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CHAPTER I 

INTRODUCTION 

1.1 Overview of the Project 

Severe weather outbreak forecasting has improved in recent years, such that the 

threat for a major severe weather outbreak can be anticipated multiple days in advance in 

ideal outbreak setups.  However, forecasts for these events often carry significant levels 

of error more than a day in advance of the anticipated event.  Further, the predominant 

mode of the outbreak is sometimes unclear to forecasters until hours prior to the event.  

In fact, on 24 August 2016, a localized tornado outbreak that produced an EF-3 tornado 

occurred in Indiana, despite forecasts not suggesting an outbreak hours prior to its onset 

(Frame 2016).  In this unexpected tornado outbreak, as well as similar events, NWP 

models did not simulate the environmental conditions that meteorologists associate with 

tornado outbreaks.  The forecasts of numerical weather prediction (NWP) models, while 

providing an essential aid to forecasters, contain inherent uncertainty. 

Uncertainty in a model forecast can come from numerous sources.  One source of 

uncertainty is the non-uniform, spatially discrete network of atmospheric observation 

sites, as well as the numerous temporal discontinuities of data reports and non-uniformity 

in observing platforms.  In contrast, the atmosphere is a fluid that is spatially and 

temporally continuous in its changes; therefore, some missed observations are 

unavoidable with a discrete observation system.  Uncertainty can also exist in NWP 
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model forecasts due to the fact that the mathematical equations programmed into these 

models are approximations of the physical equations that govern the atmosphere.  In 

gridpoint models, finite differencing approaches for numerically solving these differential 

equations rely on methods such as Taylor series, which are infinite and must be truncated 

in real applications (Kalnay 2003).  This truncation introduces error into the model.  

NWP models that do not solve the governing equations in discrete gridpoints avoid finite 

differencing issues by employing spectral methods (such as in the Global Forecast 

System – GFS), which utilize Fourier transforms for representing waves, which also 

introduces error into the model.  In addition, many approximations of physical processes 

in the atmosphere, known as physics parameterizations, exist in computer models, with 

individual parameterizations either fine-tuned to perform particularly well with specific 

types of atmospheric phenomena or generalized for acceptable operational forecasts of 

most types of weather.  Physics parameterizations make varying assumptions about the 

variables in the governing equations, yielding an additional source of error. 

A common method of examining NWP forecast uncertainty is the use of ensemble 

modeling.  Ensembles are produced with the purpose of modeling uncertainty in the 

location, timing, and strength of meteorological features and providing indications of the 

overall level of confidence in a forecast.  These ensembles can be generated from 

mathematically modeled variations in initial conditions, different configurations of model 

physics parameterizations, or variations in the types (or sources) of data used as input for 

the model.  The spread of the model output values indicates the overall level of 

uncertainty in a forecast. 
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This research aimed to quantify the uncertainty within numerical weather 

predictions for severe weather outbreak forecasts.  The experiments examined model 

uncertainty in predicted atmospheric variables that are important in severe weather 

outbreak prediction, in both a synoptic-scale and a mesoscale forecast.  The uncertainty 

was introduced to the model by varying the selection of physics parameterizations and 

the sources of data in the model input.  Varying input data introduced added uncertainty 

from instrumental error in the model runs performed with additional data, while 

decreasing uncertainty from spatio-temporal discreteness in the observation network by 

increasing the density of data across the model domain.  Varying physics 

parameterizations introduced uncertainty from the chosen approximations of physical 

processes that each parameterization scheme employed.  This simulated uncertainty was 

quantified through examination of the model ensemble range of atmospheric variables 

important to severe weather, and a deterministic forecast of severe weather outbreak 

mode was generated to indicate the effects of this model uncertainty in an operational 

forecasting context.  Overall, the objective of this research was to determine the effect of 

each source of model variation on NWP forecasts of outbreak mode in severe weather 

outbreaks. 

1.2 Literature Review 

1.2.1 Review of Ensemble Modeling in Severe Weather Forecasting 

1.2.1.1 Data Assimilation 

Several methods of data assimilation exist in NWP modeling.  Three-dimensional 

variational data assimilation (3DVAR—Parrish and Derber 1992) is a form of 

assimilation that performs error analysis on data points in three spatial dimensions but at 
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a single time in the model run.  In 3DVAR analysis, data points to be assimilated to a 

background field modify the background field in three dimensions, assuming that each 

data point to be ingested passes quality control checks.  The assimilation uses error 

covariance information from the background field to modify the values in the immediate 

vicinity of the new data point.  The assimilation process assumes that the new data would 

follow the same pattern as that in the background field, though the new data may be 

different in magnitude and location.  Physical governing equations are therefore part of 

the 3DVAR procedure. 

Four-dimensional variational data assimilation (4DVAR—Gauthier et al. 2007) is, 

as the name implies, a four-dimensional extension of the 3DVAR procedure, with time as 

the new dimension.  Data points to be assimilated to a background field are compared to 

the expected temporal progression of the meteorological feature, as extrapolated by the 

assimilation tool using physical equations of the atmosphere.  In 4DVAR analysis, data 

assimilation can correct for inaccurate speeds of weather feature development or 

movement in the model background fields in addition to inaccurate magnitudes. 

Ensemble Kalman filtering (EnKF—Houtekamer and Mitchell 1998) is an 

assimilation technique that uses stochastic ensemble forecasts—multiple NWP model 

simulations of the same case with perturbations in the initial fields—to generate flow-

dependent statistical information about the background fields.  Two sets of ensembles are 

generated in EnKF.  The error covariance information derived from one set of ensembles 

is used in assimilation of data to the other set; this technique is employed to avoid 

excessive internal referencing.  Unlike 3DVAR and 4DVAR, EnKF requires the 

simulation of numerous model runs of a given case; however, because it produces flow-
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dependent error fields (in contrast with 3DVAR, which is flow-independent), it has been 

found to reduce error in the assimilation procedure (Houtekamer and Mitchell 2007). 

An older data assimilation approach is optimal interpolation (OI—Kalnay 2003).  

This approach employs least-squares methods to interpolate assimilated data.  As in other 

forms of NWP data assimilation, data in OI are weighted according to error statistics.  

Background fields also have associated error fields.  The OI equations produce 

assimilation fields that have minimized the amount of error in the final result. 

In recent years, improvement of data assimilation techniques has been an 

important area of focus among NWP researchers.  Yussouf et al. (2013) modeled the May 

2003 tornado outbreak sequence with a selection of three microphysics schemes in 

combination with radar and conventional observation assimilation.  The assimilation of 

radar and use of a double-moment physics scheme aided in the modeling of a prominent 

supercell thunderstorm that occurred on 8 May.  Fierro et al. (2012) examined the 

assimilation of lightning strike observations in a modeling of the 24 May 2011 tornado 

outbreak over Oklahoma, finding that this data set improved the location of individual 

thunderstorms. 

The assimilation of surface, rawinsonde, and aircraft observations in a 12-hour, 

30-member initial condition and model physics ensemble forecast has been examined by 

Wheatley et al. (2012) for an analysis set consisting of multiple severe weather outbreaks.  

Their research compared control ensembles to ensembles with assimilated observations 

of altimeter setting, temperature, dewpoint, and horizontal winds.  They calculated the 

ensemble-mean significant tornado parameter (STP) and the probability that the STP > 1 

for model grid points closest to official tornado reports for 24 severe weather outbreaks.  
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Their research found that the differences in these calculations between the control 

ensembles and the data-assimilation ensembles were significant at the 95% level and that 

the assimilation ensemble produced values closer to observations. 

Jones and Stensrud (2012) examined the impact of temperature and mixing ratio 

profiles computed by the Atmospheric Infrared Sounder (AIRS—Aumann et al. 2003) on 

forecasts of convective activity.  They examined two severe weather events from 2009 

and 2010, comparing high-resolution (3 km) ensemble forecasts with assimilated AIRS 

and conventional observations against the same ensemble forecasts with only assimilated 

conventional observations.  Their results for the two cases indicated that AIRS 

temperature and mixing ratio observations produced improvement in the ensemble mean 

dewpoint forecast in levels of the atmosphere most associated with severe convective 

development. 

As this sampling of studies has shown, data assimilation generally improves NWP 

forecast accuracy relative to control observations.  Modern assimilation processes employ 

physically based approaches when adding the observation data to a background field, a 

strategy that should—and usually does—reduce error in comparison with simply adding 

observations to the background field. 

1.2.1.2 Physics Parameterization 

Physics parameterization has also been examined extensively in the context of 

severe weather forecasting.  Numerous studies have examined the impact of various 

model physics parameterization schemes on the modeling of convection processes, cloud 

ice production, and mesoscale weather events.  The effect of microphysics on cold pool 

formation is especially well-documented.  Morrison and Milbrandt (2011) compared the 
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Morrison (Morrison et al. 2009) and Milbrandt-Yau (Milbrandt and Yau 2005) 

microphysics schemes in their modeling of idealized supercell thunderstorms, finding 

that the Morrison microphysics produced a stronger cold pool and higher levels of 

precipitation.  Varying intra-cloud parameters such as ice levels, raindrop breakup, and 

drop size in each scheme produced broad differences in the modeling of the cold pool 

associated with convective storms.  It should be noted that this study did not examine a 

real-world case, but rather, an idealized modeling of convection. 

