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The use of numerical weather prediction (NWP) has brought significant 

improvements to severe weather outbreak forecasting; however, determination of the 

primary mode of severe weather (in particular tornadic and nontornadic outbreaks) 

continues to be a challenge.  Uncertainty in model runs contributes to forecasting 

difficulty; therefore it is beneficial to a forecaster to understand the sources and 

magnitude of uncertainty in a severe weather forecast.  This research examines the impact 

of data assimilation, microphysics parameterizations, and planetary boundary layer (PBL) 

physics parameterizations on severe weather forecast accuracy and model variability, 

both at a mesoscale and synoptic-scale level.  NWP model simulations of twenty United 

States tornadic and twenty nontornadic outbreaks are generated.  In the first research 

phase, each case is modeled with three different modes of data assimilation and a control.  

In the second phase, each event is modeled with 15 combinations of physics 

parameterizations:  five microphysics and three PBL, all of which were designed to 

perform well in convective weather situations.  A learning machine technique known as a 

support vector machine (SVM) is used to predict outbreak mode for each run for both the 



 

 

 

 

  

 

 

 

 

 

   

   

 

 

 

 

data assimilated model simulations and the different parameterization simulations.  

Parameters determined to be significant for outbreak discrimination are extracted from 

the model simulations and input to the SVM, which issues a diagnosis of outbreak type 

(tornadic or nontornadic) for each model run.  In the third phase, standard synoptic 

parameters are extracted from the model simulations and a k-means cluster analysis is 

performed on tornadic and nontornadic outbreak data sets to generate synoptically 

distinct clusters representing atmospheric conditions found in each type of outbreak.  

Variations among the synoptic features in each cluster are examined across the varied 

physics parameterization and data assimilation runs.  Phase I found that conventional and 

HIRS-4 radiance assimilation performs best of all examined assimilation variations by 

lowering false alarm ratios relative to other runs.  Phase II found that the selection of 

PBL physics produces greater spread in the SVM classification ability.  Phase III found 

that data assimilation generates greater model changes in the strength of synoptic-scale 

features than either microphysics or PBL physics parameterization. 

Key words:  Numerical weather prediction, severe weather, convective weather, model 

parameterization, microphysics, planetary boundary layer physics, data assimilation, 

support vector machines, mesoscale meteorology, synoptic meteorology 
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CHAPTER I 

INTRODUCTION 

1.1 Overview of the Project 

Severe weather outbreak forecasting has improved in recent years, such that the 

threat for a major severe weather outbreak can be anticipated multiple days in advance in 

ideal outbreak setups.  However, forecasts for these events often carry significant levels 

of error more than a day in advance of the anticipated event.  Further, the predominant 

mode of the outbreak is sometimes unclear to forecasters until hours prior to the event.  

In fact, on 24 August 2016, a localized tornado outbreak that produced an EF-3 tornado 

occurred in Indiana, despite forecasts not suggesting an outbreak hours prior to its onset 

(Frame 2016).  In this unexpected tornado outbreak, as well as similar events, NWP 

models did not simulate the environmental conditions that meteorologists associate with 

tornado outbreaks.  The forecasts of numerical weather prediction (NWP) models, while 

providing an essential aid to forecasters, contain inherent uncertainty. 

Uncertainty in a model forecast can come from numerous sources.  One source of 

uncertainty is the non-uniform, spatially discrete network of atmospheric observation 

sites, as well as the numerous temporal discontinuities of data reports and non-uniformity 

in observing platforms.  In contrast, the atmosphere is a fluid that is spatially and 

temporally continuous in its changes; therefore, some missed observations are 

unavoidable with a discrete observation system.  Uncertainty can also exist in NWP 
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model forecasts due to the fact that the mathematical equations programmed into these 

models are approximations of the physical equations that govern the atmosphere.  In 

gridpoint models, finite differencing approaches for numerically solving these differential 

equations rely on methods such as Taylor series, which are infinite and must be truncated 

in real applications (Kalnay 2003).  This truncation introduces error into the model.  

NWP models that do not solve the governing equations in discrete gridpoints avoid finite 

differencing issues by employing spectral methods (such as in the Global Forecast 

System – GFS), which utilize Fourier transforms for representing waves, which also 

introduces error into the model.  In addition, many approximations of physical processes 

in the atmosphere, known as physics parameterizations, exist in computer models, with 

individual parameterizations either fine-tuned to perform particularly well with specific 

types of atmospheric phenomena or generalized for acceptable operational forecasts of 

most types of weather.  Physics parameterizations make varying assumptions about the 

variables in the governing equations, yielding an additional source of error. 

A common method of examining NWP forecast uncertainty is the use of ensemble 

modeling.  Ensembles are produced with the purpose of modeling uncertainty in the 

location, timing, and strength of meteorological features and providing indications of the 

overall level of confidence in a forecast.  These ensembles can be generated from 

mathematically modeled variations in initial conditions, different configurations of model 

physics parameterizations, or variations in the types (or sources) of data used as input for 

the model.  The spread of the model output values indicates the overall level of 

uncertainty in a forecast. 
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This research aimed to quantify the uncertainty within numerical weather 

predictions for severe weather outbreak forecasts.  The experiments examined model 

uncertainty in predicted atmospheric variables that are important in severe weather 

outbreak prediction, in both a synoptic-scale and a mesoscale forecast.  The uncertainty 

was introduced to the model by varying the selection of physics parameterizations and 

the sources of data in the model input.  Varying input data introduced added uncertainty 

from instrumental error in the model runs performed with additional data, while 

decreasing uncertainty from spatio-temporal discreteness in the observation network by 

increasing the density of data across the model domain.  Varying physics 

parameterizations introduced uncertainty from the chosen approximations of physical 

processes that each parameterization scheme employed.  This simulated uncertainty was 

quantified through examination of the model ensemble range of atmospheric variables 

important to severe weather, and a deterministic forecast of severe weather outbreak 

mode was generated to indicate the effects of this model uncertainty in an operational 

forecasting context.  Overall, the objective of this research was to determine the effect of 

each source of model variation on NWP forecasts of outbreak mode in severe weather 

outbreaks. 

1.2 Literature Review 

1.2.1 Review of Ensemble Modeling in Severe Weather Forecasting 

1.2.1.1 Data Assimilation 

Several methods of data assimilation exist in NWP modeling.  Three-dimensional 

variational data assimilation (3DVAR—Parrish and Derber 1992) is a form of 

assimilation that performs error analysis on data points in three spatial dimensions but at 
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a single time in the model run.  In 3DVAR analysis, data points to be assimilated to a 

background field modify the background field in three dimensions, assuming that each 

data point to be ingested passes quality control checks.  The assimilation uses error 

covariance information from the background field to modify the values in the immediate 

vicinity of the new data point.  The assimilation process assumes that the new data would 

follow the same pattern as that in the background field, though the new data may be 

different in magnitude and location.  Physical governing equations are therefore part of 

the 3DVAR procedure. 

Four-dimensional variational data assimilation (4DVAR—Gauthier et al. 2007) is, 

as the name implies, a four-dimensional extension of the 3DVAR procedure, with time as 

the new dimension.  Data points to be assimilated to a background field are compared to 

the expected temporal progression of the meteorological feature, as extrapolated by the 

assimilation tool using physical equations of the atmosphere.  In 4DVAR analysis, data 

assimilation can correct for inaccurate speeds of weather feature development or 

movement in the model background fields in addition to inaccurate magnitudes. 

Ensemble Kalman filtering (EnKF—Houtekamer and Mitchell 1998) is an 

assimilation technique that uses stochastic ensemble forecasts—multiple NWP model 

simulations of the same case with perturbations in the initial fields—to generate flow-

dependent statistical information about the background fields.  Two sets of ensembles are 

generated in EnKF.  The error covariance information derived from one set of ensembles 

is used in assimilation of data to the other set; this technique is employed to avoid 

excessive internal referencing.  Unlike 3DVAR and 4DVAR, EnKF requires the 

simulation of numerous model runs of a given case; however, because it produces flow-
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dependent error fields (in contrast with 3DVAR, which is flow-independent), it has been 

found to reduce error in the assimilation procedure (Houtekamer and Mitchell 2007). 

An older data assimilation approach is optimal interpolation (OI—Kalnay 2003).  

This approach employs least-squares methods to interpolate assimilated data.  As in other 

forms of NWP data assimilation, data in OI are weighted according to error statistics.  

Background fields also have associated error fields.  The OI equations produce 

assimilation fields that have minimized the amount of error in the final result. 

In recent years, improvement of data assimilation techniques has been an 

important area of focus among NWP researchers.  Yussouf et al. (2013) modeled the May 

2003 tornado outbreak sequence with a selection of three microphysics schemes in 

combination with radar and conventional observation assimilation.  The assimilation of 

radar and use of a double-moment physics scheme aided in the modeling of a prominent 

supercell thunderstorm that occurred on 8 May.  Fierro et al. (2012) examined the 

assimilation of lightning strike observations in a modeling of the 24 May 2011 tornado 

outbreak over Oklahoma, finding that this data set improved the location of individual 

thunderstorms. 

The assimilation of surface, rawinsonde, and aircraft observations in a 12-hour, 

30-member initial condition and model physics ensemble forecast has been examined by 

Wheatley et al. (2012) for an analysis set consisting of multiple severe weather outbreaks.  

