technique with the aim of yielding fast solutions for large
scale stochastic programming problems. We apply our proposed approach to three
optimization problems and the performance of the technique shows a promising
results that could make it applicable to solving large scale AM facility
deployment problems that involves all the hospitals in the entire USA.



CHAPTER 1II

ADDITIVE MANUFACTURING OF BIOMEDICAL IMPLANTS: A FEASIBILITY

ASSESSMENT VIA SUPPLY-CHAIN COST ANALYSIS

2.1 Introduction

Providing personal care tailored to the specific needs of patients is a promising
approach for delivering high-quality and economically efficient healthcare in terms of on-
demand production and customization. Because the anatomy of every single patient is
unique, there is a significant need for customizing products in the biomedical sector for
replacing hip/joint implants, dental work, vessel stents, and other biomedical implants.
Additive manufacturing (AM) provides the opportunity to fabricate customized
biomedical implants from the ground-up using a variety of metallic, plastic or ceramic
materials, and on a patient-by-patient basis (i.e. ‘on-demand’). With additive
manufacturing, one can employ computer tomography to obtain patient anatomy data,
from which a CAD model of the implant to-be-manufactured is generated and used to
build a patient-specific customized implant. Custom implants can possess truly complex
features which are difficult to machine using conventional, subtractive methods. Singare
et al. [142] has demonstrated the superior functionality of AM biomedical implants, as
well as the aesthetical appeal. Custom implants produced using AM technology have
been used for a variety of applications including skull ( [142], [158], [37], [141]), knee

joint [59], elbow [151], and hip joint [116].



The adoption of AM technologies for fabricating biomedical implants at the site
alongside of operational hospitals, instead of ordering from off-site suppliers of
traditionally-manufactured (TM) implants, may lead to faster response, lower inventory
level, and reduced delivery costs [59]. This is partially because of the fact that many TM
suppliers tend to locate outside of the state, or even the country, of hospitals. For
instance, major hospitals in the state of Mississippi (United States) procure biomedical
implants from suppliers and manufacturers located outside of Mississippi that use TM
technologies for production, as shown in Figures 2.1 and 2.2. For TM, products can be
ordered when they are needed in surgeries, and usually require a long waiting time (up to
months) due to the need of customization [148]. A safety stock of products is kept at the
warehouse of TM vendors/suppliers to accelerate the service. Thus, a large portion of the
batched products may stay in the warehouse for a long period, which tends to tie up a
large amount of capital in the form of inventory, increase the obsolescence risk and
reduce the surface quality of the stored products or parts due to susceptibility to
oxidation. Hence, fabricating biomedical implants at the sites of hospitals using AM
technologies, instead of ordering products from supplier of traditionally-manufactured
parts out of the state, may have the potential to significantly improve the operational
efficiency of healthcare delivery systems, ultimately lowering the costs of medical

service and improving patient well-being and satisfaction.
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Figure 2.1  Location of major hospitals (by county) in the state of Mississippi
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Figure 2.2 Current suppliers of biomedical implants in contiguous United States
(mainland) via traditional manufacturing
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Despite the potential benefits of using local AM technologies over outsourcing for
TM parts, the “make-or-buy” decisions are not straightforward and require careful
investigation because of the existence of conflicting cost parameters. On one hand, the
transportation costs of product delivery using AM may be reduced because of the
shortened distance between suppliers (i.e., third parties close to the hospitals) and users
(i.e., hospitals). In addition, the inventory cost will be reduced since the raw materials for
AM production are the only stock required when fabricating parts on demand. Moreover,
the lead time of products fabricated via AM is significantly shortened [59]. However, the
initial investment of AM machines is relatively high. According to a report by Thomas
and Gilbert [148], the average costs of machines for metal printing can account for about
60% of the total production cost related to AM over the machine lifetime. Besides, AM
performed on site may require surface cleaning, smoothing or even heat treatment after
fabrication. These possible post-processing steps usually require the use of certain
traditional manufacturing technologies, which will add to the production cost as well as
the total lead time of AM parts. Therefore, the realization of a fully functional supply
chain integrated with AM facilities requires comprehensive understanding and
quantification of cost parameters associated with AM.