Cintineo et al. (2014) examined a set of five PBL and four microphysics schemes 

with regard to the modeling of cloud cover over the contiguous United States.  They 

found that microphysics parameterization choice greatly influenced the modeling of 

upper-level cloud features.  Of the schemes they examined, the Milbrandt-Yau and 

Morrison microphysics schemes produced much more upper-level cloud cover than the 

Thompson (Thompson et al. 2006) and WRF double-moment 6-class scheme (Lim and 

Hong 2010).  The variations they found among different PBL schemes were small.  Li et 

al. (2015) studied nested WRF simulations of marine cumulus clouds and cold pool 

development with regard to variations introduced by the Thompson and Morrison 

microphysics parameterization.  They found that the Thompson scheme modeled less 

cloud cover and liquid precipitation than the Morrison scheme, resulting in a stronger 

cold pool with the Morrison scheme.  This result reinforces the Morrison and Milbrandt 

(2011) result, which also found that the Morrison scheme generated strong cold pools. 

Case studies have also been performed with varied parameterization schemes.  As 

an example, the 3 May 1999 Oklahoma tornado outbreak—a frequently examined high-

impact event—was modeled as a six-member physics parameterization ensemble in an 
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early work by Stensrud and Weiss (2002), who found that their ensemble scheme 

modeled the forcing mechanisms for this outbreak well.  More recently, McMillen and 

Steenburgh (2015) examined the effects of microphysics on the modeling of a lake-effect 

snowstorm in Utah, finding that the Thompson microphysics scheme most comparably 

modeled snow in the event relative to real observations, and that the WRF double-

moment 6-class microphysics scheme produced larger amounts of precipitation in the 

form of graupel than other tested microphysics. 

In a study on a very different topic, Gibbs et al. (2011) examined the effect of 

three planetary boundary layer (PBL) parameterization schemes on the modeling of a dry 

convective boundary layer in two cases in Oklahoma in dryline and dry cold front cases.  

They found that the Mellor-Yamada-Janjić boundary layer scheme (MYJ—Janjić 1994) 

most closely approximated observed values of wind magnitude in the dryline PBL 

environment, whereas the Yonsei University (YSU—Hong et al. 2006) and refined 

Asymmetric Convection Model (ACM2—Pleim 2007) more closely modeled wind 

magnitudes for the dry cold front.  YSU PBL most closely modeled heat flux values in 

both the dryline and the dry cold front cases, and ACM2 modeled flux values least 

accurately.  The MYJ scheme produced the most accurate modeling of near-surface 

turbulence in the dryline case, but the least accurate in the dry cold front case.  However, 

in their study, all three PBL schemes produced heat and moisture values that were 

reasonably similar to each other.  The authors emphasized that in a dry PBL case, 

whether dry cold front or dryline, the choice of PBL scheme may not introduce very 

much uncertainty into a NWP forecast.  Their study did not examine moist PBL cases, 

which are more commonly associated with convective instability. 
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Hu et al. (2010) also examined these three planetary boundary layer schemes— 

Mellor-Yamada-Janjić, Yonsei University, and Asymmetric Convection Model—for 

performance in modeling summertime boundary layer processes in Texas and eastward to 

Mississippi, a decidedly moist environment, in contrast with the model domain of the 

Gibbs et al. study.  They found that, although all three examined PBL schemes 

introduced cold and moist biases in the 0-2 km atmospheric layer compared to an 

observation data set, the MYJ scheme produced the largest biases.  Close examination of 

the modeled physical variables revealed that vertical mixing in the PBL was stronger in 

the YSU and ACM2 runs than the MYJ runs. 

1.2.1.3 Initial Condition Perturbation 

Initial condition perturbation has been extensively studied in the context of severe 

weather forecasting.  Current operational weather models are run in ensemble mode, 

and—depending on the model—several dozen initial condition perturbation runs are 

produced.  Initial conditions can be perturbed either by a randomized method of 

generation (Monte Carlo ensembles) or by a method that takes into account the flow 

pattern (Kalnay 2003).  The flow-aware perturbations are preferred in operational 

forecasting for greater realism, and several schemes for generating variations exist.  One 

approach, known as bred vectors, involves the differencing of a perturbed forecast from a 

non-perturbed forecast and the assimilation of this error into the next model time step.  

Another approach, which is used in the European Centre for Medium-Range Weather 

Forecasts (ECMWF) model, is known as singular vector perturbation (Leutbecher and 

Palmer 2007).  This approach employs eigenvector solutions to a vector-norm equation as 

the basis for its perturbations.  The perturbation method that is included in the Weather 
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Research and Forecasting (WRF) model is known as stochastic kinetic-energy 

backscatter (SKEBS, Berner et al. 2011).  This method attempts to estimate the 

dissipation of kinetic energy at higher resolutions than the runtime configuration of the 

model, using the calculated amount of energy that is not dissipated in the next step in the 

model. A more detailed review of perturbation ensemble modeling methods is beyond 

the scope of this research, as this method of ensemble generation is not examined in the 

study. 

However, approaches for quantifying uncertainty in perturbation ensembles still 

have application to this research, so a brief pair of examples is given.  Clark et al. (2004) 

examined the growth of ensemble spread in a prolonged period of convective weather.  A 

physics parameterization ensemble and a combination physics-perturbation ensemble at 

two different grid resolutions were compared to each other.  The comparison values were 

the ensemble variance of standard meteorological fields (geopotential height, mean sea 

level pressure, temperature, dewpoint, and wind magnitude) at various pressure levels.  

For the combined ensembles and the parameterization-only ensembles, the finer grid 

resolution produced faster spread growth rates than the coarser grid.  Additionally, lower 

atmospheric variables exhibited a greater proportion of ensemble spread from physics 

parameterization than from initial condition perturbation.  This finding is relevant to this 

research because it suggests that physics parameterization, even at small grid spacing, 

introduces significant uncertainty into convective weather NWP forecasts. 

Tapiador et al. (2012) modeled a severe hail storm in Spain with physics 

parameterization ensembles (without perturbations) and initial condition perturbation 

ensembles (without physics parameterization variations).  They varied cloud 

10 



 

 

 

 

  

 

 
  

 

 

 

  

 

 

 

 

 

 

microphysics, cumulus physics, and land surface physics in the parameterization 

ensemble, and they used MYJ PBL physics for all ensemble members.  Similar to Clark 

et al. (2004), they found that the physics parameterization ensemble produced statistically 

significantly greater ensemble spread than the perturbation ensemble in the modeling of 

simulated reflectivity and precipitation. 

1.2.2 Review of Support Vector Machines 

Verification of a numerical weather prediction model in the context of severe 

weather outbreak forecasting is a contentious issue.  An operational forecast of a specific 

type of severe weather is made subjectively by a human forecaster with NWP forecasts, 

current observations, local climatology, and persistence as guidance, and the accuracy of 

such a forecast is often highly subjective as well.  Therefore, other methods of forecasting 

severe weather and verifying severe weather outbreak predictions within a NWP forecast 

will be employed in this study.  For the verification data set, the research will use the 

definitions of tornadic and nontornadic outbreaks employed in Shafer and Doswell 

(2010—hereafter SD10), specifically their N15 index. 

Since human forecast decisions are often highly subjective, inconsistencies in the 

forecast outcomes from such a subjective determination suggest the need for an objective 

classification method for outbreak type.  Support vector machines (SVMs - Burges 1998, 

Hearst et al. 1998) are a type of learning machine well suited to binary classification 

applications, such as tornadic/nontornadic outbreak types.  SVMs employ an optimized 

decision hyperplane to demarcate classes in a binary fashion, with all points on one side 

corresponding to one outcome and all on the other side to the other outcome (Fig. 1.1a).  
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SVMs also utilize kernel methods to project nonlinearly separable data into a higher 

dimensional hyperspace where they are linearly separable, enhancing their utility for 

classification applications (Fig. 1.1b). 

SVMs have been used in meteorological research before.  SVMs have been used 

in aerosol modeling (Ackerman et al. 2004), classification of satellite radiance data into 

cloud types (Lee et al. 2003), and downslope windstorm forecasting in Colorado (Mercer 

et al. 2008).  Most pertinently to this study, Mercer et al. (2009—hereafter M09) 

examined the use of SVMs to distinguish between tornadic and nontornadic severe 

weather outbreaks.  They noted the inherent classification ability of SVMs in selecting 

them as the primary objective classification method.  Following studies by Weisman and 

Klemp (1984), Droegemeier et al. (1993), McNulty (1995), Colquhoun and Riley (1996), 

Stensrud et al. (1997), Rasmussen and Blanchard (1998), Markowski (2002), and Davies 

(2004), M09 initially examined 15 meteorological parameters found to be important in 

severe convective weather prediction before using a permutation test (Efron and 

Tibshirani 1993) to determine the diagnostic variables that were most distinct between 

the two outbreak types, after which a SVM was trained on these significant parameters.  

The M09 study yielded low false alarm ratios (FAR; less than 0.3) while maintaining a 

high skill at discriminating outbreak type (greater than 0.7).  However, they noted that the 

FAR values remain too high, suggesting additional work is needed in improving outbreak 

discrimination. 