Their research compared control ensembles to ensembles with assimilated observations 

of altimeter setting, temperature, dewpoint, and horizontal winds.  They calculated the 

ensemble-mean significant tornado parameter (STP) and the probability that the STP > 1 

for model grid points closest to official tornado reports for 24 severe weather outbreaks.  
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Their research found that the differences in these calculations between the control 

ensembles and the data-assimilation ensembles were significant at the 95% level and that 

the assimilation ensemble produced values closer to observations. 

Jones and Stensrud (2012) examined the impact of temperature and mixing ratio 

profiles computed by the Atmospheric Infrared Sounder (AIRS—Aumann et al. 2003) on 

forecasts of convective activity.  They examined two severe weather events from 2009 

and 2010, comparing high-resolution (3 km) ensemble forecasts with assimilated AIRS 

and conventional observations against the same ensemble forecasts with only assimilated 

conventional observations.  Their results for the two cases indicated that AIRS 

temperature and mixing ratio observations produced improvement in the ensemble mean 

dewpoint forecast in levels of the atmosphere most associated with severe convective 

development. 

As this sampling of studies has shown, data assimilation generally improves NWP 

forecast accuracy relative to control observations.  Modern assimilation processes employ 

physically based approaches when adding the observation data to a background field, a 

strategy that should—and usually does—reduce error in comparison with simply adding 

observations to the background field. 

1.2.1.2 Physics Parameterization 

Physics parameterization has also been examined extensively in the context of 

severe weather forecasting.  Numerous studies have examined the impact of various 

model physics parameterization schemes on the modeling of convection processes, cloud 

ice production, and mesoscale weather events.  The effect of microphysics on cold pool 

formation is especially well-documented.  Morrison and Milbrandt (2011) compared the 
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Morrison (Morrison et al. 2009) and Milbrandt-Yau (Milbrandt and Yau 2005) 

microphysics schemes in their modeling of idealized supercell thunderstorms, finding 

that the Morrison microphysics produced a stronger cold pool and higher levels of 

precipitation.  Varying intra-cloud parameters such as ice levels, raindrop breakup, and 

drop size in each scheme produced broad differences in the modeling of the cold pool 

associated with convective storms.  It should be noted that this study did not examine a 

real-world case, but rather, an idealized modeling of convection. 

Cintineo et al. (2014) examined a set of five PBL and four microphysics schemes 

with regard to the modeling of cloud cover over the contiguous United States.  They 

found that microphysics parameterization choice greatly influenced the modeling of 

upper-level cloud features.  Of the schemes they examined, the Milbrandt-Yau and 

Morrison microphysics schemes produced much more upper-level cloud cover than the 

Thompson (Thompson et al. 2006) and WRF double-moment 6-class scheme (Lim and 

Hong 2010).  The variations they found among different PBL schemes were small.  Li et 

al. (2015) studied nested WRF simulations of marine cumulus clouds and cold pool 

development with regard to variations introduced by the Thompson and Morrison 

microphysics parameterization.  They found that the Thompson scheme modeled less 

cloud cover and liquid precipitation than the Morrison scheme, resulting in a stronger 

cold pool with the Morrison scheme.  This result reinforces the Morrison and Milbrandt 

(2011) result, which also found that the Morrison scheme generated strong cold pools. 

Case studies have also been performed with varied parameterization schemes.  As 

an example, the 3 May 1999 Oklahoma tornado outbreak—a frequently examined high-

impact event—was modeled as a six-member physics parameterization ensemble in an 
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early work by Stensrud and Weiss (2002), who found that their ensemble scheme 

modeled the forcing mechanisms for this outbreak well.  More recently, McMillen and 

Steenburgh (2015) examined the effects of microphysics on the modeling of a lake-effect 

snowstorm in Utah, finding that the Thompson microphysics scheme most comparably 

modeled snow in the event relative to real observations, and that the WRF double-

moment 6-class microphysics scheme produced larger amounts of precipitation in the 

form of graupel than other tested microphysics. 

In a study on a very different topic, Gibbs et al. (2011) examined the effect of 

three planetary boundary layer (PBL) parameterization schemes on the modeling of a dry 

convective boundary layer in two cases in Oklahoma in dryline and dry cold front cases.  

They found that the Mellor-Yamada-Janjić boundary layer scheme (MYJ—Janjić 1994) 

most closely approximated observed values of wind magnitude in the dryline PBL 

environment, whereas the Yonsei University (YSU—Hong et al. 2006) and refined 

Asymmetric Convection Model (ACM2—Pleim 2007) more closely modeled wind 

magnitudes for the dry cold front.  YSU PBL most closely modeled heat flux values in 

both the dryline and the dry cold front cases, and ACM2 modeled flux values least 

accurately.  The MYJ scheme produced the most accurate modeling of near-surface 

turbulence in the dryline case, but the least accurate in the dry cold front case.  However, 

in their study, all three PBL schemes produced heat and moisture values that were 

reasonably similar to each other.  The authors emphasized that in a dry PBL case, 

whether dry cold front or dryline, the choice of PBL scheme may not introduce very 

much uncertainty into a NWP forecast.  Their study did not examine moist PBL cases, 

which are more commonly associated with convective instability. 
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Hu et al. (2010) also examined these three planetary boundary layer schemes— 

Mellor-Yamada-Janjić, Yonsei University, and Asymmetric Convection Model—for 

performance in modeling summertime boundary layer processes in Texas and eastward to 

Mississippi, a decidedly moist environment, in contrast with the model domain of the 

Gibbs et al. study.  They found that, although all three examined PBL schemes 

introduced cold and moist biases in the 0-2 km atmospheric layer compared to an 

observation data set, the MYJ scheme produced the largest biases.  Close examination of 

the modeled physical variables revealed that vertical mixing in the PBL was stronger in 

the YSU and ACM2 runs than the MYJ runs. 

1.2.1.3 Initial Condition Perturbation 

Initial condition perturbation has been extensively studied in the context of severe 

weather forecasting.  Current operational weather models are run in ensemble mode, 

and—depending on the model—several dozen initial condition perturbation runs are 

produced.  Initial conditions can be perturbed either by a randomized method of 

generation (Monte Carlo ensembles) or by a method that takes into account the flow 

pattern (Kalnay 2003).  The flow-aware perturbations are preferred in operational 

forecasting for greater realism, and several schemes for generating variations exist.  One 

approach, known as bred vectors, involves the differencing of a perturbed forecast from a 

non-perturbed forecast and the assimilation of this error into the next model time step.  

Another approach, which is used in the European Centre for Medium-Range Weather 

Forecasts (ECMWF) model, is known as singular vector perturbation (Leutbecher and 

Palmer 2007).  This approach employs eigenvector solutions to a vector-norm equation as 

the basis for its perturbations.  The perturbation method that is included in the Weather 
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Research and Forecasting (WRF) model is known as stochastic kinetic-energy 

backscatter (SKEBS, Berner et al. 2011).  This method attempts to estimate the 

dissipation of kinetic energy at higher resolutions than the runtime configuration of the 

model, using the calculated amount of energy that is not dissipated in the next step in the 

model. A more detailed review of perturbation ensemble modeling methods is beyond 

the scope of this research, as this method of ensemble generation is not examined in the 

study. 

However, approaches for quantifying uncertainty in perturbation ensembles still 

have application to this research, so a brief pair of examples is given.  Clark et al. (2004) 

examined the growth of ensemble spread in a prolonged period of convective weather.  A 

physics parameterization ensemble and a combination physics-perturbation ensemble at 

two different grid resolutions were compared to each other.  The comparison values were 

the ensemble variance of standard meteorological fields (geopotential height, mean sea 

level pressure, temperature, dewpoint, and wind magnitude) at various pressure levels.  

For the combined ensembles and the parameterization-only ensembles, the finer grid 

resolution produced faster spread growth rates than the coarser grid.  Additionally, lower 

atmospheric variables exhibited a greater proportion of ensemble spread from physics 

parameterization than from initial condition perturbation.  This finding is relevant to this 

research because it suggests that physics parameterization, even at small grid spacing, 

introduces significant uncertainty into convective weather NWP forecasts. 

Tapiador et al. (2012) modeled a severe hail storm in Spain with physics 

parameterization ensembles (without perturbations) and initial condition perturbation 

ensembles (without physics parameterization variations).  They varied cloud 
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microphysics, cumulus physics, and land surface physics in the parameterization 

ensemble, and they used MYJ PBL physics for all ensemble members.  Similar to Clark 

et al. (2004), they found that the physics parameterization ensemble produced statistically 

significantly greater ensemble spread than the perturbation ensemble in the modeling of 

simulated reflectivity and precipitation. 

1.2.2 Review of Support Vector Machines 

Verification of a numerical weather prediction model in the context of severe 

weather outbreak forecasting is a contentious issue.  An operational forecast of a specific 

type of severe weather is made subjectively by a human forecaster with NWP forecasts, 

current observations, local climatology, and persistence as guidance, and the accuracy of 

such a forecast is often highly subjective as well.  Therefore, other methods of forecasting 

severe weather and verifying severe weather outbreak predictions within a NWP forecast 

will be employed in this study.  For the verification data set, the research will use the 

definitions of tornadic and nontornadic outbreaks employed in Shafer and Doswell 

(2010—hereafter SD10), specifically their N15 index. 