Costs associated with AM can be categorized into two types: process-level costs
associated with labor, materials, and machines; as well as system-level costs related to
inventory, transportation, delivery, etc. Process- and system-level costs are also referred
to as well- and ill-structured costs, respectively, by Young [162]. Most of the existing
studies focus on the analysis of process-level costs, which are usually

evaluated/calculated based on individual AM processes. For instance, some researchers
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examined the costs associated with AM machines and materials ([122], [17], [8], [4],
[83], [84]); while others considered the costs of energy consumption ([94], [98], [145]).
However, very few researchers have investigated system-level costs, which depend on
the supply chain configuration. Some studies provided qualitative, general discussion
regarding the designs and management policies of AM supply chains ([95], [17], [60]).
However, no studies, to the best of authors’ knowledge, have performed a quantitative
investigation or analysis of the supply chain’s integrated cost with AM facilities, e.g.,
inventory cost, transportation cost, product lead time, etc. Cost reduction associated to
these system-level cost parameters could be significant and result in tremendous benefits
in the production of biomedical implants in ways that have not yet been fully realized
([59], [65]). Therefore, quantifying the supply chain level costs of AM, benchmarked
against its TM counterpart, is essential for truly assessing the feasibility of adopting AM
supply chains for the biomedical implant application, identifying the system level barriers
that hinder the adoption of AM technologies, and recommending the specific applications
in which the adoption of AM technologies may be economically beneficial.

Different from the existing studies that focus on process-level costs only, the
objective of our study is to model how various cost parameters (e.g., inventory,
transportation, demand, lead time, etc.) contribute to the system-level cost, and
investigating the economic feasibility of using AM technologies to produce biomedical
implants at the sites of hospitals. Due to the conflicting nature of cost parameters,
existing conceptual cost analysis, as presented in the literature, may not be sufficient to
characterize the overall manufacturing costs and recommend a more viable means of

manufacturing. We propose a two-stage stochastic programming model to characterize

12



the impacts of various cost parameters on the overall manufacturing cost, which can be
further used to provide a guideline of the buy-or-make decisions for decision makers.
Specifically, the output of the stochastic cost model recommends the number of AM
facilities to be built, which could be zero if AM is not economically feasible, as well as
the amount of products to be ordered from either traditional suppliers or local AM
centers, by minimizing the overall costs. It is worth noting that solving such a stochastic
programming problem is usually NP-hard (non-deterministic polynomial-time hard),
meaning that there are no known algorithms to solve the problem in polynomial time
[90]. A sample averaging approximation (SAA) is implemented in an algorithm to obtain
the corresponding solutions. Based on the developed cost model, we further identify the
cost parameters that may significantly impact the economic feasibility of AM part
production for biomedical applications, which is captured by the number of AM centers
to be established in our example case study.

The rest of this paper is organized as follows: Section 2.2 reviews the existing
literature related to the cost analysis of AM technologies; Section 2.3 presents a
manufacturing cost model based on stochastic programming that quantifies and compares
the overall manufacturing costs of AM and TM technologies; Section 2.4 implements a
SAA to obtain the number of AM facilities to be located and track the flow of products
between manufacturing facilities and hospitals by solving the optimization model
presented in Section 2.3; Section 2.5 applies this optimization model to the real-world
case study of biomedical implants in the hospitals in the state of Mississippi; and Section

2.6 provides concluding remarks and possible future work.
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2.2 Literature review

A large number of AM studies focus on the characterization of material properties
and machine development ([135], [80], [161]), among which several papers have
investigated the economic feasibility of applying AM for rapid tooling ([41], [72], [100]).
Nevertheless, limited research efforts have been dedicated toward understanding the cost
parameters of direct fabrication of metallic end-usable parts. In this section, we review
papers related to the cost analysis of AM end products and categorize the related
literature into two groups: process-level costs associated with labor, materials, and

machines; and system-level costs related to inventory, transportation, delivery, etc.