Other statistical methods exist for producing a probabilistic forecast of a binary 

outcome, such as logistic regression.  In the context of outbreak mode prediction, logistic 

regression is linear with respect to the probability of a “hit” (here, a tornado outbreak).  
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The kernel function of an SVM, however, may be linear, polynomial, or Gaussian.  Using 

this kernel function, the SVM iteratively tunes its decision hyperplane function to 

optimize separation between data points, learning from predictor-predictand sets of data.  

The learning and nonlinear approaches give the SVM added flexibility to adapt its 

decision hyperplane function for a given volume of data. 

These examples use a set of data in which color indicates a distinction between 

two classes.  The dashed diagonal line in the right panels of Figure 1.1a and Figure 1.1b 

is the decision hyperplane.  The points closest to the decision hyperplane are the “support 

vectors” of the algorithm; it is the distance between them that must be maximized. 

13 



 

 

 

 

 

  

 

 

 

  

Figure 1.1 Support Vector Machine (a) and Higher-Dimensional Kernelization (b) 
with a Kernel Function  

1.3 Research Objectives 

While nontornadic severe weather outbreaks can be highly dangerous and 

destructive, tornado outbreaks account for a far greater casualty and property damage toll.  

Operational forecasters try to predict outbreak mode as far in advance as possible, given 

costs to government and business associated with preparing for high-impact weather 

events and the psychological “crying wolf” problem when high false alarm rates exist.  

Minimizing the false alarm rate for all types of extreme weather forecasts is an ongoing 
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goal in operational meteorology, but the specific danger of tornado outbreaks makes it 

especially critical for this type of event. 

This research proposes two overarching questions to be answered: 

 Whether model physics parameterization or data assimilation produces the greater 

model spread in atmospheric parameters that are important for severe weather.  

 Which model configuration within each set—a data assimilation ensemble and a 

physics parameterization ensemble—produces the most accurate outbreak 

forecast 

These questions require a three-part research project to model and examine 

variation across a representative set of severe weather events.  Phase I involves the 

assimilation of data from two sources—conventional observations and satellite infrared 

radiances—to determine the impact of this data assimilation on severe weather outbreak 

forecasts.  Phase II involves the use of a microphysics and PBL physics parameterization 

ensemble to determine the effect of parameterization scheme choices on outbreak mode 

prediction.  Phase III will examine the impact of both data assimilation and physics 

parameterization on synoptic-scale atmospheric fields.  Within each phase of the project, 

additional research questions specific to that phase are raised. 

In the data assimilation phase, the key questions to answer are whether the 

assimilated data used in the project produce an improvement above a control in the 

accuracy of SVM severe weather outbreak classifications, and if so, which type or types 

of assimilated data produce the most significant improvement to an outbreak mode 

forecast.  It is hypothesized that the assimilation of conventional data in conjunction with 

high-resolution satellite data produces the most skilled outbreak forecast.  The effects of 
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conventional data assimilation on model accuracy (with respect to an observation data 

set) are well documented, with researchers such as Wheatley et al. (2012) finding that 

assimilating these data brought a tornadic parameter closer to observed data.  Jones and 

Stensrud (2012) found that the use of AIRS satellite sounding data improved the forecast 

of middle- to lower-atmospheric dewpoint temperature, an atmospheric parameter that is 

important in forecasting severe weather.  These prior studies suggest that the assimilation 

of both conventional and satellite observations should produce improvements in an 

explicit probabilistic outbreak-mode forecast, relative to a control forecast and to 

forecasts made with the assimilation of only one such type of data. 

In the model physics parameterization phase, the key question to answer is which 

combination of model physics provides the most accurate modeling of severe weather 

mode across the case set.  Despite the volume of research concerning the effects of 

parameterization schemes on specific physical processes and individual cases, no study 

has formally identified the performance of a suite of physics parameterizations in severe 

weather outbreak mode forecasting; therefore, the goal of this phase of the research is to 

identify the individual impact of certain physics parameterization schemes on the SVM’s 

ability to distinguish tornadic and nontornadic outbreaks within a NWP framework.  

Given that M09 found the most statistically significant parameters for distinguishing 

outbreak mode to be largely near-surface or lower-atmospheric, it is hypothesized that the 

choice of planetary boundary layer scheme produces a greater impact on outbreak mode 

forecasts than other examined types of model physics. 

In the third and final phase of the study, the research question is what effect that 

data assimilation (as conducted in phase I) and microphysics/PBL parameterization (as 
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conducted in phase II) have on the modeling of synoptic-scale weather features in 

tornadic and nontornadic outbreaks.  With regard to parameterization, it is hypothesized 

that microphysics parameterization will influence the modeling of upper-level cloud and 

wind features more strongly, whereas PBL physics will heavily influence lower-level 

thermodynamic and wind variables.  With regard to data assimilation, it is hypothesized 

that conventional observations will most strongly influence thermodynamic variables and 

satellite radiances will influence cloud features and wind.  The reasoning for this is that 

the conventional data set contains direct observations of atmospheric moisture, whereas a 

data assimilation system must calculate moisture values from satellite infrared radiance 

temperatures, and these calculations are highly sensitive to the quality of the satellite 

radiance data. 

1.4 Data Description 

All three phases of the research use model simulations produced by the Weather 

Research and Forecasting-Advanced Research WRF (WRF-ARW) model, version 3.4.1 

(Skamarock et al. 2007).  All ensembles of the WRF model are initialized with the North 

America Regional Reanalysis (NARR) data (Mesinger 2006).  The NARR are provided 

on a 32 km Lambert-Conformal grid with 29 vertical levels and 3-hour temporal 

resolution. The NARR data are reanalyzed from recorded weather observations using the 

North American Mesoscale (NAM) model, formerly known as the Eta model, and 

assimilated with the Eta data assimilation system.  Known sources of error with the 

initialization data include imprecision in surface wind stress (Ebisuzaki and Rutledge 

2004) and diurnal inaccuracies in 2m temperature fields (Mesinger 2006).  Due to the fact 

that this research study focuses on severe convective weather events that are driven in 
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part by boundary-layer thermodynamic and wind shear conditions (Kerr and Darkow 

1996, Thompson et al. 2007), these errors in the NARR data are of significance and 

provide a significant opportunity for improvement through data assimilation, as well as 

potential modeling improvement through optimal choices of physics parameterization 

schemes, which in turn could improve outbreak classification by the WRF. 

1.4.1 Event Selection 

The research examines a set of 40 severe weather events in North America that 

took place between 2008 and 2011, as listed in Table 1.1.  Doswell et al. (2006— 

hereafter D06) and Shafer and Doswell (2010—hereafter SD10) define a tornado 

outbreak as six or more tornado reports within a single synoptic-scale system over a 24 

hour period (1200 UTC to 1200 UTC the following day).  SD10 went further and ranked 

outbreaks based on their severity using a variety of outbreak intensity indices, based on 

characteristics of the outbreak that are listed in Table 1.1.  They found that their N17 

index was most representative of tornado outbreaks.  As such, 20 tornado outbreaks 

ranked in the top 35 according to SD10 and 20 nontornadic outbreaks (those with five or 

fewer tornado reports that exhibited a large number of hail or wind reports) were selected 

for comparison in this study (Table 1.2).  All storm reports were taken from the Storm 

Prediction Center’s Storm Data database (NCDC 2010).  A selection of 20 events was 

chosen from the top 35, rather than simply the top 20, because the satellite radiation 

sounder data used in this research were not available until 2008, and gaps exist in the 

satellite data set for certain days in which severe weather outbreaks occurred. 
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Table 1.1 SD10 Variables Used for Ranking Outbreaks 

Total number of severe reports Total number of violent tornadoes 
Total number of tornadoes Number of long-track tornadoes 
Total number of hail reports Number of killer tornadoes 
Total number of wind reports Destruction Potential Index (D06) 
Total number of significant hail reports Total path length 
Total number of significant wind reports Fatalities 
Total number of significant tornadoes Middle-50% parameter (D06) 

Table 1.2 Severe Weather Outbreaks Simulated in the Study 

Tornado N17 Report Count Nontornadic N17 Report Count 

Outbreaks Index Outbreaks Index 

Tor Hail Wind Tor Hail Wind 

7-Jan-08 2.325 47 171 119 15-Jun-08 0.193 3 267 274 

5-Feb-08 8.889 85 145 313 8-Jul-08 -0.099 2 42 272 

15-Mar-08 3.039 46 209 87 20-Jul-08 0.301 0 64 348 

9-Apr-09 1.737 24 207 121 2-Aug-08 0.194 1 193 337 

10-Apr-09 3.490 62 387 133 11-Feb-09 0.077 3 7 375 

8-May-09 2.079 46 128 159 15-May-09 0.150 5 260 99 

24-Apr-10 5.252 35 119 149 3-Jun-09 -0.180 1 117 68 

10-May-10 4.034 69 126 60 18-Jun-09 0.140 5 173 312 

5-Jun-10 2.268 46 3 55 24-Jul-09 0.200 3 166 116 

17-Jun-10 4.056 73 136 87 9-Aug-09 0.177 2 78 241 

4-Apr-11 2.261 46 116 1088 6-Apr-10 -0.078 0 188 60 
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Table 1.2 (Continued) 

15-Apr-11 4.707 67 195 95 28-May-10 -0.250 0 89 120 

16-Apr-11 5.096 55 51 130 15-Jun-10 -0.047 0 88 325 

19-Apr-11 2.865 80 443 513 18-Jun-10 0.398 1 126 387 

25-Apr-11 3.091 50 162 230 23-Mar-11 0.369 4 278 167 

26-Apr-11 7.748 105 224 207 3-Apr-11 0.154 0 304 64 

27-Apr-11 29.342 172 202 329 11-Apr-11 -0.226 1 5 112 

22-May-11 4.879 47 487 279 20-Apr-11 -0.079 2 144 57 

24-May-11 6.420 48 234 210 4-Jun-11 -0.099 0 98 122 

25-May-11 3.242 90 467 496 9-Aug-11 0.446 1 129 132 

Each phase of the research considered the same case set.  These cases were 

simulated in the WRF model according to the requirements of each phase of the study, as 

detailed in the following sections of this document.  Phases I and II involved subsetting a 

large regional model domain (described in sections following) into smaller, outbreak-

centric domains, whereas phase III used the large regional domain for analysis.  The 

smaller domains used in phases I and II are centered on the severe weather outbreaks.  