Since human forecast decisions are often highly subjective, inconsistencies in the 

forecast outcomes from such a subjective determination suggest the need for an objective 

classification method for outbreak type.  Support vector machines (SVMs - Burges 1998, 

Hearst et al. 1998) are a type of learning machine well suited to binary classification 

applications, such as tornadic/nontornadic outbreak types.  SVMs employ an optimized 

decision hyperplane to demarcate classes in a binary fashion, with all points on one side 

corresponding to one outcome and all on the other side to the other outcome (Fig. 1.1a).  
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SVMs also utilize kernel methods to project nonlinearly separable data into a higher 

dimensional hyperspace where they are linearly separable, enhancing their utility for 

classification applications (Fig. 1.1b). 

SVMs have been used in meteorological research before.  SVMs have been used 

in aerosol modeling (Ackerman et al. 2004), classification of satellite radiance data into 

cloud types (Lee et al. 2003), and downslope windstorm forecasting in Colorado (Mercer 

et al. 2008).  Most pertinently to this study, Mercer et al. (2009—hereafter M09) 

examined the use of SVMs to distinguish between tornadic and nontornadic severe 

weather outbreaks.  They noted the inherent classification ability of SVMs in selecting 

them as the primary objective classification method.  Following studies by Weisman and 

Klemp (1984), Droegemeier et al. (1993), McNulty (1995), Colquhoun and Riley (1996), 

Stensrud et al. (1997), Rasmussen and Blanchard (1998), Markowski (2002), and Davies 

(2004), M09 initially examined 15 meteorological parameters found to be important in 

severe convective weather prediction before using a permutation test (Efron and 

Tibshirani 1993) to determine the diagnostic variables that were most distinct between 

the two outbreak types, after which a SVM was trained on these significant parameters.  

The M09 study yielded low false alarm ratios (FAR; less than 0.3) while maintaining a 

high skill at discriminating outbreak type (greater than 0.7).  However, they noted that the 

FAR values remain too high, suggesting additional work is needed in improving outbreak 

discrimination. 

Other statistical methods exist for producing a probabilistic forecast of a binary 

outcome, such as logistic regression.  In the context of outbreak mode prediction, logistic 

regression is linear with respect to the probability of a “hit” (here, a tornado outbreak).  
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The kernel function of an SVM, however, may be linear, polynomial, or Gaussian.  Using 

this kernel function, the SVM iteratively tunes its decision hyperplane function to 

optimize separation between data points, learning from predictor-predictand sets of data.  

The learning and nonlinear approaches give the SVM added flexibility to adapt its 

decision hyperplane function for a given volume of data. 

These examples use a set of data in which color indicates a distinction between 

two classes.  The dashed diagonal line in the right panels of Figure 1.1a and Figure 1.1b 

is the decision hyperplane.  The points closest to the decision hyperplane are the “support 

vectors” of the algorithm; it is the distance between them that must be maximized. 
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Figure 1.1 Support Vector Machine (a) and Higher-Dimensional Kernelization (b) 
with a Kernel Function  

1.3 Research Objectives 

While nontornadic severe weather outbreaks can be highly dangerous and 

destructive, tornado outbreaks account for a far greater casualty and property damage toll.  

Operational forecasters try to predict outbreak mode as far in advance as possible, given 

costs to government and business associated with preparing for high-impact weather 

events and the psychological “crying wolf” problem when high false alarm rates exist.  

Minimizing the false alarm rate for all types of extreme weather forecasts is an ongoing 
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goal in operational meteorology, but the specific danger of tornado outbreaks makes it 

especially critical for this type of event. 

This research proposes two overarching questions to be answered: 

 Whether model physics parameterization or data assimilation produces the greater 

model spread in atmospheric parameters that are important for severe weather.  

 Which model configuration within each set—a data assimilation ensemble and a 

physics parameterization ensemble—produces the most accurate outbreak 

forecast 

These questions require a three-part research project to model and examine 

variation across a representative set of severe weather events.  Phase I involves the 

assimilation of data from two sources—conventional observations and satellite infrared 

radiances—to determine the impact of this data assimilation on severe weather outbreak 

forecasts.  Phase II involves the use of a microphysics and PBL physics parameterization 

ensemble to determine the effect of parameterization scheme choices on outbreak mode 

prediction.  Phase III will examine the impact of both data assimilation and physics 

parameterization on synoptic-scale atmospheric fields.  Within each phase of the project, 

additional research questions specific to that phase are raised. 

In the data assimilation phase, the key questions to answer are whether the 

assimilated data used in the project produce an improvement above a control in the 

accuracy of SVM severe weather outbreak classifications, and if so, which type or types 

of assimilated data produce the most significant improvement to an outbreak mode 

forecast.  It is hypothesized that the assimilation of conventional data in conjunction with 

high-resolution satellite data produces the most skilled outbreak forecast.  The effects of 

15 



 

 

   

  

  

 

 

 

 

 

 

 

 

 

conventional data assimilation on model accuracy (with respect to an observation data 

set) are well documented, with researchers such as Wheatley et al. (2012) finding that 

assimilating these data brought a tornadic parameter closer to observed data.  Jones and 

Stensrud (2012) found that the use of AIRS satellite sounding data improved the forecast 

of middle- to lower-atmospheric dewpoint temperature, an atmospheric parameter that is 

important in forecasting severe weather.  These prior studies suggest that the assimilation 

of both conventional and satellite observations should produce improvements in an 

explicit probabilistic outbreak-mode forecast, relative to a control forecast and to 

forecasts made with the assimilation of only one such type of data. 

In the model physics parameterization phase, the key question to answer is which 

combination of model physics provides the most accurate modeling of severe weather 

mode across the case set.  Despite the volume of research concerning the effects of 

parameterization schemes on specific physical processes and individual cases, no study 

has formally identified the performance of a suite of physics parameterizations in severe 

weather outbreak mode forecasting; therefore, the goal of this phase of the research is to 

identify the individual impact of certain physics parameterization schemes on the SVM’s 

ability to distinguish tornadic and nontornadic outbreaks within a NWP framework.  

Given that M09 found the most statistically significant parameters for distinguishing 

outbreak mode to be largely near-surface or lower-atmospheric, it is hypothesized that the 

choice of planetary boundary layer scheme produces a greater impact on outbreak mode 

forecasts than other examined types of model physics. 

In the third and final phase of the study, the research question is what effect that 

data assimilation (as conducted in phase I) and microphysics/PBL parameterization (as 
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conducted in phase II) have on the modeling of synoptic-scale weather features in 

tornadic and nontornadic outbreaks.  With regard to parameterization, it is hypothesized 

that microphysics parameterization will influence the modeling of upper-level cloud and 

wind features more strongly, whereas PBL physics will heavily influence lower-level 

thermodynamic and wind variables.  With regard to data assimilation, it is hypothesized 

that conventional observations will most strongly influence thermodynamic variables and 

satellite radiances will influence cloud features and wind.  The reasoning for this is that 

the conventional data set contains direct observations of atmospheric moisture, whereas a 

data assimilation system must calculate moisture values from satellite infrared radiance 

temperatures, and these calculations are highly sensitive to the quality of the satellite 

radiance data. 

1.4 Data Description 

All three phases of the research use model simulations produced by the Weather 

Research and Forecasting-Advanced Research WRF (WRF-ARW) model, version 3.4.1 

(Skamarock et al. 2007).  All ensembles of the WRF model are initialized with the North 

America Regional Reanalysis (NARR) data (Mesinger 2006).  The NARR are provided 

on a 32 km Lambert-Conformal grid with 29 vertical levels and 3-hour temporal 

resolution. The NARR data are reanalyzed from recorded weather observations using the 

North American Mesoscale (NAM) model, formerly known as the Eta model, and 

assimilated with the Eta data assimilation system.  Known sources of error with the 

initialization data include imprecision in surface wind stress (Ebisuzaki and Rutledge 

2004) and diurnal inaccuracies in 2m temperature fields (Mesinger 2006).  Due to the fact 

that this research study focuses on severe convective weather events that are driven in 
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part by boundary-layer thermodynamic and wind shear conditions (Kerr and Darkow 

1996, Thompson et al. 2007), these errors in the NARR data are of significance and 

provide a significant opportunity for improvement through data assimilation, as well as 

potential modeling improvement through optimal choices of physics parameterization 

schemes, which in turn could improve outbreak classification by the WRF. 