2.2.1 Literature related to process-level cost studies

Several cost models have been developed to estimate the machine, material, and
energy consumption costs of AM. For example, Hopkinson and Dickens [63] developed
an initial cost model based on Selective Laser Sintering (SLS), which estimates the
production of identical parts. However, this model may not be used to estimate the cost of
products that consist of a mixture of parts with different geometries. Ruffo et al. [130]
added to this model the direct and indirect costs such as overhead costs and presented a
saw-tooth like curve for the costs of the parts in dependency of their quantity, resulting
from a significant increase of the processing time for new parts. Ruffo further advanced
his model in Ruffo et al. [131], which allows for the calculation of production cost for the
case of simultaneous production of different shapes in the same build job. A more
comprehensive model was presented by Rickenbacher et al. [122], in which authors

incorporate the costs of pre- and post-processing steps linked to a mixed build job.
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Besides the machine, materials, and overhead costs, some researchers studied the
energy consumption and environmental impacts of AM. Mognol et al. [94] investigated
the optimal sets of AM process parameters (e.g., building orientation and patterns during
fabrication) that minimize the electrical energy consumption of a build. Authors reported
the absence of general guidelines for the minimization of electrical energy consumption,
and suggested that each AM system needs to be tested individually to identify parameters
that minimize energy consumption. Morrow et al. [98] studied the environmental
emissions and energy consumption for the manufacture of molds and dies using Direct
Metal Deposition, compared to TM technologies. It is shown that AM has great potential
to reduce cost and environmental impact simultaneously. Kreiger and Pearce [75]
performed a life cycle analysis on three plastic products to quantify the environmental
impact of distributed manufacturing using 3D printers. The authors compared the
resulting energy and emissions with that from conventional large-scale production in
low-labor cost countries, and found that distributed manufacturing using open-source 3D
printers has a lower environmental impact than conventional manufacturing for the
products considered. Baumers et al. [17] estimated the process energy consumption and
costs occurring during AM for Selective Laser Melting and reported that the average
production costs, as well as energy consumption, increase as the production volume
decreases. Le Bourhis et al. [82] proposed a predictive model for environmental
assessment of AM which considers electric, fluid and raw material consumptions in a
direct metal deposition process. The model evaluates many manufacturing strategies to
produce a part, and selects the one that has the lowest environmental impact based on the

amount of electricity, fluid and raw material consumed. Kellens et al. [68] proposed a
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parametric model to estimate the environmental impact of selective laser sintering in the
production phase considering energy and resource consumption as well as process
emissions. Using the part’s build height and volume as parameters, the model is able to
compare AM processes and conventional manufacturing and make manufacturing
method decision from environmental point of view based on the amount of energy saved
and amount of waste reduced.

Wittbrodt et al. [159] studied the life-cycle economic analysis (LCEA) of self-
replicating rapid prototypers (RepRaps) technology for an average US household. The
authors found that using this distributed additive based manufacturing technology is
already an economically attractive investment for the average US household that would
save cost against commercial printing service. Pearce et al. [113] examined the
capabilities and economic viability of open source 3-D printers and their use by local
communities to create objects. The authors found that with improvements in local feed
stock availability, size of printed parts, material properties, and the use of renewable
energy systems, the technology has the potential to assist in driving sustainable
development. Gebler et al. [54] provided a qualitative and quantitative assessment of 3-D
printing from a global sustainability standpoint. The authors found that AM has the
potential of inducing changes in labor structures and generating shifts towards more
digital and localized supply chains. They showed that by 2025, the technology can reduce
cost, total primary energy supply and CO, emissions by up to USD 593 billion, 9.30 EJ
and 525.5 Mt, respectively. An overview of the challenges and research opportunities
related to the sustainability, especially energy consumption, of AM can be found in
Sreenivasan et al. [145].
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2.2.2 Literature related to system-level cost studies