These outbreak centers are estimates of the geometrical centers of storm report mappings 

for each outbreak.  The SD10 data set includes some dates in which more than one 

synoptically distinct outbreak occurred in North America; in these cases, SD10 treats 

each synoptic weather feature as a separate outbreak.  When more than one synoptic 

weather feature produced severe weather reports on a given day, this research used only 
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Figure 4.7 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Tornadic Clusters, Modeled with Morrison Microphysics and MYJ PBL 
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Figure 4.8 Composites of 300 mb Wind Magnitude, 500 mb Magnitude-Direction, and 
925 mb Magnitude-Direction in Nontornadic Clusters, Modeled with 
Goddard Microphysics and ACM2 PBL 
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4.2.2 Composites of Nontornadic Outbreaks 

In contrast with the tornadic outbreaks, the nontornadic outbreaks sorted into four 

very different clusters.  Cluster 1 depicted a broad trough and tight geopotential 

height/temperature gradients across the north side of the domain.  Cluster 2 was the most 

similar to the tornado outbreak clusters, showing a trough 5400 m in height at 500 mb 

and a very tight pressure gradient.  Cluster 3 was quite distinct, showing a ridge of 5900 

m and a temperature gradient on the north side of the ridge.  Cluster 4 was characterized 

by a trough to the northeast and a northwesterly flow pattern to the west of the trough. 

In cluster 1, isotherms at 850 mb were mostly parallel with isohypses at 500 mb, 

with the exception of a large region of high temperatures with a north-south bend south 

of the trough.  A region of high relative humidity at 700 mb with a southwest-northeast 

orientation was also aligned with the height and temperature gradient (Fig. 4.9a).  Wind 

patterns for this cluster (Fig. 4.10a) illustrated a strong jet streak in the northeast region 

of the cluster.  A southwesterly flow pattern was evident in the southern region, 

indicating a right rear quadrant jet streak pattern. 

Cluster 2, as mentioned, showed a classic intense mid-latitude cyclone pattern, 

with a very pronounced comma cloud shape of mid-level moisture and a deep warm 

sector (Fig. 4.9b).  The wind fields for this cluster exhibited high magnitudes and a strong 

directional shearing pattern (Fig. 4.10b).  300 mb winds were very strong and a deep dip 

in the jet was apparent.  The mid- and lower-level wind fields in this cluster were 

suggestive of a left front jet streak entry pattern.  Altogether this cluster depicted a very 

strongly forced synoptic pattern. 
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Clusters 3 and 4 depicted environments not characterized by a classic trough, but 

examination of observational data for individual cases within clusters 3 and 4 indicated 

that the modeled flow patterns were representative of the constituent outbreaks.  The 

environment of cluster 3 was characterized by southwesterly flow, veering to westerly, 

across the northern extent of a ridge and through a generally east-west thermal boundary 

(Fig. 4.9c, Fig. 4.10c).  This environment is associated with derechos and quasi-linear 

convective systems (QLCS).  Indeed, all cases comprising cluster 3 were summertime 

QLCS and derecho events.  These events occurred in the months of June, July, and 

August.  The springtime nontornadic events—11 February 2009, 6 April 2010, 23 March 

2011, 3 April 2011, 11 April 2011, and 20 April 2011—sorted into clusters 1 and 2, the 

clusters that most closely resembled mid-latitude storm setups in the spring months.  

These findings indicate that a seasonally based sorting did occur to an extent.  As the 

cluster analysis shows, nontornadic severe weather outbreaks are commonly produced by 

a variety of very different atmospheric setups, which occur at different times of the year, 

whereas most non-tropical tornado outbreaks are produced by a similar type of weather 

feature that is unusual in summer months. 

Cluster 4 was composed of only 3 events, but these events all exhibited a trough 

and northwesterly flow pattern (Fig. 4.10d) suggestive of an upper-level low across a 

northwest-southeast 850 mb temperature gradient that defined the cluster (Fig. 4.9d).  

The upper-level flow pattern for this cluster was weak, though strong directional shear 

existed from 500 to 925 mb due to consistent—but weak—south-southwesterly flow 

toward the trough at this level. 
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The outbreaks that were primarily hail—15 May 2009, 3 June 2009, 6 April 2010, 

23 March 2011, and 3 April 2011—sorted into clusters 1 and 2, the trough and mid-

latitude cyclone clusters.  The outbreaks that were mixed-mode—15 June 2008, 24 July 

2008, and 9 August 2011—sorted into clusters 3 and 4.  No clear pattern existed in terms 

of the clustering of nontornadic outbreaks that were primarily wind; these outbreaks 

appeared in all four clusters and during both spring and summer.  Although hail-dominant 

and mixed-mode outbreaks occurred in both the spring and summer, a seasonal bias does 

appear in the type of synoptic weather patterns that produced these outbreaks.  The hail-

dominant events—with the exception of 3 June 2009—were springtime outbreaks, 

whereas the mixed-mode outbreaks occurred in the summer.  This result is generally 

reflective of hail and severe wind climatology.  Doswell et al. (2005), for instance, found 

that hail events in the United States have notably higher probabilities of occurrence 

during the April-June period than severe wind events, which have peak occurrences from 

June-August. 
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Figure 4.9 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Nontornadic Clusters, Modeled with Thompson Microphysics and YSU 
PBL Physics 

Maps are provided for scale only and do not reflect the geographical location of synoptic 
features in all the constituent outbreaks. 
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Figure 4.10 Composites of 300 mb Wind Magnitude, 500 mb Magnitude-Direction, and 
925 mb Magnitude-Direction in Nontornadic Clusters, Modeled with 
Thompson Microphysics and YSU PBL 

500 mb wind barbs are blue; 925 mb wind barbs are red.  Wind speeds are in knots.  
Maps are provided for scale only and do not reflect the geographical location of synoptic 
features in all the constituent outbreaks. 
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4.2.2.1 Assimilation Ensemble Modeling Variations 

Each nontornadic outbreak was assigned to the same cluster irrespective of model 

configuration.  This prevented the large variations among some of the clusters that were 

apparent in the tornado outbreaks.  It is suspected that the reason that the nontornadic 

outbreaks were always assigned to the same clusters was that the clusters themselves 

were markedly different in the types and locations of synoptic features present in each 

one, whereas the tornado outbreak clusters all indicated a typical spring-season trough of 

varying amplitude.  Nonetheless, differences in model configuration did influence the 

modeling of these features for the nontornadic outbreaks as well. 

Data assimilation generated variations among thermodynamic and wind field 

composites for all four nontornadic outbreak clusters, but the nature of the variation was 

different for certain clusters.  Clusters 1 and 2 exhibited decreased strength of the trough 

in the conventional and HIRS-4/conventional runs as compared to the HIRS-4 and 

control runs.  This decrease was apparent in the 500 mb height fields and the 850 mb 

temperature fields.  Cluster 4, however, demonstrated a strengthened trough in the 

conventional assimilation runs as compared to the runs without this data assimilation.  In 

cluster 3, which was characterized by the north side of a strong ridge, the northeastward 

extent of this ridge was lowered in the conventional and HIRS-4/conventional runs and 

the top of the ridge was slightly to the west.  The decrease in trough strength for 

nontornadic clusters 1 and 2 mirrors the tornado outbreak composites for tornadic clusters 

1, 3, and 4, in which the same effect occurred with conventional data assimilation.  The 

Thompson microphysics scheme is suspected to be the cause of this in the tornado 

outbreaks, due to the increase in CAPE that it generated in phase II.  As previously noted 
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in phase II, the Thompson scheme’s warming effect was even more pronounced for the 

nontornadic outbreaks. 

Wind fields showed expected patterns among the assimilation composites, given 

the thermodynamic fields.  In clusters 1 and 2, the amplitude of the jet stream was weaker 

in the conventional and HIRS-4/conventional runs than in the HIRS-4 and control runs.  

In cluster 3, the northward extent of a jet streak was greater in the HIRS-4 and control 

runs. In cluster 4, weak upper-level winds characterized the composite field for all runs, 

but the amplitude of the wave in the upper-level jet is greater in the HIRS-4/conventional 

and conventional runs.  Lower-level winds were less strongly influenced than upper-level 

winds in all clusters, but the conventional and HIRS-4/conventional runs appeared to 

exhibit small increases in 500 mb and 925 mb wind magnitudes, especially in the 

comparatively weakly forced clusters 3 and 4.  Cluster 1 also exhibited a slight increase 

in wind magnitudes at these levels.  Interestingly, the most strongly forced nontornadic 

composite, cluster 2, did not exhibit a readily discernible difference in lower-level wind 

magnitude among the assimilation runs. 