1.4.1 Event Selection 

The research examines a set of 40 severe weather events in North America that 

took place between 2008 and 2011, as listed in Table 1.1.  Doswell et al. (2006— 

hereafter D06) and Shafer and Doswell (2010—hereafter SD10) define a tornado 

outbreak as six or more tornado reports within a single synoptic-scale system over a 24 

hour period (1200 UTC to 1200 UTC the following day).  SD10 went further and ranked 

outbreaks based on their severity using a variety of outbreak intensity indices, based on 

characteristics of the outbreak that are listed in Table 1.1.  They found that their N17 

index was most representative of tornado outbreaks.  As such, 20 tornado outbreaks 

ranked in the top 35 according to SD10 and 20 nontornadic outbreaks (those with five or 

fewer tornado reports that exhibited a large number of hail or wind reports) were selected 

for comparison in this study (Table 1.2).  All storm reports were taken from the Storm 

Prediction Center’s Storm Data database (NCDC 2010).  A selection of 20 events was 

chosen from the top 35, rather than simply the top 20, because the satellite radiation 

sounder data used in this research were not available until 2008, and gaps exist in the 

satellite data set for certain days in which severe weather outbreaks occurred. 
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Table 1.1 SD10 Variables Used for Ranking Outbreaks 

Total number of severe reports Total number of violent tornadoes 
Total number of tornadoes Number of long-track tornadoes 
Total number of hail reports Number of killer tornadoes 
Total number of wind reports Destruction Potential Index (D06) 
Total number of significant hail reports Total path length 
Total number of significant wind reports Fatalities 
Total number of significant tornadoes Middle-50% parameter (D06) 

Table 1.2 Severe Weather Outbreaks Simulated in the Study 

Tornado N17 Report Count Nontornadic N17 Report Count 

Outbreaks Index Outbreaks Index 

Tor Hail Wind Tor Hail Wind 

7-Jan-08 2.325 47 171 119 15-Jun-08 0.193 3 267 274 

5-Feb-08 8.889 85 145 313 8-Jul-08 -0.099 2 42 272 

15-Mar-08 3.039 46 209 87 20-Jul-08 0.301 0 64 348 

9-Apr-09 1.737 24 207 121 2-Aug-08 0.194 1 193 337 

10-Apr-09 3.490 62 387 133 11-Feb-09 0.077 3 7 375 

8-May-09 2.079 46 128 159 15-May-09 0.150 5 260 99 

24-Apr-10 5.252 35 119 149 3-Jun-09 -0.180 1 117 68 

10-May-10 4.034 69 126 60 18-Jun-09 0.140 5 173 312 

5-Jun-10 2.268 46 3 55 24-Jul-09 0.200 3 166 116 

17-Jun-10 4.056 73 136 87 9-Aug-09 0.177 2 78 241 

4-Apr-11 2.261 46 116 1088 6-Apr-10 -0.078 0 188 60 
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Table 1.2 (Continued) 

15-Apr-11 4.707 67 195 95 28-May-10 -0.250 0 89 120 

16-Apr-11 5.096 55 51 130 15-Jun-10 -0.047 0 88 325 

19-Apr-11 2.865 80 443 513 18-Jun-10 0.398 1 126 387 

25-Apr-11 3.091 50 162 230 23-Mar-11 0.369 4 278 167 

26-Apr-11 7.748 105 224 207 3-Apr-11 0.154 0 304 64 

27-Apr-11 29.342 172 202 329 11-Apr-11 -0.226 1 5 112 

22-May-11 4.879 47 487 279 20-Apr-11 -0.079 2 144 57 

24-May-11 6.420 48 234 210 4-Jun-11 -0.099 0 98 122 

25-May-11 3.242 90 467 496 9-Aug-11 0.446 1 129 132 

Each phase of the research considered the same case set.  These cases were 

simulated in the WRF model according to the requirements of each phase of the study, as 

detailed in the following sections of this document.  Phases I and II involved subsetting a 

large regional model domain (described in sections following) into smaller, outbreak-

centric domains, whereas phase III used the large regional domain for analysis.  The 

smaller domains used in phases I and II are centered on the severe weather outbreaks.  

These outbreak centers are estimates of the geometrical centers of storm report mappings 

for each outbreak.  The SD10 data set includes some dates in which more than one 

synoptically distinct outbreak occurred in North America; in these cases, SD10 treats 

each synoptic weather feature as a separate outbreak.  When more than one synoptic 

weather feature produced severe weather reports on a given day, this research used only 
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reports associated with the weather feature of interest for estimation of an outbreak 

center. 

1.4.2 Outbreak Valid Time 

A temporal difference in the initiation of tornadic and nontornadic outbreaks was 

observed, with the tornado outbreaks generally beginning three to six hours earlier in the 

day than the nontornadic outbreaks.  The nontornadic events also tended to last several 

hours longer than the tornadic events, while tornadic activity generally ended 

comparatively quickly.  Seasonal differences in the frequency of tornadic and 

nontornadic events affected the timing of these events, with longer periods of heating in 

the summer contributing to more nighttime severe wind events.  These average timing 

differences between outbreak modes indicated that using a single valid time for all 

outbreaks would not produce optimal forecasts from the SVMs; therefore, it was 

necessary to determine the outbreak peak time for each case. 

This peak time was determined by calculating the mean time of all severe weather 

reports of the appropriate kind (tornado or thunderstorm wind) that were reported within 

the SVM input field (a 32 x 32 gridpoint grid, as described in the remaining sections) and 

rounding up or down to the nearest 3-hour period.  Table 1.3 shows the calculated 

outbreak peak time for each of the 40 outbreaks. 
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Table 1.3 Outbreak Peak Times 

Date Peak (UTC) 
7 Jan 2008 
5 Feb 2008 
15 Mar 2008 
9 Apr 2009 
10 Apr 2009 
8 May 2009 
24 Apr 2010 
10 May 2010 
5 Jun 2010 
17 Jun 2010 
4 Apr 2011 
15 Apr 2011 
16 Apr 2011 
19 Apr 2011 
25 Apr 2011 
26 Apr 2011 
27 Apr 2011 
22 May 2011 
24 May 2011 
25 May 2011 

00 
00 
21 
00 
21 
18 
18 
21 
03 
21 
21 
21 
21 
03 
00 
06 
00 
21 
00 
21 

Date Peak (UTC) 
15 Jun 2008 
8 Jul 2008 
20 Jul 2008 
2 Aug 2008 
11 Feb 2009 
15 May 2009 
3 Jun 2009 
18 Jun 2009 
24 Jul 2009 
9 Aug 2009 
6 Apr 2010 
28 May 2010 
15 Jun 2010 
18 Jun 2010 
23 Mar 2011 
3 Apr 2011 
11 Apr 2011 
20 Apr 2011 
4 Jun 2011 
9 Aug 2011 

21 
21 
00 
03 
00 
21 
00 
21 
00 
21 
21 
00 
00 
00 
00 
00 
00 
00 
21 
00 

The remaining sections of this dissertation will document specific details about 

the methods that are used in each of the three phases of this research, including 

background information on the tools, module-specific data choices, and configuration 

details for each phase.  After the module-specific chapters, this document will contain a 

final chapter summarizing the findings of each phase and linking the three modules to the 

overall research objectives. 
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CHAPTER II 

PHASE I—OUTBREAK PREDICTION WITH DATA ASSIMILATION 

2.1 Methodology 

2.1.1 Overview 

The first phase of this project entails the generation of NWP ensembles with 

variation in the sources of data used by the NWP model.  Numerous data observation 

platforms exist, including balloon soundings, terrestrial weather reporting stations, 

satellite observations, radar, ship reports, and aircraft reports.  Assimilated data sources 

are of interest in this study because these observations are not all of uniform quality, and 

some are difficult to assimilate into a NWP model without degrading the quality of the 

forecast.  This research does not examine all possible data observing platforms for 

assimilation.  It focuses on conventional meteorological observations and satellite 

radiances, because these data types are readily available to meteorologists and are 

assimilated into operational NWP models.  The fact that these observations include 

numerous important meteorological variables—temperature, moisture, wind, pressure— 

and are recorded at many levels of the atmosphere makes them desirable to assimilate. 

2.1.2 Background Field 

All data assimilation procedures require a background field onto which data may 

be assimilated.  The WRF-ARW model was used to generate this field.  The model 

configuration used a 12 km Lambert-conformal grid background field (Fig. 2.1) 
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encompassing much of North America east of the Rocky Mountains.  This background 

domain was identical for all 40 severe weather cases.  The time step of this configuration 

was 72 seconds, with output files generated for each hour.  The model output spanned a 

42-hour period beginning at 1800 UTC on the day before the outbreak (to allow for 

model spin-up) to 1200 UTC on the day following the outbreak.  The geographical 

domain was chosen to encompass the spatial extent of all the outbreaks.  The vertical 

dimension included 28 vertical levels with a model top of 100 hPa.  Model physics used 

in generating this background field are listed in Table 2.1 below. 

Figure 2.1 WRF Model Domain for Background Simulations with Tornadic (Red) and 
Nontornadic (Blue) Outbreak Centers Superimposed 
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Table 2.1 Phase I WRF Physics Parameterizations. 

WRF physics option Configuration 
Cloud microphysics Thompson et al. (2008) 
Longwave radiation Rapid Radiative Transfer Model (Mlawer 

et al. 1997) 
Shortwave radiation Dudhia (Dudhia 1989) 
Surface layer MM5-derived (Beljaars 1994) 
Land surface 5-layer thermal diffusion (Dudhia 1996) 
Urban surface None 
Planetary boundary layer Yonsei University (Hong et al. 2006) 
Cumulus physics Kain-Fritsch (Kain 2004) 

2.1.3 Data Assimilation 

It is common to separate severe outbreak modes into tornadic and primarily 

nontornadic outbreak types for such forecast applications (Shafer et al. 2009, Mercer et 

al. 2009, Mercer et al. 2012, others).  This phase of the study sought to identify the 

importance of data assimilation in outbreak type discrimination.  This was accomplished 

through the assimilation of two different types of data:  conventional observations from 

the NCEP ADP Global Upper Air and Surface observation database (NCEP et al. 2008) 

and High Resolution Infrared Radiation Sounder-4 (HIRS-4—NCEP et al. 2009) radiance 

data.  The NCEP ADP Global Upper Air and Surface observations (hereafter 

conventional observations) data set contains temperature, moisture, and wind 

observations from a wide variety of sources and coverage, including aircraft, buoys, land-

based recording stations, ships, rawinsondes, and satellite soundings.  The High 

Resolution Infrared Radiation Sounder-4 (HIRS-4) is a sensor on the NOAA-18 and 

METOP-2 polar orbiting satellites, though observations from NOAA-19 were not 

available in the data set until 2010.  It has 19 infrared channels, one visible channel, and a 

resolution of 10 km at nadir.  Brightness temperatures from the HIRS-4 are utilized in the 
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data assimilation methods employed.  Both the satellite and the conventional data were 

available daily in 6-hour bins beginning at 0000 UTC. 