Among the very few studies that have investigated system-level costs (e.g.,
inventory, transportation, lead time, etc.), some research groups have studied the potential
impact of AM on the supply of spare parts in the commercial aircraft industry.
Holmstrom et al. [60] provided qualitative analysis for the potential benefits of using AM
in aircraft industry, by comparing the on-demand production of spare parts using both
centralized AM, which requires few AM facilities, and distributed AM, which requires a
larger number of AM facilities. Authors also took into account cost parameters such as
materials and production, distribution and inventory obsolescence, and life-cycle. The
benefits and advantages of both approaches were discussed. It is found that when the
demand for spare parts is relatively low, centralized AM productions may be more
beneficial to allocate the demand from multiple locations; however, requiring longer
delivery time and high inventory cost. In situations, where the demand is relatively high
and short lead time is essential, distributed AM production may be more advantageous.
Similar findings were echoed by Khajavi et al. [70], in which the authors investigated the
production of spare parts for the air-cooling ducts of the environment control system for
the F-18 Super Hornet fighter jet. The authors reported in their case study that the
expected total cost per year for centralized production using AM was $1 million,
compared to $1.8 million for distributed production via AM. As a direct extension of
Khajavi et al. [70], Mohajeri et al. [95] performed a conceptual cost-benefit analysis on
various AM supply chain strategies in a spare parts industries, and proposed several
supply chain management strategies that could potentially mitigate the obstacles of
distributed AM implementation and reduce the relative operation cost, including building
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hubs of AM production, postponing production, internet-based customization, and
distribution.

Thanks to the existing research efforts, the potential economic benefits of AM
technologies, especially cost saving related to supply chains, have begun to be realized.
To further understand how AM technologies may reshape the modern supply chain
networks as well as the corresponding cost benefits, mathematical models are needed to
quantify the benefits and shortcomings of AM technologies, compared with TM
approaches. However, to the best of our knowledge, all of the existing studies for AM-
integrated supply chain are only presented at the ideation and conceptual level due to the
lack of relevant data. We collect real-world data for the use of biomedical implants from
major hospitals in the state of Mississippi and public databases, and propose a stochastic
cost model to investigate the economic feasibility of manufacturing biomedical implants
at the sites of hospitals. The detailed stochastic programming model is presented in

Section 2.3.
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Table 2.1

Acronyms and mathematical notations used in the optimization model

Notations & Explanation

Acronyms

TM; i*" traditional manufacturing facility

AM; j*" additive manufacturing facility

HL, k*" hospital in Mississippi

PT, p*" product type

Sets

P set of products (e.g., hip implants, dental braces, stents)

! set of TM facilities

Ji setof potential AM facilities

K set of hospitals

L set of AM center capacities

Q probability space of demand scenarios

Parameters

i fixed cost to locate an AM facility with capacity £ € L at location j € |

Bpj unit production cost of producing product PT, at AM;

Bri unit production cost of producing product PT, atT M;

Cpijk unit transportation cost of transporting product PT,, from AM;to hospital H Ly

Cpik unit transportation cost of transporting product PT,, fromTM;to hospital HL,

Yok monetary value per unit of lead-time of product PT,, athospital H L,

tpjk lead time of product PT,, between AM;and hospital H L,

tpjk lead time of product PT,, between T M;and hospital H L,

hyj unit inventory holding cost for product PT,at AM;

hyi unit inventory holding cost for product PT,atTM;

foik service frequency for product PT,, between AM;and hospital H L,

foik service frequency for product PT, between T M;and hospital H L,

dpy deterministic demand of product PT,,athospital H L

W realization of demand scenarios

Pw probability of scenario @ € Q

dpkew demand of product PT,, athospital H L under scenario @€ Q

Spej supply capacity of product PT,at AM;of capacity level £ € L

Spi supply capacity of T'M; of product PT,

Variables

Yy binary variable that takes the value 1 if an AM facility of size ¥ is established at
location AM;, O otherwise

Xpjk production volume of PT, from AM; to HL, with deterministic demand

Xpik production volume of PT, from TM; to HL, with deterministic demand

Xpjke production volume of PT, from AM; to H L, under demand scenario we Q

Xpike production volume of PT, from TM; to H L, under demand scenario @€ Q
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2.3 Cost models with deterministic and stochastic demands

We propose a stochastic programming model to characterize the costs of
biomedical implants from AM facilities and TM suppliers. Hospitals may choose to order
products from TM suppliers or establish an AM facility, which may be shared by nearby
hospitals and fabricates biomedical implants at the sites of hospitals. In what follows, we
begin with a deterministic programming model to characterize the total costs of
production using either TM or AM with deterministic demand in Section 2.3.1, which is

further generalized in Section 2.3.2 to account for uncertain and dynamic demands.