The nontornadic composites reinforced the results of phase I for combination 

thermodynamic-dynamic covariates, which were that the conventional and HIRS-

4/conventional model runs generated lower values of 0-1 km EHI and CAPE x 0-1 km 

bulk shear for nontornadic outbreaks than did the control and HIRS-4 runs. In addition, 

the slightly increased values of 0-1 km bulk shear apparent in the phase I nontornadic 

composites for conventional and HIRS-4/conventional runs may be due to the slight 

increase of lower-level shear found in phase III in the weakly forced nontornadic events, 

even though this increase was not apparent in the strongly forced cluster 2.  However, the 
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strength of the trough in cluster 2 at 500 mb was decreased in the conventional and 

conventional/HIRS-4 runs.  Again in reference to the observations test conducted in 

phase I, which found that conventional data assimilation brought atmospheric parameters 

closer to observed values, these results indicate that assimilation of these data aids the 

WRF model in simulating tornadic and nontornadic environments distinctly. 

4.2.2.2 Parameterization Ensemble Modeling Variations 

PBL physics parameterization produced significant differences for some 

nontornadic clusters and variables.  In clusters 3 and 4, MYJ PBL physics (Fig. 4.11) 

produced a much smaller area of 295 K temperatures at 850 mb than the other two PBL 

physics.  This effect was observed very strongly for all microphysics options for these 

clusters.  The effect was also apparent in clusters 1 and 2, though it was not observed as 

strongly.  These clusters were characterized by a broad trough and a mid-latitude cyclone 

pattern respectively, whereas clusters 3 and 4 were characterized by westerly flow over 

the top of a ridge and northwesterly flow around the western edge of an upper-level low.  

In cluster 2, the deepest region of the trough extended slightly farther west with MYJ 

PBL physics than ACM2 or YSU PBL physics.  These results support the previously 

mentioned cold bias of the MYJ scheme (relative to other PBL schemes) in convective 

environments.  The results of phase II implied such a bias for this scheme at the 

mesoscale and the lowest layers of the atmosphere, and the results for this phase confirm 

it on the synoptic scale. 

In clusters 3 and 4, YSU University PBL physics (Fig. 4.9) produced a slightly 

larger area of 295 K temperatures than ACM2 PBL physics (Fig. 4.12).  In cluster 2, 

YSU physics produced a larger area of 280 K and 275 K temperatures than ACM2 
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physics, but little difference was apparent between these two PBL schemes in cluster 1.  

700 mb moisture fields in these clusters exhibit noticeable differences among the PBL 

physics schemes.  In clusters 2, 3, and 4 especially, the RH fields are significantly 

moister in the ACM2 runs, while the MYJ runs are the driest. 

In phase II of the research, the YSU PBL physics model runs generated values of 

CAPE x 0-1 km bulk shear that were higher than ACM2 physics runs and lower than the 

MYJ runs for nontornadic outbreaks.  LCL heights among the YSU nontornadic runs 

were higher than those of the MYJ runs and lower than those of the ACM2 runs.  The 

phase III results indicate that moisture levels, rather than temperatures, are likely the 

primary physical cause of the phase II thermodynamic covariate differences among the 

PBL runs.  Dry air at 700 mb is usually associated with higher values of CAPE in 

convective environments. 

The wind fields depict expected patterns among the PBL physics, given the 

patterns observed in pressure and thermodynamic fields.  In clusters 1 and 3, the jet 

streak is smaller in size with MYJ physics (Fig. 4.14) than with the other two PBL 

physics.  This feature could account for the more northerly extent of warm 850 mb 

temperature fields with YSU and ACM2 PBL physics.  In cluster 3, the 925 mb winds 

immediately due south of the jet streak on the north side of the ridge were west-

northwesterly with ACM2 and YSU PBL physics, whereas these winds were west-

southwesterly with MYJ PBL physics. 

Microphysics parameterization did not consistently influence the modeling of 

most features, comparably to the tornado outbreak clusters.  However, in cluster 4, the 

265 K isotherm at 850 mb extended farther northeast with Morrison and Thompson (Fig. 
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4.9, Fig. 4.11) microphysics than Goddard (Fig. 4.13), WDM-6, or WSM-6.  This pattern 

was observed with all PBL physics parameterizations. 

Composites of selected physics parameterization fields are shown in figures 4.11, 

4.12, 4.13, and 4.14.  In all composites, geographical maps are provided for scale only 

and do not reflect the geographical location of synoptic features in all the constituent 

outbreaks.  In the thermodynamic maps, 700 mb RH is shown in green and 850 mb 

temperature is shown in colored isotherms.  In the wind map, 500 mb wind barbs are 

blue; 925 mb wind barbs are red.  Wind speeds are in knots. 
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Figure 4.11 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Nontornadic Clusters, Modeled with Thompson Microphysics and MYJ 
PBL 
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Figure 4.12 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Nontornadic Clusters, Modeled with Thompson Microphysics and ACM2 
PBL 
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Figure 4.13 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Nontornadic Clusters, Modeled with Goddard Microphysics and ACM2 
PBL 
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Figure 4.14 Composites of 300 mb Wind Magnitude, 500 mb Magnitude-Direction, and 
925 mb Magnitude-Direction in Nontornadic Clusters, Modeled with 
WSM-6 Microphysics and MYJ PBL 
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4.3 Discussion 

Data assimilation, especially of conventional observations, produced a consistent 

effect in tornadic and nontornadic outbreak environments that featured strong troughs:  

slightly weakening these troughs and decreasing the northern extent of warm areas at 850 

mb. In the nontornadic cluster that featured a weak trough and northwesterly flow, this 

trough was strengthened by data assimilation.  In the nontornadic cluster that featured a 

ridge, this meteorological feature was very slightly edged west by data assimilation.  The 

effect of data assimilation on 700 mb moisture fields was largely to move the areas of 

high moisture slightly east, rather than any observable increase or decrease. 

Despite weakening the strong ridges and the northern extent of the warm sectors, 

data assimilation increased the magnitudes of upper-level winds and lower-level wind 

shear in tornado outbreaks.  In severe weather outbreaks, high-shear environments and 

intense jet streaks do not always correspond with extremely warm temperatures in the 

warm sector, especially in late winter and early spring.  High shear can produce tornadic 

environments even when instability is comparatively low.  Notably, this effect did not 

occur in the two “moderate-strong trough” clusters of nontornadic outbreaks.  Although 

instability was decreased in these clusters with data assimilation, wind values were also 

decreased.  These results suggest that the WRF model, in this configuration, simulated 

environments that were too unstable in trough environments, while at the same time not 

translating the strength of the trough to high enough wind shear values in tornado 

outbreaks.  Further data assimilation research should be done to determine if this is a 

problem with the physics suite used in this phase (particularly the Thompson 

microphysics), the NARR data, or if the WRF model itself exhibits this behavior.  Data 
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assimilation corrected the model background fields to more accurately represent the high-

shear environments in tornado outbreaks. 

Effects of physics parameterization on the synoptic clusters were less obvious 

than effects of data assimilation, especially consistent effects on the wind fields of the 

tornado outbreaks.  The WSM-6 and WDM-6 microphysics resulted in a deeper trough in 

one of the tornadic clusters, but not the other clusters.  Although this may seem to suggest 

that the issue of low wind magnitudes in tornado outbreaks is caused by the WRF or the 

NARR data, a direct comparison between the physics ensemble and the assimilation 

ensemble is not possible due to the use of different land surface physics. 

Microphysics did not consistently influence the modeling of the nontornadic 

clusters either.  However, PBL physics did affect these clusters.  The MYJ PBL physics 

generated a cold bias in all nontornadic clusters at 850 mb, confirming similar results in 

phase II of the work as well as previous research showing such a bias with this scheme.  

YSU physics produced warmer temperatures than the other PBL physics in three of the 

four nontornadic clusters, as well as drier 700 mb moisture fields.  This result is 

consistent with the vertical mixing mechanism of this scheme.  The 700 mb layer of the 

atmosphere is usually above the PBL, especially in the eastern United States, where most 

of these outbreaks occurred.  A PBL physics scheme such as ACM2, which uses both 

local and nonlocal mixing in the vertical, was shown in phase II to produce high LCL 

heights relative to the other model runs, likely due to excessive vertical mixing.  This 

would result in the boundary layer itself being drier than with other PBL schemes, but its 

vertical extent would be higher and the vertical gradient of moist to dry air—and 

therefore convective instability—would be weaker with this very intense vertical mixing. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The purpose of this research was to determine the impact of data assimilation, 

microphysics, and PBL physics on the modeling of important features in tornadic and 

nontornadic severe weather outbreaks.  The research had three phases: 

1. A phase I to determine the effect of conventional observation and HIRS-4 

satellite radiance assimilation on especially significant outbreak-

discriminating atmospheric covariates and a support vector machine 

(SVM) outbreak type forecast; 

2. A phase II to determine the effect of cloud microphysics and planetary 

boundary layer (PBL) physics parameterization on these same covariates 

and SVM forecasts; 

3. A phase III to examine the effects of assimilation and physics 

parameterization on the modeling of synoptic weather features. 