Once the background fields for each case were generated, assimilation of each 

individual type of observation (conventional and HIRS-4) as well the two in combination, 

was done using the Gridpoint Statistical Interpolation (GSI—Wu et al. 2002) software, 

version 3.1.  The GSI was configured for three-dimensional variational data assimilation 

(3DVAR—Kleist et al. 2009).  Although more sophisticated methods of data assimilation 

exist, namely EnKF and 4DVAR, the 3DVAR approach has been used effectively in 

operational NWP models.  This method has the advantage of simplicity over EnKF in 

that it does not require the production of full stochastically perturbed ensembles.  The 

choice of 3DVAR over 4DVAR implies that some temporal displacement of 

meteorological features in the assimilated fields is possible in the experimental model 

configuration if the WRF natively models their progression significantly inaccurately.  It 

was determined that this possible model error would be accepted in the study due to the 

fact that the 4DVAR assimilation option was untested in the GSI 3.1 release. 

A background error covariance field was produced for each case using the 

National Meteorological Center method (NMC—Parrish and Derber 1992).  Background 

error covariance fields are used in data assimilation to determine the effect of assimilated 

observations on surrounding areas and the weighting of variables.  To produce these 

background error covariance fields, 12 km WRF runs initialized at 0600 UTC and 1800 

UTC the day of the outbreak were generated, using NARR data as initial input.  Times 

used to generate the background error covariance fields were 1200 UTC, 1800 UTC, 

0000 UTC the next day, 0600 UTC, and 1200 UTC.  The WRF tool “gen_be” 
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(Descombes et al. 2014) was used to generate background error statistics for each case 

from these output fields. Once the background error covariance statistics were produced, 

conventional and satellite radiance observations were then assimilated to the 42-hour 

WRF output at each 6-hourly time interval in which they were available. 

Channels 2-15 from the HIRS-4 unit were assimilated.  Cycling was used to 

determine satellite bias coefficients, with GSI North American Mesoscale (NAM) 

regional default values used for the initial time (1800 UTC).  These error fields are 

computed from the NCEP NAM model’s forecast error (compared to observations).  The 

satellite bias coefficients for each successive time step of the case used error calculations 

computed for the previous time step by the GSI.  Conventional observations were 

assimilated without thinning. HIRS-4 observations were assimilated at a 4 km grid in 

GSI’s data thinning process, a value determined after initial experimentation at coarser 

thinning resolutions, including 12 km, yielded low observation assimilation counts.  For 

instance, assimilation at 12 km thinning resolution reduced the number of HIRS-4 

observations by 67 percent in some outbreaks compared to assimilation at 4 km.  Due to 

the varying view angle of the polar-orbiting satellite as it traversed its orbit, some 

observation bins, such as 12Z, already contained low counts relative to other bins (such 

as 18Z).  Using a coarse thinning resolution yielded few to no observations being 

assimilated for these time blocks. 

It is important to note that while fine-tuning of satellite radiance assimilation is 

performed for case study research to generate optimal data fields, the assimilation 

procedures used herein were not individually tuned for each of the 40 cases beyond the 

cycling procedure.  This research examined cases of varying outbreak modes with the 
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aim of determining the benefits of radiance data assimilation—as a general procedure— 

toward predicting severe outbreak mode in an operational forecast setting.  In common 

with other statistical tools, the learning machine used for making these predictions is 

designed to be trained on data having uniform characteristics (except for the predictor 

variables that are to be compared to each other); therefore, manually tuning data 

assimilation in a different manner for each case diminishes the ability to diagnose 

impacts of individual assimilation data types in outbreak prediction since it would be 

uncertain whether the individual fine-tuning or the distinct type of assimilated data 

caused any changes in classification performance.  Additionally, an objective of this work 

was to implement a support vector machine classification scheme on the assimilated 

fields, and any inconsistencies among the assimilation procedures would create biases in 

the predictor variables used in the learning machine and potentially degrade the 

classification performance of the method. 

The precise number of satellite observations assimilated varied by date and time 

due to variations in the satellite orbit in the spatial coverage of the sensor with respect to 

the background field domain.  The data set used in this study included HIRS-4 

observations from just two satellites (and only METOP-2 prior to 2010).  Fig. 2.2 depicts 

a box plot showing the 40-case spread of HIRS-4 observations assimilated at each time 

step. Though precise totals sometimes varied slightly if observations were assimilated in 

conjunction with conventional observations, these variations were observed to be on the 

order of ± 1%.  As shown in the figure, the largest numbers of HIRS-4 observations from 

this sensor were assimilated at 1800 UTC, indicating peak satellite observation coverage 

during or immediately prior to most of the outbreaks. 
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In the assimilation process, cost function for each observation bin is calculated by 

GSI.  This cost function takes into account observation biases and error: 

J  (xa  x T 1
b ) B (x T 1

a  xb )  (Hxa o) O (Hxa  o)  J c

 (2.1)  

where xa and xb are analysis and background fields, B is a background error covariance 

matrix, H is an observation operator, o is an observation field, O is observation error 

covariance, and Jc is a placeholder for constraint terms such as dynamical and moisture 

constraints. 

This function is iteratively updated with each phase of the data assimilation 

process.  The assimilation procedure requires three iterations for each time step.  In each 

step, the GSI defines a separate variable: 

y B1 x

 

(2.2) 

where x is the difference of the analysis and background fields.  Equation (1) is 

reformulated in terms of equation (2) as follows: 

J yT BT y (HBy o)T O1   (HBy  o)  J c

 

(2.3) 

For both equation (1) and equation (3), the gradients of the background field and 

observation field terms of the cost function are calculated.  The GSI then attempts to 

simultaneously minimize both gradient calculations. 

One useful metric for this process is the difference of this cost function after the 

final iteration and after the initial one.  Fig. 2.3 depicts a histogram of the per-observation 

final-initial cost function difference for HIRS-4 radiances.  As the chart indicates, the 

final cost function was lower than the initial in every assimilation, indicating that the GSI 

software was operating as expected through the iterations. 
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Figure 2.2 Spread of HIRS-4 Observation Counts Assimilated Among the 40 Cases 
for Each Time Step 

Figure 2.3 Distribution of Final Minus Initial Iteration GSI Cost Function for HIRS-4 
Observations 
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2.1.4 High-Resolution Outbreak Domains 

The output of the GSI data assimilation procedure yielded a 12 km domain 

identical in spatial extent to that of Fig. 2.1.  The three possible updated background field 

combinations (HIRS-4, conventional, both) were used in the initialization of a new WRF 

simulation conducted at 4 km spatial resolution for the same 42 hour time period.  

Additionally, a control run in which no assimilation was done was formulated for each 

case, yielding four possible WRF simulations.  Model physics used in these new WRF 

runs were identical to those used in the 12 km background simulations, except that no 

cumulus physics parameterization was used in the 4 km simulations (consistent among all 

four assimilation experiments).  Model output was generated in 3-hour time intervals. 

The domains of the 4 km WRF simulations were centered on the regions in which 

the tornado or other severe weather outbreaks occurred (i.e. the points in Fig. 2.1).  The 

size of the domain varied according to the spatial extent of an outbreak.  Fig. 2.4 shows 

an example of the domain of one case superimposed on the background field and 

associated official tornado reports. 
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Figure 2.4 An Example of a Single Case Subdomain (15 April 2011) 

Observed tornado reports are superimposed in red. 

2.1.5 SVM Classification of Outbreak Mode 

The output from the assimilated WRF simulations is not capable of discerning 

outbreak type directly.  M09 dealt with this by using a support vector machine (SVM) to 

classify outbreaks as tornadic or nontornadic with modest success.  This study utilized the 

same SVM approach on the output of the 4 km WRF simulations to establish which type 

of outbreak the WRF output is suggesting. 

Output from the 4 km assimilated WRF fields at the outbreak valid time (section 

1.4.2) was upscaled to 12 km by data thinning.  The upscaling was deemed necessary due 
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to the generation of data noise by WRF at isolated locations at high horizontal resolution, 

which reduced SVM forecast accuracy at the “raw” 4 km resolution, and the 

computational time needed to run the SVM analysis on large matrices.  For strictly 

research purposes, high computation time is not a concern, but the SVM was employed as 

a possible tool to aid operational forecasting, which is inherently time-sensitive.  In 

addition, M09 found that SVMs trained on the same severe weather covariates for the 

same task—differentiation of outbreak mode—performed well on 18 km data. 

A 32 x 32 gridpoint grid 12 km in resolution centered on the outbreak was 

retained for each of the 40 cases of the diagnostic predictor variables deemed important at 

24 hours prior to the outbreak by M09.  These variables were storm-relative helicity 

(SRH) at 0-1 km, SRH at 0-3 km, surface-based convective inhibition (CIN), bulk shear 

at 0-1 km, the product of 0-1 km bulk shear and surface-based convective available 

potential energy (CAPE), lifted condensation level, and energy-helicity index (EHI) at 0-

1 km. Once these variables were retained, an S-mode varimax rotated principal 

component analysis (Richman 1986) was conducted, yielding between five and nine 

rotated principal component (RPC) scores (contingent on the input assimilation field) that 

were used as predictors in the SVM.  RPC scores were used as SVM input because the 

PCA reduces the size of the input data matrix, and therefore the computation time for the 

SVM, without sacrificing information about the underlying data set. 