2.3.1 Cost model with deterministic demand

The proposed supply chain network consists of hospitals, TM facilities (current
suppliers), and possible AM facilities. We denote by AM; the j th Jocation of possible AM
facilities; T M; the location of the i*® TM facility; and HL,, the location of the k"
hospital. Here, J, I, and K represent the set of the indices of AM facilities, TM facilities,
and hospitals, respectively, i.e., j € J, i € I, k € K. Each manufacturing facility may
produce multiple types of products, the p** type of which is denoted by PT,. The
mathematical optimization model for the total costs can be expressed as below. The

notation is summarized in Table 2.1.

. h .
min Yeer Xjey PeiYej + Xkek jeypep (ﬁpj + Cpjk + Vprtpjk + ﬁ) Xpjk +
h .
ZkEK,iEI,pEP (,Bpi + Cpik + Vpktpik + TZ;{) Xpik (2~1)

in which, we focus on the following two groups of decision variables:
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ii.

Y,;, binary variable that takes value 1 if an AM facility of capacity level £
is to be built at location AM;; 0 otherwise. If Y,; = 0 for all possible
locations AM;, no AM facility will be built, and all products are to be
purchased from TM service providers. On the other hand, if Y,; # 0, for a
certain combination of £ and j values, it suggests to build an AM facility
of capacity level £ at AM,;.

Xpjk and Xp;, are the volume of product flow for product PT;, from
suppliers AM; and T'M; to hospital H Ly, respectively, with deterministic
demand. Given product PT, and hospital HLy, if X,,; = 0 for all TM

locations, this means that hospital HL; does not order from TM facilities.
In other words, all products are manufactured using AM facilities.
Similarly, X, j; = 0 for all AM locations, hospital HL; only order from

TM facilities.

These two groups of decision variables suggest (a) whether AM facilities should

be built at a certain location, (b) what types of products to be produced at AM facilities,
and (c) which hospitals will use AM for biomedical part production. Values of these
decision variables are chosen by minimizing the overall costs, including inventory,
transportation, production, and initial investment of AM machines. We also take into
account of potential costs/penalty resulting from product lead time because short
response time is very essential to patients waiting for implants. The detailed cost

parameters are summarized below:
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We denote denote by W,; the initial investment of AM facilities with
capacity level £ at location M; . The total initial investment across all
possible AM locations is Y. pe;, X je; Wp;Yej. Wpj mainly consists of the cost
of AM machines. For example, in 2015 the market price of a Selective
Laser Melting (SLM) system used for the production of biomedical
implants ranges from USD400,000 to USD1,000,000, depending on the
original equipment manufacturer, machine dimensions, effective build
volume of the machine and its operational build speed. This data is from
quotations received by the Department of Mechanical Engineering of the
Mississippi State University on the price of SLM machines. Such a range
in price due to similar factors is in line with the data from [63], [83], [7],
[14] and [17]. We assume an average price of $500,000 which is
reasonable for the price of the machine that can produce the identified bio-
medical implants. A similar example can be found in [14], in which the
authors recorded an annual maintenance and investment cost of
$110,320/year over 10 years for a similar machine with a purchase price
of $700,000. We use the equivalent annual cost (EAC) model to calculate
the average annualized investment and maintenance cost. There is a wide
range of depreciation methods in literature. The simplest method is the
straight line method which calculates the annual depreciation cost by
dividing the machine purchase price by its expected life. The more
complex methods such as the accelerated depreciation, equivalent annual

cost (EAC) and remaining value percentage (RVP) methods, use models
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that take into account factors like machine age, salvage value, size, usage,
manufacturer, condition, interest rate and region of deployment to
calculate annual depreciation cost. Jones and Smith [67] provided an
overview and historical perspective of the EAC. The detailed discussion of
multiple variations of RVP models can be found in Cross and Perry [36],
Hansen and Lee [57], Unterschultz and Mumey [153], and Dumler et al.
[43]. We calculated the average annualized investment and maintenance
cost based on a life-span of ten years, resulting in an average annualized
investment and maintenance cost of $75,000 for a small capacity AM
center. It is worth noting that for such a fast evolving technology, a faster
replacement policy may be implemented (e.g., 5 year replacement), which
will result in a higher annualized investment. The annualized investment
and maintenance cost for medium and large capacity AM facilities could

be $135,000 and $182,000, respectively.
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ii.