In phase I, conventional meteorological observations and HIRS-4 satellite 

radiance observations were assimilated by the Gridpoint Statistical Interpolation (GSI) 

software to a WRF domain for each of a set of 20 tornadic and 20 nontornadic outbreaks.  

These observations were assimilated individually and in combination with each other.  

The WRF model was then run again at a higher resolution with the raw assimilated fields 

as initial background fields, with model domains centered on each outbreak.  A control 
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run without data assimilation performed was also created for comparisons.  Seven 

covariates found by previous research to be important in distinguishing between tornadic 

and nontornadic outbreaks—0-1 km storm relative helicity (SRH), 0-3 km SRH, CIN, 0-1 

km bulk shear, CAPE x 0-1 km bulk shear, LCL height, and 0-1 km Energy-Helicity 

Index (EHI)—were extracted from the high-resolution model output.  SVMs were trained 

on a subset of RPCA scores derived from the raw covariate data, and tested on the 

remaining scores.  Contingency statistics were computed for the forecasts of each SVM 

configuration to determine the highest skilled SVM for every model run (three data 

assimilation types and one control).  These highest-performing SVMs were then 

compared against each other to determine which form of data assimilation produced the 

most accurate outbreak mode forecasts.  Bootstrap mean Euclidean distances between 

tornadic and nontornadic covariate fields, and bootstrap mean composite fields of each 

covariate for tornadic and nontornadic outbreaks, were calculated as well to determine 

the impact of data assimilation on each of these covariates and outbreak types. 

In phase II, the same 20 tornadic and 20 nontornadic outbreaks were modeled 

with cloud microphysics and PBL physics parameterizations varied.  Five 

microphysics—Goddard, Morrison, Thompson, WRF Double Moment-6 class (WDM-6), 

and WRF Single Moment-6 class (WSM-6)—were used, and three PBL physics— 

Asymmetric Convection Model (ACM2), Mellor-Yamada-Janjić (MYJ), and Yonsei 

University (YSU)—were used, for a total of 15 model runs per case.  The WRF model 

was run in a nested domain configuration with outer domains identical to those of phase I 

and inner nested domains at the same resolution and very similar spatial dimensions to 

those of phase I.  The seven outbreak covariates were computed from the inner nest and 
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In addition, conventional data assimilation in tornado outbreaks did increase SRH values 

in domain regions where values were already high, a result that did not occur for 

nontornadic outbreaks.  Finally, the decreased false alarm ratio and increased skill of the 

SVMs that used conventional and HIRS-4 model runs indicate that such tools may 

provide a useful form of guidance for those in operational forecasting. 

5.1.2 Physics Parameterization 

Phase II determined that the WRF double-moment 6-class microphysics scheme 

(WDM-6) and YSU PBL physics produced the highest outbreak-mode forecasting skill of 

any microphysics-PBL physics combination, with an HSS of 0.658.  This result was 

significantly greater than the skill of any other run at the 95% confidence level.  This 

parameterization run produced this result by generating the lowest FAR and highest 

POD.  Other strong performers were Goddard/YSU, Morrison/YSU, and WSM-6/YSU. 

The most dominant theme of phase II was that PBL physics choice appeared to 

have a much greater impact than microphysics on all aspects of forecasting observed in 

this research.  This finding was affected by the fact that the seven highly significant 

covariates for discriminating between outbreak mode were all lower-atmospheric, 

measured either within or immediately above the PBL.  Variables such as LCL height, 

shear, helicity, and combined parameters that utilize these fields are especially affected 

by mixing in the PBL.  Although all PBL schemes produced acceptable levels of skill in 

outbreak-mode forecasts, the YSU PBL scheme, a commonly used parameterization for 

both general modeling and severe convective weather, generated high forecast 

discrimination skill with any microphysics choice examined.  MYJ PBL physics 

performed at the lowest level of skill, with the revised Asymmetric Convection Model 
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PBL physics performing in the middle of the group of three PBL physics 

parameterizations. 

Euclidean distance calculations found that the variables that exhibited more 

noticeable sensitivity to microphysics were thermodynamic covariates.  Cloud 

microphysics parameterization influences the way that the model handles water and ice 

processes, leading directly to evaporation and condensation effects in the atmosphere, as 

well as effects on cloud thickness and solar heating of the surface.  These processes 

strongly influence heating and cooling at all levels of the atmosphere.  Thompson 

microphysics in particular strongly influenced the modeling of CIN, 0-1 km EHI, and 

CAPE * 0-1 km bulk shear in tornadic and nontornadic outbreaks.  This finding coincides 

with previous studies showing a warm bias with the scheme. 

PBL physics, however, again produced larger differences between tornadic and 

nontornadic outbreaks for the remaining covariates.  ACM2 physics generated small 

distances between outbreak types for shear and helicity covariates; MYJ physics 

generated the largest distances for these covariates, though this notably did not increase 

the skill of MYJ runs to the level of most YSU runs.  It is not surprising that boundary 

layer physics parameterization has a greater impact on wind patterns at the 0-1 and 0-3 

km layers, than microphysics, but these findings empirically confirm it.  A possible cause 

of the differences in wind shear covariate modeling among PBL schemes is the distinct 

way that each scheme handles vertical transport of air parcels through the boundary layer.  

The MYJ scheme uses only local closure and the YSU scheme is nonlocal, but the ACM2 

PBL scheme utilizes both local and nonlocal mixing.  It is possible that by employing 

mixing both within PBL layers and across them, the ACM2 scheme minimized the wind 
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shear effects through friction.  Tentative support for this hypothesis exists in the 

nontornadic LCL composites, which show the highest values—and thus the greatest 

amount of vertical mixing in a convective PBL—in the ACM2 runs.  Higher LCL heights 

(relative to both YSU and MYJ composites) in the prefrontal sectors of the ACM2 

tornadic composites suggest that this pattern may be occurring in tornado outbreak cases 

as well as the nontornadic outbreaks.  The MYJ scheme may have produced higher shear 

and SRH values than the nonlocal YSU scheme because of its known cold bias in 

convective environments.  A shallower PBL will have lower amounts of friction and 

turbulence of PBL origin, permitting dynamically driven winds to exert a stronger 

influence.  Another possible source of higher shear and SRH values in MYJ model runs is 

the local closure of this scheme.  The scheme performs mixing within individual vertical 

layers and does not mix across this dimension.  Explicitly modeling vertical transport 

across layers may decrease horizontal wind magnitudes within some layers.  Further 

research into this topic should be conducted. 

The covariate that appeared to have the greatest impact on SVM outbreak-mode 

forecasting skill was LCL height.  The highest-skilled run, WDM-6/YSU, generated the 

maximum outbreak-mode distance for this covariate.  The results of this study concerning 

PBL physics and LCL height are interesting, and offer an added opportunity to examine 

the implications of this research in relation to other studies on PBL physics described in 

the literature review.  The finding that MYJ physics produces a diffuse, somewhat broken 

gradient of LCL heights for tornado outbreaks—different from the other two PBL 

physics, which produced a sharp gradient indicative of a cold front—as well as a shallow 

PBL in tornadic and nontornadic outbreaks supports the findings of Hu et al. (2010), who 
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found cold and moist biases in the modeling of the boundary layer with this 

parameterization.  The YSU LCL patterns also support the work of Hong et al. (2006), 

who found that YSU PBL physics modeled a cold front in an autumn tornado outbreak 

strongly and in closer concurrence with observations than a control PBL scheme. 

The role of microphysics in LCL height simulation was less apparent than that of 

PBL physics, but a comparison of the WDM-6 and WSM-6 runs shows that WDM-6 

produced higher LCL heights than WSM-6 across tornado outbreak domains, both in 

front of and behind a boundary that appeared in most of the tornadic cases.  WDM-6 has 

been shown in previous work (e.g., Adams-Selin et al.) to produce strong cold pools 

behind thunderstorms.  In the prefrontal region, the slightly higher LCL in WDM-6 than 

WSM-6 may be caused by evaporative cooling and drying due to smaller rain and cloud 

droplet sizes in the double-moment scheme. 

Examination of observed data for tornado outbreaks indicates that the boundary in 

the tornadic LCL composites was probably the result of thunderstorm passage.  This 

boundary was not present in the nontornadic LCL composites to nearly the same degree, 

and it is likely that the SVMs—especially the WDM-6/YSU—used this distinction 

between outbreak types heavily in their classification functions.  If so, this indicates that 

the SVM is identifying an artifact of tornadic outbreak occurrence after the outbreak has 

already happened for part of the model domain.  However, this research did not examine 

SVM forecasts with NWP model output from before the outbreak valid time, so the 

possibility that the SVM might identify such a pattern as highly significant was “built in” 

to the experimental design.  Within an NWP framework, this possibility should not be a 

concern for operational forecasters, who use model output valid for times before and 
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during the peak of a severe weather outbreak to issue a severe weather forecast.  The 

SVM outbreak prediction results still indicate that the NWP model is simulating the type 

of outbreak well. 