The SVM method is based on establishing a decision hyperplane between two 

classes (here tornadic and nontornadic outbreaks) using discriminating variables (e.g. 

predictors). The method is unique from linear discriminant methods in that the predictors 

are first projected into a nonlinear hyperspace by a nonlinear map function φ. The dot 
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product of this map function for one predictor and the same map for another predictor 

yields a similarity matrix in nonlinear hyperspace, often referred to as a kernel matrix K. 

In addition to the projection into hyperspace, a quadratic programming optimization 

routine is used to find the optimal margin of separation between the two classes in the 

projected hyperspace, with greatest weight given to points lying on the margin of 

separation (known as support vectors).  A penalty function can be assigned to give less 

weight to points far from the margin, affecting the results of the optimization routine.  

This penalty function, in addition to the selection of the kernel matrix formulation and its 

tunable parameters, yields a theoretically infinite number of possible configurations for 

the SVM. As such, cross-validation routines were used to identify the strongest 

combination of cost and kernel function for discriminating outbreak type.  

In this study, the following kernel functions were considered: 

Linear:  

K(x,y) T x y

 

Polynomial:  

K(x,y) ( xTy)d 

 

Radial Basis (Gaussian): 

K(x,y) exp( x y 2
   )

(2.4) 

(2.5) 

(2.6) 

where x and y are vectors in original linear space, γ is a user-defined Gaussian spread 

parameter associated with the polynomial and radial basis kernels, and d is the degree of 

the polynomial (the user dictates this value).  In this study, we considered all three kernel 

functions and multiple degree d values (2, 3, 4, 0.5, and 0.333), yielding a total of seven 

kernel functions considered.  Additionally, cost function values ranging from 1 (no 

penalty to points far from the margin) to 10000 (severe penalty to points far from the 

margin) on a log10 scale, and γ values of 0.01, 0.05, and 0.1 were considered.  This led to 
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a total of 95 kernel-cost-gamma combinations (the linear kernel is not a function of γ, so 

only five linear kernel experiments were done for the five cost values).  

To identify the best kernel-cost-gamma combination of the 95 tested, a bootstrap 

2-fold cross-validation routine was implemented (Efron and Tibshirani 1993), 

withholding 20 of the 40 events randomly for each bootstrap replicate.  Each kernel-cost-

gamma combination was tested with the same 1000 random samples of training and 

testing sets to ensure pairwise comparisons were possible. 

Determination of forecast skill was made by calculating contingency statistics on 

the forecasts of the SVMs.  Probability of detection (POD), false alarm ratio (FAR), bias, 

and Heidke skill score (HSS) were computed (Wilks 2011).  The bootstrap confidence 

intervals of HSS associated with each kernel-cost-gamma combination were used to 

diagnose statistical significance among the experiments.  By identifying those kernel-

cost-gamma combinations whose lower HSS confidence limit was higher than the median 

HSS of other combinations, it is possible to diagnose combinations with statistically 

significantly better skill.  Table 2.2 shows the best-performing SVMs for each of the 

model configurations. 

Table 2.2 SVM with Highest Mean Heidke Skill Score 

Ensemble Member SVM 
WRF only Radial basis, cost=10, γ=0.1 
HIRS-4 Radial basis, cost=10, γ=0.1 
Conventional observations Radial basis, cost=100, γ=0.01 
HIRS-4 + Conventional Radial basis, cost=100, γ=0.1 

35 



 

 

   

 

 

 

  

   

 

 

  

 

 

 

 

2.1.6 Euclidean Distance Calculations and Outbreak Composites 

Following determination of the most skilled SVM for each assimilation run, 

calculations of Euclidean distance between nontornadic and tornadic outbreak values of 

the seven covariates were conducted.  Graphical composites of the covariates were also 

generated for tornadic and nontornadic outbreaks for each type of data assimilation.  

These calculations allow for examination of covariates individually to determine the 

variables that were most strongly modified by data assimilation of a particular type, and 

the outbreak mode in which the modification occurred. 

2.1.7 Observations Test 

Finally, a test was conducted to determine whether the data assimilation 

procedure generated output fields that were closer to observed values than the control.  

This test was done to validate the assimilation procedure itself, as well as to indicate 

whether the SVM outbreak mode forecasts were reflecting real improvements in the 

modeling of data points.  Root mean square error (RMSE) analysis was performed for the 

four model runs for the entire set of 40 cases.  Fields examined were geopotential height 

at 500 mb; u-winds at 925, 850, 700, 500, 400, 300, 250, 200, 150, and 100 mb; v-wind at 

the same pressure levels; specific humidity at 700 and 500 mb; and temperature at 925, 

850, 700, and 500 mb. 

The conventional data set was used for observation points.  Although this same 

data set was used in data assimilation for two of the runs, the assimilation procedure does 

not simply superimpose values onto the model grid of the background field, but performs 

physical calculations and weighting of data points based on error analysis and parameters 

given to the GSI.  Additionally, the 4 km outbreak domains were used as the data to be 
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tested in the RMSE analysis, which meant that the WRF model itself had been run on the 

immediate output of the GSI.  Therefore, RMSE analysis of the conventional and HIRS-

4/conventional runs was not a self-comparison.  In the RMSE procedure, standard 

synoptic fields at each 0000 UTC and 1200 UTC period in the model simulation were 

examined. 

2.2 Results 

The best output from the cross-validation step of the kernel-cost-gamma 

optimization was compared among all four phase I ensembles using contingency statistics 

(probability of detection—POD, false alarm ratio—FAR, bias, Heidke skill score—HSS; 

Wilks 2011) to establish improvements from data assimilation.  Contingency statistics for 

the SVMs indicated that data assimilation improved outbreak discrimination ability above 

the control run.  This was true for all three data assimilation runs examined.  The HIRS-

4/conventional member exhibited the highest skill at predicting severe outbreak mode, 

followed by the conventional run and the HIRS-4 run. 

HIRS-4/conventional assimilation produced an HSS of 0.620 (Fig. 2.5c), with a 

95% bootstrap confidence interval of [0.607, 0.633].  Conventional data assimilation 

produced an HSS of 0.603 with a confidence interval of [0.591, 0.615].  The HIRS-4 run 

produced an HSS of 0.581 and a confidence interval of [0.568, 0.594].  The control run 

had an HSS of 0.563 and a confidence interval of [0.550, 0.576].  The differences in skill 

between each member are all statistically significant at the 95% level. 

The top performance of the HIRS-4/conventional run was brought about by 

lowered FAR (Fig. 2.5b) and improved POD (Fig. 2.5a) relative to the control.  FAR 

especially was much lower for this run than any of the others.  Bias statistics (Fig 2.5d) 
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indicate that this run exhibited a small under-prediction bias, which likely accounts for its 

low FAR; however, the POD of the HIRS-4/conventional run was not significantly lower 

than that of the conventional-only run.  The conventional run demonstrated the lowest 

bias, with its mean bias value extremely close to 1.00 (unbiased).  The conventional 

assimilation run had the highest POD, though it was within the margin of error of the 

second-best (for POD) HIRS-4/conventional run. 
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Figure 2.5 95% Confidence Intervals for POD (a), FAR (b), Heidke Skill Score (c), 
and Bias (d) of the Best-Performing SVMs for Phase I 

The solid line in (d) represents an unbiased result. 

2.2.1 Data Assimilation and Covariate Values 

M09 identified the importance of thermodynamic, shear, and helicity parameters 

in outbreak discrimination, so it was important to identify the impact of the data 
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assimilation methods on the average magnitudes of these variables.  To determine the 

impact of assimilation of satellite data and conventional meteorological observations on 

each type of outbreak, an average composite of all 20 covariate fields for each outbreak 

type was formulated for each of the four model ensemble members.  The composites 

were generated across the 32 x 32 (12 km grid) outbreak-centered field that was input to 

the SVM. The contrasts in these composites help demonstrate the exact impacts of the 

assimilation on the simulations. 

Tornadic and nontornadic composites were generated for this data set for 0-1 km 

bulk shear (Fig. 2.6, Fig. 2.10), 0-1 km bulk shear x CAPE (Fig. 2.7, Fig. 2.11), 0-1 km 

EHI (Fig. 2.8, Fig. 2.12), and 0-3 km SRH (Fig. 2.9, Fig. 2.13) for all four runs. 

2.2.1.1 Tornadic Outbreak Composite 

The 0-1 km bulk shear composites show the striking effect of assimilating data in 

simulations of tornado outbreaks (Fig. 2.6).  While the HIRS-4 composite (Fig. 2.6c) 

depicts a slightly larger area of high bulk shear, the inclusion of conventional 

observations sharply increased composite values relative to the control (Fig. 2.6a) for 

tornado outbreaks at peak outbreak times.  The area encompassed by high bulk shear 

values was only slightly larger in the conventional (Fig. 2.6b) and HIRS-4/conventional 

(Fig. 2.6d) composites, but the area of the highest values was notably increased and the 

maximum value raised. 