Bp; and B,; represent the unit production cost of product PT,, from AM;
and T M;, respectively. This term includes material, labor, energy
consumption, pre- and post-processing costs, etc. The total production cost
of product PT, for hospital HLj from all manufacturing facilities is
represented by Y. je; BpjXpjk + Qier BpiXpik - The exact values for the AM
and TM unit production cost of biomedical implants are usually
unavailable due to proprietary nature of the data. We estimate f8,,; using
the unit cost of implants obtained from hospital database, as shown in
Table 2.2; for AM, we let 8,,; represent the combination for costs of
materials, energy consumption, and labor. To identify the conditions in

which AM production of implants may be economically beneficial, we

investigate various ratios of %, referred to as ATR hereafter, and examine
pi

its impacts on the decision variables Y;;, Xk, and Xy, ..
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1il.

Cpjk and ¢y represent the unit transportation cost of delivering product
PT, from AM; and T M; to hospital HL, respectively. The transportation
cost depends on the characteristics of product, such as shape, weight,
fragility, etc., as well as the distance between the manufacturing facility
and hospital. TM facilities are usually distant from hospitals. Actually, as
shown in Figure 2.1, all TM facilities are outside of state of Mississippi.
Also, a safety stock of biomedical implants is kept at the warehouse for
TM. These parts can be ordered when they are needed in implant surgeries
and usually require a short delivery time (e.g., overnight) to ensure fast

service. Thus, the unit transportation cost from TM facilities ¢, tends to

be much higher than ¢, j, the counterpart from AM facilities.

25



1v.

hy; and hy,; represent the daily average unit inventory holding cost for
product PT,, at AM; and T M;, respectively. TM requires a long time to
produce parts on demand, which results in a high level of inventory of
infrequently ordered parts. These unused products tie up capital and
resources in the forms of space, warehouse, security, land, and rent, utility
costs, insurance, taxes , respectively [148]. On the other hand, on demand
production of these products using AM may reduce or even eliminate the
need for maintaining the high inventory level and associated costs. The
TM production of several types of medical implants requires batch
production. As pointed out in the case study by Trotman [150], machining
partners in TM of orthopedic implants using CNC machines require a
minimum of two month’s supply of stock at all times. In this case, the
warehouse is necessary for TM production. On the other hand, since AM’s
operations generally stay closer to end-product point of use, AM is able to
achieve a leaner and more cost-effective supply chain that relies less on
safety stock and requires less inventory holding costs [143]. This is mainly
because AM does not require multi-steps production operations or any
additional tooling and minimizes the need for inventory. This leads to
reduced costs and lead times, especially for small volumes and complex
parts as in orthopedics. Similar evidence can be found in a report
published by a medical manufacturing company, Conformis [32], which
indicates that TM production of medical implants requires manufacturers

to commit more money on the overhead for inventory and warehousing of
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adequate levels of a range of fixed sizes of implants. As a summary,
avoiding cost in excess inventory is one way that AM achieves a superior
demand-based manufacturing advantage over TM in the production of
metallic medical implants. As pointed out in a NIST report [105], when
only 50 to 100 of a particular implant are needed in a given year and the
minimum order from a financial feasibility standpoint is 500, this creates a
huge inefficiency. AM offers the ability to make only the number that is
needed, and thus helps to achieve a huge reduction in inventory holding
cost. AM may significantly bring down the inventory level, which frees up
capital and reduces expenses. Therefore, we assume that holding costs at
AM facilities is much lower than TM facilities, i.e., h,; < hy;.

fpjk and fpix represent the ordering frequency of product PT, by HLy

from AM; and T M;, respectively. Thus, the average inventory hold cost

. . . . . hyj
during the time horizon of interest is pr’ for product PT, between AM;

pjk’
and hospital HL;. Similarly, the average inventory hold cost between T M;