5.2 Synoptic Variable Modeling 

The findings of Phase III were not as starkly clear as those of phases I and II, 

though some phase III results did reinforce the results of phases I and II.  The synoptic 

features of the tornado outbreak composites were influenced in part by the distribution of 

outbreaks in each of four k-means clusters, a result that did not occur for the nontornadic 

outbreaks.  Rather than model differences, it is strongly suspected that the reason for this 

result is that a meteorologically similar synoptic pattern occurred during all the tornado 

outbreaks, whereas four very distinct synoptic patterns, likely caused by seasonal biases 

for certain types of atmospheric forcing, produced the nontornadic events.  However, 

some conclusions about the synoptic-scale modeling effects of data assimilation and 

physics parameterization can nevertheless be drawn. 

5.2.1 Data Assimilation 

In the tornado outbreaks, troughs were weakened slightly in the conventional and 

HIRS-4/conventional runs as compared to the HIRS-4 and control runs, except in cluster 

2. In this cluster, which contained several high-impact events, warm isotherms at the 850 

mb level extended farther north, indicating a stronger warm sector in the models.  A 

possible explanation for the weaker troughs in the conventional and HIRS-4/conventional 

runs in the other three clusters is the use of the Thompson microphysics in the 

assimilation ensemble.  This scheme is known to produce warm biases and in phase II 
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increased the values of CAPE-related covariates above other microphysics 

parameterizations. 

Upper-level winds in the modeled jet streams were also more intense for the 

tornadic clusters with conventional and HIRS-4/conventional runs.  The HIRS-4 run also 

generated stronger upper-level winds in two tornado outbreak clusters than the control, 

though this result did not generate a visibly stronger trough at lower levels.  Conventional 

data are acquired from all levels of the atmosphere, so in the absence of other 

experimental tests, it is difficult to say if this increase in trough intensity in the 

conventional and HIRS-4/conventional runs is due to the assimilation of surface or of 

upper-level data.  Satellite radiances, however, are interpreted by the assimilation 

procedure to indicate moisture fields, most typically clouds, so it is highly likely that the 

upper-level winds in HIRS-4 were due to the assimilation of data at upper levels of the 

atmosphere. 

The wind results of this phase reinforce the results of phase I, in which tornadic 

outbreak composites with conventional data assimilated (both the conventional-only and 

the HIRS-4/conventional runs) had notably higher values of 0-1 km bulk shear, 0-1 km 

EHI, and CAPE x 0-1 km bulk shear than the control and the HIRS-4 composites.  The 

phase III results indicate that assimilation of conventional observations increases wind 

magnitudes above the near-surface layer of the atmosphere and at a synoptic scale.  The 

observations test of phase I, which found that conventional and HIRS-4/conventional 

runs exhibited lower RMSE, was performed on standard atmospheric variables 

(geopotential height at 500 mb; u-winds at 925, 850, 700, 500, 400, 300, 250, 200, 150, 

and 100 mb; v-wind at the same pressure levels; specific humidity at 700 and 500 mb; 
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and temperature at 925, 850, 700, and 500 mb).  These variables include fields examined 

in the synoptic analysis of phase III, indicating that conventional data assimilation 

improves the accuracy of NWP output of these cases in addition to increasing the values 

of these variables. 

In nontornadic outbreaks, the effect of data assimilation on a cluster depended on 

the type of synoptic setup modeled in that cluster.  The two nontornadic clusters that were 

characterized by classic troughs exhibited decreases in the magnitude of the trough when 

conventional data were assimilated, either alone or in conjunction with HIRS-4 radiances.  

The small cluster characterized by a trough pattern suggestive of an upper-level low and 

weak northwesterly flow, however, had this feature strengthened by conventional and 

HIRS-4/conventional data assimilation.  The “derecho cluster,” which was characterized 

by a ridge, showed a westward shift of this ridge by the assimilation of conventional and 

conventional/HIRS-4 data, likely indicating a slight placement error by the model. 

The nontornadic composites reinforced the results of phase I for combination 

thermodynamic-dynamic covariates, which were that the conventional and HIRS-

4/conventional model runs generated lower values of 0-1 km EHI and CAPE x 0-1 km 

bulk shear for nontornadic outbreaks than did the control and HIRS-4 runs. In addition, 

the slightly increased values of 0-1 km bulk shear apparent in the phase I nontornadic 

composites for conventional and HIRS-4/conventional runs may be due to the slight 

increase of lower-level shear found in phase III in the weakly forced nontornadic events, 

even though this increase was not apparent in the strongly forced cluster 2, which most 

closely resembled a tornado outbreak cluster. 
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5.2.2 Physics Parameterization 

The effects of physics parameterization on cluster modeling were less pronounced 

than the effects of data assimilation, especially in the tornado outbreaks, but effects were 

still noticeable within this ensemble.  The trough of one tornadic cluster was modeled 

more intensely with WSM-6 and WDM-6 physics than other microphysics, but this result 

did not appear consistently in other tornadic clusters for these microphysics options.  

Wind fields did not exhibit any clear patterns across microphysics or PBL physics that 

appeared in all four clusters. 

For the nontornadic outbreaks, differences among parameterization runs were 

more readily apparent, at least among PBL physics runs.  Microphysics variation did not 

generate consistently and significantly different synoptic fields for nontornadic outbreak 

clusters.  MYJ PBL physics produced a strong cold bias (compared to the other two PBL 

physics) in the modeling of clusters 3 and 4, which was observed with all microphysics.  

This result confirms existing literature that found a cold bias with PBL scheme, as well as 

the phase II results of this study.  A less significant cold bias was observed with this PBL 

physics option for clusters 1 and 2.  YSU PBL physics generated warmer 850 mb 

temperatures in clusters 3 and 4. 

In clusters 3 and 4, YSU PBL physics produced a slightly larger area of 295 K 

temperatures than ACM2 PBL physics.  In cluster 2, YSU physics produced a larger area 

of 280 K and 275 K temperatures than ACM2 physics, but little difference was apparent 

between these two PBL schemes in cluster 1.  700 mb moisture fields in these clusters 

exhibit noticeable differences among the PBL physics schemes.  In clusters 2, 3, and 4, 
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the RH fields are significantly moister in the ACM2 runs, while the MYJ runs are the 

driest. 

In phase II of the research, the YSU PBL physics model runs generated values of 

CAPE x 0-1 km bulk shear that were higher than ACM2 physics runs and lower than the 

MYJ runs for nontornadic outbreaks.  LCL heights among the YSU nontornadic runs 

were higher than those of the MYJ runs and lower than those of the ACM2 runs.  The 

phase III results indicate that moisture levels, rather than temperatures, are likely the 

primary physical cause of the phase II thermodynamic covariate differences among the 

PBL runs.  Dry air at 700 mb is usually associated with higher values of CAPE in 

convective environments. 

5.3 Ensemble Variance Analysis 

The first question requires a final statistical analysis on the data to determine the 

variance within similar groups of model runs.  Using the bootstrapped tornadic and 

nontornadic composite fields generated in phases I and II for the seven critical covariates, 

variances were calculated for the following groups of model runs: 

 Conventional, HIRS-4/conventional, HIRS-4, and assimilation control for 

an assimilation ensemble variance; 

 The three PBL physics variations used with each of the five microphysics 

schemes (for example, the variance for a covariate over the combined data 

set of WDM-6/ACM2, WDM-6/MYJ, and WDM-6/YSU), for a set of five 

measures of variability due to PBL physics; 

 The five microphysics variations used with each of the three PBL physics 

schemes, for a set of three measures of variability due to microphysics. 
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This analysis was conducted for each of the seven covariates for tornadic and 

nontornadic outbreaks separately.  The variance groups for the five microphysics 

schemes (variability due to PBL physics) and the three PBL schemes (variability due to 

microphysics) were averaged for each covariate for tornadic and nontornadic outbreaks.  

Table 5.1 shows the variances for each covariate for tornadic outbreaks and Table 5.2 

shows the variances for each covariate for nontornadic outbreaks, with the ensemble-type 

averages for each covariate in bold. 

As the tables show, tornado outbreak variances were largest for the assimilation 

ensemble for every covariate except LCL height and 0-1 km EHI, for which the PBL 

mean variance was the largest.  PBL physics produced the second-largest variance for all 

of the other variables except for CIN, which had a variance that was slightly greater for 

the microphysics mean than for the PBL mean.  The assimilation ensemble produced 

variances in the dynamic fields (bulk shear and SRH) that were especially large 

compared to either the microphysics or PBL physics mean. 

In the nontornadic outbreaks, a different and in some ways opposite pattern was 

observed.  The PBL ensemble variance mean was largest for 0-1 km SRH, 0-3 km SRH, 

CAPE x 0-1 km bulk shear, and 0-1 km EHI, followed by the microphysics variance 

mean, and the assimilation ensemble variance was smallest.  For CIN, the microphysics 

ensemble variance mean was the largest.  However, for bulk shear and LCL height, the 

assimilation ensemble variance was largest and the microphysics mean variance was 

smallest. 

These results indicate that certain characteristics of outbreak modes influence the 

type of model uncertainty—observation-based or physics-based—that will be most 
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prominent in a given NWP forecast.  Tornado outbreaks are associated with higher values 

of low-level shear than nontornadic outbreaks, and, as the phase I tornadic composites of 

0-1 km bulk shear and 0-3 km SRH illustrated, data assimilation—particularly of 

conventional observations—greatly affected these values, sharply increasing their 

magnitudes relative to the control run in regions of strong shear or helicity.  Conventional 

data are recorded from many sources across the vertical dimension of the atmosphere, 

which significantly increases spatial coverage.  It is likely that the reason these dynamic 

covariates experienced such a stronger effect from data assimilation in tornado outbreaks 

is that the typical values of these variables are much higher in tornado outbreaks than 

nontornadic outbreaks.  However, even in nontornadic outbreaks, data assimilation 

produced a larger ensemble variance for 0-1 km bulk shear than microphysics or PBL 

physics.  This result illustrates the importance of having a spatially dense set of 

observations when forecasting low-level wind shear. 