The 0-1 km bulk shear x CAPE parameter for tornado outbreaks (Fig. 2.7) was 

also profoundly influenced by conventional data assimilation.  As the figure indicates, the 

conventional (Fig. 2.7b) and HIRS-4/conventional (Fig. 2.7d) assimilation runs depict a 

region in the southern part of the composite domain that contains significantly higher 
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values of this parameter than the control (Fig. 2.7a) and HIRS-4 (Fig. 2.7c) runs.  The 

gradient on the edges of this field of high CAPE x shear is also tighter than in the runs 

that do not contain conventional data.  

The other combined thermodynamic-dynamic parameter, 0-1 km EHI (Fig. 2.8), 

exhibited a similar pattern from the conventional data assimilation.  The maximum EHI 

values in the composite were markedly larger in the HIRS-4/conventional (Fig. 2.8d) and 

conventional (Fig. 2.8b) data assimilation runs.  Additionally, the assimilation of 

conventional observations shifts the region of high EHI to the east.  The composites also 

indicate that the assimilation of HIRS-4 observations decreases values of this field.  The 

HIRS-4 composite (Fig. 2.8c) exhibits smaller areas of high EHI than the control 

composite (Fig. 2.8a), and the HIRS-4/conventional composite depicts smaller areas of 

high EHI and lower maximum EHI values than the conventional run. 

The composites of 0-3 km SRH and 0-1 km SRH displayed the same pattern of 

effects among the ensemble; therefore, for the sake of examining a covariate over a larger 

vertical span, the 0-3 km SRH composites are discussed in detail (Fig. 2.9).  This field 

exhibited an interesting pattern with data assimilation.  Assimilation of any data resulted 

in an increase of the maximum values compared to the control, but these maxima were 

increased much more with the assimilation of conventional data, whether alone (Fig. 

2.9b) or, especially, with HIRS-4 radiances (Fig. 2.9d).  These maximum outbreak-mean 

values occurred in the northeastern region of the composite.  However, assimilating 

conventional data also produced a decrease in the values in the entire western half of the 

composites, especially the far northwest corner.  This had the effect of producing a 

sharper SRH gradient in the conventional and HIRS-4/conventional runs than in the 
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control and HIRS-4 runs.  Finally, the assimilation of HIRS-4 data in combination with 

conventional data appeared to produce a very sharp boundary (Fig. 2.9d) on the western 

periphery of the area of highest 0-3 km SRH that was not present in the conventional-

only composite.  Since satellite radiance values can denote the location and intensity of 

clouds, it is very likely that this SRH boundary feature in Fig. 2.9d is enhanced by the 

assimilation of data that, among other effects, can aid the model in simulating storms. 
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   Figure 2.6 Phase I Tornadic Composites of 0-1 km Bulk Shear 
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   Figure 2.7 Phase I Tornadic Composites of 0-1 km Bulk Shear x CAPE 
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Figure 2.8 Phase I Tornadic Composites of 0-1 km EHI 
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Figure 2.9 Phase I Tornadic Composites of 0-3 km SRH 

2.2.1.2 Nontornadic Outbreak Composite 

The 0-1 km bulk shear nontornadic composites (Fig. 2.10) exhibit a pattern 

similar in one way to that of the bulk shear tornado outbreak composites.  Conventional 

(Fig. 2.10b) and HIRS-4/conventional (Fig. 2.10d) runs depict small regions of higher 
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bulk shear maxima than the maxima of the control (Fig. 2.10a) and HIRS-4 (Fig. 2.10c) 

runs. However, other than these small areas of high shear, there are not many clear 

differences among the nontornadic 0-1 km bulk shear composites.  The composite-

relative locations of high bulk shear in the nontornadic events are comparable to the 

locations of high bulk shear in the tornadic events, except that the small regions of 

maxima in the conventional and HIRS-4/conventional nontornadic composites are 

located northwest of the corresponding bulk shear maxima in the conventional and HIRS-

4/conventional tornadic composites. 

For CAPE x 0-1 km bulk shear (Fig. 2.11), a clear difference was observed 

between the conventional assimilation runs and the other two.  The assimilation of 

conventional observations decreased this value for the nontornadic outbreaks, whereas 

such assimilation increased it for the tornado outbreaks.  The HIRS-4/conventional 

nontornadic composite for this parameter (Fig. 2.11d) shows lower values in most of the 

field than the conventional composite (Fig. 2.11b).  By increasing tornado outbreak 

values of this parameter and decreasing it for nontornadic outbreaks, conventional 

assimilation—alone or in combination with HIRS-4 observations—clearly helped to 

increase the difference between outbreak types for this combined thermodynamic-

dynamic covariate. 

The same overall effect was noted for 0-1 km EHI (Fig. 2.12) with respect to 

conventional observations.  The conventional (Fig. 2.12b) and HIRS-4/conventional (Fig. 

2.12d) runs exhibit significantly lower values across most of the field, and lower maxima, 

than the control (Fig. 2.12a) and HIRS-4 (Fig. 2.12c) runs.  For this parameter, HIRS-

4/conventional assimilation did introduce a small (approximately 12 km x 12 km) 
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maxima that is higher than the maxima of the conventional-only run, but to the northwest 

of this point, an area of lower EHI exists that is spatially larger than the corresponding 

low-EHI region in the conventional composite.  As was the case with CAPE x 0-1 km 

bulk shear, conventional data assimilation increased this combined thermodynamic-

dynamic parameter for tornado outbreaks while decreasing it for nontornadic outbreaks, 

and the effect was greater for nontornadic outbreaks with HIRS-4/conventional 

assimilation than conventional alone. 

Magnitudes of 0-3 km SRH in the nontornadic composites were decreased by the 

assimilation of conventional data, alone or in conjunction with HIRS-4 radiances (Fig. 

2.13).  A slightly greater decrease, relative to the control, was observed in the HIRS-

4/conventional composite (Fig. 2.13d) than in the conventional-only composite (Fig. 

2.13b).  Values were decreased in all regions of the composite, in contrast with the 0-3 

km composites for tornado outbreaks, which exhibited increased values in the northeast 

sector compared to the tornadic control.  The conventional and HIRS-4/conventional 

composites in particular resembled the conventional and HIRS-4/conventional tornadic 

composites in the spatial distribution of high and low values. 
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Figure 2.10 Phase I Nontornadic Composites of 0-1 km Bulk Shear 
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Figure 2.11 Phase I Nontornadic Composites of CAPE x 0-1 km Bulk Shear 
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Figure 2.12 Phase I Nontornadic Composites of 0-1 km EHI 
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Figure 2.13 Phase I Nontornadic Composites of 0-3 km SRH 

2.2.2 Euclidean Distance Calculations 

Improved SVM discrimination capability should result when the statistical 

(Euclidean) distance between the predictor covariate fields is maximized, as this 
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maximizes the differences in the two classes.  As such, the bootstrap Euclidean distance 

between the mean field for each outbreak type was formulated for each covariate. 

Distance calculations are shown for all covariates and model runs in Table 2.3 

with the largest distance in bold, and for select covariates in Fig. 2.14.  The analysis 

showed that the HIRS-4/conventional run maximized the distance for 0-1 km bulk shear 

(Fig. 2.14a).  This run and the conventional run maximized the distances for the CAPE x 

0-1 km bulk shear product (Fig. 2.14b) and CIN (Fig. 2.14c).  The conventional 

assimilation run maximized the distance for 0-1 km EHI (Fig. 2.14d).  For LCL, the 

control generated the maximum distance between outbreak modes (Table 2.3). 

The outbreak-type distances for SRH at 0-1 and 0-3 km layers were decreased by 

the assimilation of conventional observations.  However, the HIRS-4/conventional run 

exhibited a slightly (and not statistically significantly) weaker decrease than the 

conventional data–only run (Table 2.3).  Examination of 0-3 km SRH composites for 

tornadic and nontornadic outbreaks shows that assimilation of conventional data did 

decrease the magnitudes of SRH for nontornadic outbreaks while increasing the 

magnitudes of high SRH in tornado outbreaks (compared to the control).  However, 

conventional data assimilation also sharply decreased the magnitudes of 0-3 km SRH in 

regions of the composite that did not exhibit the strongest levels of SRH.  The result was 

that 0-3 km SRH fields for tornadic and nontornadic outbreaks exhibited similar 

geographical distributions of high and low values (relative to each type of outbreak) after 

conventional assimilation.  This would decrease the outbreak-mode Euclidean distance 

for SRH, even though conventional data assimilation increased the highest values of this 

parameter for tornado outbreaks while not doing so for nontornadic outbreaks. 
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Figure 2.14 95% Confidence Intervals on Euclidean Distance Calculations Between 
Tornadic and Nontornadic Values of 0-1 km Bulk Shear (a), CAPE x 0-1 
km Bulk Shear (b), CIN (c), and 0-1 km EHI (d) for Phase I 
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Table 2.3 Mean Bootstrapped Euclidean Distances Between Tornadic and 
Nontornadic Outbreaks for Each Covariate Type and Assimilation Mode 

0-1 km 0-3 km CIN 0-1 km CAPE x LCL 0-1 km 
SRH SRH Bulk 0-1 km EHI 

Shear Bulk 
Shear 

No assimilation 6968.69 7483.75 1521.56 123.88 82718.4 12026.8 60.19 

HIRS-4 7050.88 7504.32 1525.71 124.43 81563.8 11583.3 59.97 

Conventional 6917.80 7125.11 1671.35 127.79 87028.3 11784.3 62.27 

HIRS-4/Conv. 6968.83 7158.99 1671.34 129.90 87327.7 11439.8 61.04 

2.2.3 Comparison to Observed Values 

A common concern in data assimilation is whether the assimilation procedure has 

brought the model analysis closer to an observation data set than a control run.  This 

research did not have as its primary goal to examine this aspect of forecasting, except in 

the context of the determination of outbreak mode.  However, to ensure that the data 

assimilation process employed in phase I was operating correctly and that the positive 

SVM results reflected a real modeling improvement, it was determined that such a 

comparison must be made. 