. . hy;
and hospital HL, is ——.
2fpik
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Vi.

tpjk and tp; represent the product lead/waiting time required for product
PT, from AM; and T M; to hospital HL;, respectively. Even though AM
products require some post-processing time, in general, AM may
significantly shorten lead time when compared to TM [59]. Since post-
treatment varies significantly depending on the products, we do not model
it explicitly. Instead, we incorporate it into the production lead time. In the
biomedical/dental applications, a specific type of biomedical implant is
infrequently ordered; however, when one is ordered, it is needed quite
rapidly to ensure patient health and satisfaction. The TM orthopedic
implant may need two to three months of lead time, including interpreting
the CT scans, making rough prototypes of the component in clay or wax,
shipping it to the surgeon, and awaiting approval or input [148] . In
contrast, AM has the potential to rapidly manufacture parts on demand and
may considerably reduce the waiting time to several weeks. Hence, we
assume that t,,j, < t,;x. For healthcare applications, the waiting time may
be very crucial to the health of patients; and thus excessive waiting time
incurs additional procedures and extra need of medical service. We model
such penalty using a variable y, that represents the monetary value per
unit of waiting time of product PT, at hospital HL;. We assume that the
monetary value per unit of lead-time of a biomedical implant is 10% of its

market price. Hence, the total penalty for product type PT, at hospital HLj

28



1S Ypitpjk and Ypi by for products from a manufacturing facility AM; and

TM;.
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Performance comparison between [eSAA(F)] and [eSAA(D)] (Instance S3)

Table 4.12
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Performance comparison between [eSAA(F)] and [eSAA(D)] (Instance S4)

Table 4.13
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Our computational experiences with experimental sets 1 and 2 indicate that as the
sample size increases it adds more complexity in solving algorithm [SAA] compared to
[eSAA(F)] and [eSAA(D)]. For instances, as the sample size (N) increases from 100 to
500 the average computational time in solving [SAA] increases up to 1546% compared to
443% and 397% in [eSAA(F)] and [eSAA(D)], respectively. Note that this computation
benefits are achieved in both [eSAA(F)] and [eSAA(D)] algorithms without sacrificing
any solution qualities.

To better illustrate the effect of sample size N and replication number M on
computation time, we solve our stochastic [FLP] instance S4 by varying the sample size
N (shown in Figure 4.3) and M (shown in Figure 4.4) in [SAA] and [eSAA(D)]. The
results in Figure 4.3 show that while the solution time increases steadily with N in
[SAA], the increase is not steady in [eSAA(D)]. Fuzzy C-means provides the lowest
savings while K-means++ and K-means produce the highest savings in computation time
for the instance we considered. The poor computational performance from fuzzy C-
means may be due to the time it takes in computing the degree of membership of every
data in multiple clusters. In Figure 4.4 we vary the number of replications from 10 to 50
and observe that the solution time increases with the number of replications. Note that in
both experiments an MIP clustering technique is employed to solve [eSAA(F)]. The poor
performance of the MIP clustering technique may be attributed due to the enormous time
taken to solve the NP-hard formulation of the clustering problem and thus may not be

worthy to use for relatively large sample size scenarios.
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Effect of sample size on computation time
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: Effect of cluster size on computationtime
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Figure 4.5  Effect of cluster size on computation time

4.4.3 Single-sink transportation problem ([SSP])

Maggioni et al. [88] propose a single-sink transportation problem (|[SSP]) where
the authors investigate the production capacity of the suppliers under uncertain customer
demand. Details about the problem description along with the formulation can be
obtained from Maggioni et al. [88]; however, we now introduce the formulation along
with a short description of the problem. In this problem, the authors assume that a single
warehouse is the only destination location. An external source is assumed to be
responsible for leasing the vehicles. The supply capacity of this external source is
assumed to be enough to supply any number of vehicles required. However, the vehicles
must be booked in advance before the realization of demand at the warehouse. After the
realization of demand, booking of vehicles can be cancelled with a cancellation fee which
denoted by a. If the demand at warehouse exceeds the supply capacity of the supply
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