It is also intuitive that PBL physics would have a greater effect on lower-

atmospheric parameters than cloud microphysics.  The temperature, humidity, and height 

of the PBL have a strong influence on both thermodynamic and dynamic variables, due to 

the effect of mixing.  As has been stated, the three PBL schemes examined in this 

research perform mixing in three distinct ways, which has been shown to lead to warm 

and dry or cool and wet biases in the PBL. 

Microphysics produced the largest variance for only one covariate, nontornadic-

outbreak CIN.  It also produced variances slightly smaller than the largest ensemble-type 

variance for tornadic LCL height and nontornadic 0-1 km EHI.  These are all variables 

that are at least in part thermodynamic.  Cloud microphysics affects evaporation and 
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condensation processes in clouds in the model, resulting in variations in the heat and 

moisture content of the atmosphere through changes in latent heat release, surface 

heating, precipitation, and many other processes. 
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Table 5.1 Model Ensemble Variances for Severe Covariates (Tornadic) 

0-1 km 0-3 km CIN 0-1 CAPE x LCL 0-1 

SRH SRH km 0-1 km km 

Bulk Bulk EHI 

Shear Shear 

Assimilation 5656.373 8217.829 935.672 2.032 3132014 185125.7 0.295 

Goddard 

(PBL varied) 4157.259 7126.021 250.718 1.076 2877220 239392.0 0.462 

Morrison 3384.210 6280.115 198.395 0.916 2990122 242495.5 0.502 

Thompson 3155.090 6321.352 204.230 0.845 2733552 250423.9 0.527 

WDM-6 3360.033 6269.920 222.872 0.975 2393577 231679.3 0.501 

WSM-6 3500.944 6517.727 209.632 1.003 2803307 239282.2 0.514 

PBL Mean 3511.507 6503.027 217.170 0.963 2759556 240654.6 0.501 

ACM2 

(microphysics 

varied) 2129.441 4617.677 200.972 0.770 840933 230841.1 0.247 

MYJ 3802.787 7118.151 224.249 0.805 2774320 212710.4 0.600 

YSU 2984.251 6508.103 234.121 0.685 1729447 246383.2 0.433 

Microphysics 

Mean 2972.160 6081.310 219.781 0.754 1781567 229978.2 0.427 
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Table 5.2 Model Ensemble Variances for Severe Covariates (Nontornadic) 

0-1 km 0-3 km CIN 0-1 km CAPE x 0-1 LCL 0-1 km 

SRH SRH Bulk km Bulk EHI 

Shear Shear 

Assimilation 2251.776 1343.953 390.745 0.726 1210707 71084.6 0.033 

Goddard (PBL 

varied) 2625.024 2391.550 403.887 0.578 1967885 59624.2 0.117 

Morrison 2531.496 2019.281 441.764 0.550 1889523 65814.8 0.106 

Thompson 2375.027 2180.465 585.954 0.589 2449881 62427.7 0.152 

WDM-6 2448.140 2012.615 379.913 0.611 1721382 61330.0 0.114 

WSM-6 2632.119 2078.058 379.111 0.640 2084309 63696.3 0.115 

PBL Mean 2522.361 2136.394 438.126 0.594 2022596 62578.6 0.121 

ACM2 

(microphysics 

varied) 1744.174 1727.964 391.184 0.495 1223403 52917.4 0.105 

MYJ 2808.247 2198.095 541.546 0.497 2535675 61181.2 0.143 

YSU 2754.273 2333.139 477.086 0.549 1718236 53004.5 0.111 

Microphysics 

Mean 2435.565 2086.399 469.939 0.513 1825771 55701.0 0.120 
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5.4 Synthesis of Results 

The two main research questions that this project sought to answer were which 

model configuration in the data assimilation and physics parameterization ensembles 

produces the most accurate outbreak forecast, and whether model physics 

parameterization or data assimilation introduces produces greater model spread in 

atmospheric parameters that are important for severe weather.  The concluding answers 

to these questions are discussed. 

5.4.1 Forecast Skill 

As a preface, it should be noted again that land surface physics in phase II were 

different from those of phase I.  In phase I, 5-layer thermal diffusion physics were used, 

whereas in phase II, Noah land surface physics were used.  This was due to the fact that 

certain experimental physics parameterizations required the use of Noah land surface 

physics.  This difference in model configuration between phase I and II does not present a 

problem for individual phase results analysis since the model configurations were the 

same by phase of the work, but it does limit the ability of the data assimilation results to 

be directly compared to the physics parameterization results. 

It was determined that, among data assimilation runs, the HIRS-4/conventional 

assimilation run generated the most skilled forecasts of severe weather outbreak mode, 

and among physics parameterization runs, the WDM-6/YSU run had the highest skill.  

The reasons for why these runs were the most skilled were complex.  Analysis of 

covariate fields, outbreak-mode statistical distances, and observation error analysis 

indicated that the assimilation of HIRS-4 and conventional data brought model output 
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closer to an observed reality while, at the same time, differentiating between tornadic and 

nontornadic outbreak parameters more strongly than other model runs. 

In the case of the physics parameterization runs, the WDM-6/YSU run performed 

with the highest skill, apparently by modeling differences reasonably strongly for all 

seven analyzed covariates, whereas other physics ensemble runs failed to do so for at 

least one variable.  In addition, it seems likely that the SVM for this run heavily weighted 

LCL height, which exhibited a very distinct appearance between nontornadic and 

tornadic outbreak composites.  The tornadic LCL fields in particular assumed the 

appearance of a sharp boundary, and examination of surface analyses showed that in each 

tornadic case, either a dryline, a synoptic cold front, or a line of severe thunderstorms 

capable of producing a strong cold pool passed over the outbreak domain at valid time.  

The WDM-6 scheme was shown in previous research to produce stronger convection and 

stronger cold pools than other schemes due to its handling of graupel processes, and the 

YSU was shown to produce more intense fronts in a tornado outbreak case. 

5.4.2 Model Variability 

The other research question required three phases of research to answer. In 

tornado outbreaks, data assimilation, especially of conventional observations, creates the 

greatest amount of variation in model output, followed by PBL physics and microphysics 

respectively.  However, for the nontornadic outbreaks, PBL physics parameterization 

produces the greatest degree of model variation. 

For data assimilation, this finding was apparent at both the mesoscale (phase I) 

and synoptic-scale (phase III) levels of atmospheric analysis.  The variance analysis 

indicates that in tornado outbreaks, wind shear covariates are very strongly affected by 
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data assimilation, most notably in the form of increases of shear values in these events.  

Conventional data assimilation appears to improve the modeling of weather systems of 

all types, as evinced in phase I by the superior skill of these runs.  In phase III, it was 

possible to determine the effect of data assimilation on large-scale features that produce 

severe weather outbreaks.  Wind shear was increased in tornado outbreaks by the 

assimilation of this data set and decreased in nontornadic outbreaks.  More unusual 

synoptic features associated with severe weather, such as a northwesterly-flow regime, 

were strengthened by the assimilation of conventional data, but since this flow pattern 

was not apparent in tornado outbreaks, the strengthening of this feature likely only served 

to reinforce the difference between tornadic and nontornadic outbreaks to the SVMs in 

phase I. 

The consistent theme of physics parameterization analyses was that PBL physics 

had a strong impact on atmospheric covariates associated with severe weather, especially 

shear and helicity, whereas microphysics as a whole did not introduce as much variation 

to any covariate.  It was surprising that the PBL physics result was less apparent in the 

phase III synoptic composite analysis.  However, this effect did exist to a degree in the 

composites.  The cold bias of the MYJ scheme in particular was confirmed to exist at 

both the mesoscale (phase II) and synoptic scale (phase III).  YSU physics also generated 

slightly warmed 850 mb temperatures in nontornadic outbreak composites, but the most 

pronounced difference was in the moisture fields.  The ACM2 PBL scheme produced the 

most moisture at 700 mb in the nontornadic composites and the MYJ the least, which 

likely accounts for the higher CAPE values apparent in the phase II MYJ clusters.  The 

less pronounced (though still identifiable) synoptic-scale differences among model runs 
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indicate that the effects of PBL physics become most apparent at the mesoscale—and 

possibly microscale—levels of analysis rather than the synoptic.  Given the highly 

localized, often chaotic, nature of boundary layer phenomena, this result is not surprising. 

Modelers and operational forecasters can derive useful information from this 

research.  It is increasingly common for local National Weather Service offices to have 

custom model configurations for their local areas, and there is a desire for information 

about the best ways of fine-tuning of such local and regional models when particular 

types of weather are expected.  The results of this research indicate that, for modeling 

severe weather at the mesoscale in the eastern United States, the modeling choices that 

appear to matter the most for obtaining high forecast skill are the type and amount of 

high-quality data assimilated, and the choice of planetary boundary layer scheme. 
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