As described in section 2, root mean square error (RMSE) analysis was performed 

on the 4 km data assimilation and control runs for several thousand data points.  The 

difference in RMSE between each of the three data assimilation runs and the control run 

was also calculated.  If data assimilation brought a variable closer to its observed value, 

the error for the data assimilation run for that point would be lower than that of the 
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control, and therefore the difference would be a negative value.  Fig. 2.15 shows RMSE 

differences for all experimental runs. 

The RMSE analysis indicated that for approximately 80% of examined data 

points, the assimilation of conventional observations did bring the model output closer to 

the observational data set than the no-assimilation control run, indicating that the 

assimilation procedure was operating as expected.  The HIRS-4/conventional run 

exhibited similar error improvement relative to the control.  The assimilation of HIRS-4 

observations in the absence of conventional data did not improve the whole domain 

compared to an observational data set, as the figure indicates the HIRS-4-control RMSE 

differences to be symmetrically distributed.  The assimilation of satellite radiance 

observations is a difficult research problem.  Discernible improvements in modeling (in 

this context, “improvement” means that a model run is closer to an observation data set) 

generally require case-specific iterative fine-tuning of the assimilation parameters, which 

was not done in this study—as mentioned previously in section 2.  Therefore, this finding 

is not unexpected. 

Previous data assimilation studies (Wheatley et al. 2012, for example) have also 

examined the temporal progression of error throughout the model simulation.  In the 

conventional and HIRS-4/conventional assimilation runs of this research, the mean error 

was significantly lower than the error of the control for each 12-hour period of the WRF 

simulation (Fig. 2.16).  Model error increased over time in all runs, due to the 

accumulation of finite differencing approximations of the governing equations and 

approximations of specific conditions made in model physics parameterizations.  These 

types of errors occur at both spatial and temporal scales, since the model grid and model 

56 



 

 

 

 

 

 

 

 
 

 

time step are discrete.  However, compared to the control and HIRS-4 runs, the lines for 

conventional and HIRS-4/conventional model runs exhibited decreased slopes over time.  

This result indicates that the ingestion of additional conventional data at each time step 

reduced error in the simulations relative to the control run. 

Figure 2.15 Experimental—Control RMSE Differences for Conventional (a), HIRS-
4/Conventional (b), and HIRS-4 (c) Runs 
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Figure 2.16 Mean RMSE for Data Assimilation Runs for Model t=6, 18, 30, and 42 
Hours 

2.3 Discussion 

The most important findings of phase I are that the HIRS-4/conventional 

assimilation run generated the most accurate outbreak-type forecasts, and that the SVM 

for this model run produced its lowered FAR by increasing the difference between 

tornadic and nontornadic outbreak 0-1 km bulk shear and CAPE x 0-1 km bulk shear.  

Bootstrapped composite fields of tornadic and nontornadic outbreaks show that 
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assimilation of HIRS-4 and conventional observations together increased mean values of 

0-1 km bulk shear in high-shear regions of the domain for both types of outbreaks.  

Assimilation of conventional data, alone or in combination with HIRS-4 radiances, 

produced a very strong effect on CAPE x 0-1 km bulk shear, increasing it for tornado 

outbreaks and decreasing it nontornadic outbreaks, an effect that further accentuated the 

differences between outbreak types.  Although conventional data assimilation did not 

increase the Euclidean distance between outbreaks for SRH, it did have another notable 

effect.  In the regions of high 0-3 km and 0-1 km SRH in tornado outbreaks, the 

magnitudes of this covariate increased even higher with data assimilation, whereas in 

other parts of the domain—and in the entire nontornadic outbreak domain—data 

assimilation decreased this covariate.  Research has found that 0-1 km bulk shear is a 

better indicator of tornadic environments than SRH (Rasmussen and Blanchard 1998), 

but the consistent effects of data assimilation on both fields are useful to operational 

forecasting in differentiating between the types of outbreaks. 

These results, in conjunction with results showing that conventional data 

assimilation brought modeled values closer to observations, indicate that data 

assimilation is correcting WRF-ARW model output that, on average, shows shear and 

helicity too low in tornado outbreaks in regions where it should be higher, and too high in 

other modeled situations.  The NARR data set, which was used as the background field 

for the initial 12 km WRF run to which data were assimilated, is known to contain 

imprecision in surface wind stress (Ebisuzaki and Rutledge 2004) and diurnal 

inaccuracies in 2m temperature fields (Mesinger 2006). It is apparent that conventional 

data assimilation corrects some of these background field errors by providing additional 
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wind and temperature observations at the near-surface.  The data assimilation procedure 

identifies the meteorological features present in the background field, the 12 km WRF 

run, and adjusts values based on the variables that it processes from the new data. 

The HIRS-4 radiance set would provide an additional boost to the effect that 

conventional data assimilation provides by further indicating the locations of features 

such as clouds.  Radiance brightness temperatures are especially good at identifying the 

location of deep convection.  In a severe weather outbreak, towering cumuli and 

supercells would indicate the presence of local updrafts, areas of high shear, and spots of 

strong SRH.  Although conventional data include some observations at high altitudes, the 

spatial coverage of satellite data is much larger and denser than the conventional data 

network at such elevations.  In essence, assimilating both types of data provides 

observational checks to the model output at both near-surface and high-altitude regions of 

the atmosphere. 
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CHAPTER III 

PHASE II—OUTBREAK PREDICTION WITH A PHYSICS PARAMETERIZATION 

ENSEMBLE 

3.1 Methodology 

The second phase of the study sought to identify the importance of model physics 

in outbreak type discrimination.  This was accomplished through the variation of model 

microphysics and planetary boundary layer (PBL) physics in the WRF-ARW model 

simulations.  Convective (cumulus) parameterization was not examined experimentally in 

this research.  Although convective physics parameterization can certainly influence the 

modeling of environments associated with severe weather, it is typically employed only 

for coarser model resolutions to parameterize physical processes within convective 

clouds that occur on the mesoscale or microscale level.  The parameterizations in a 

convective physics scheme do not scale well to model grids that are finer than 

approximately 10 km (Kain 2004).  This research analyzes WRF output from 4 km 

outbreak-centered subdomains and a 12 km parent domain.  A convective 

parameterization scheme was employed for the 12 km domain, but since the data 

analyzed experimentally were computed from the 4 km domains (with explicit modeling 

of convection), convective physics was not varied for the 12 km domains. 

Five microphysics schemes were selected for examination:  the Goddard single-

moment, Morrison double-moment, Thompson double-moment, WRF double-moment 6-
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class (WDM-6), and WRF single-moment 6-class (WSM-6) microphysics.  Three PBL 

schemes were chosen:  the Yonsei University (YSU), Mellor-Yamada-Janjić (MYJ), and 

refined Asymmetric Convection Model (ACM2) schemes.  These microphysics and PBL 

physics schemes were chosen for their suitability for mesoscale convective weather 

modeling and frequent occurrence in previous research of the effects of microphysics on 

cloud process modeling.  The PBL scheme selection was also influenced by the differing 

performance results found by other researchers in specific boundary layer case studies.  It 

is important to note that this phase, however, does not seek to compare modeled values to 

an observation data set, but rather, to quantify the effect of parameterization scheme 

choice on a severe weather outbreak mode forecast.  A brief overview of the 

microphysics and PBL physics schemes used in this research follows. 

3.1.1 Microphysics Parameterization Schemes 

The Goddard microphysics scheme (Tao et al. 1989) was designed to handle ice 

(as snow, cloud ice, and graupel) and vapor processes within convective clouds.  It is 

specifically formulated to calculate condensation levels required to remove 

supersaturation, or evaporation levels required to remove areas of subsaturation.  This 

scheme is based on the Goddard Cumulus Ensemble, a cloud-resolving model that has 

been used in many tropical and midlatitude convective case studies (Molthan et al. 2010, 

Lang et al. 2010, Lang et al. 2014, others).  The WRF parameterization scheme is a 

single-moment scheme, meaning that it models only the mixing ratio of each category of 

water particle. 

The Morrison microphysics scheme is a two-moment scheme developed to model 

the mixing ratios and number concentrations of five classes (droplets, ice, snow, rain, and 
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graupel) in convective clouds.  It has been used extensively in severe convective weather 

modeling (e.g., Morrison and Milbrandt 2011, Hastings and Richardson 2016, others).  

The double-moment classes in Morrison microphysics are rain, cloud ice, snow, and 

graupel.  The Thompson microphysics scheme (Thompson et al. 2008) was developed for 

high-resolution modeling of cloud ice, graupel, and snow, and it has also been used 

extensively in severe weather research (Tapiador et al. 2012, Wheatley et al. 2012, Clark 

et al. 2013, others).  This scheme is double-moment, with number concentrations 

calculated for rain and cloud ice. 

The WRF single-moment 6-class (Hong and Lim 2006) and WRF double-moment 

6-class (Lim and Hong 2010) model water vapor, cloud droplets, ice, snow, rain, and 

graupel categories of cloud water.  The WDM-6 scheme implements double-moment 

cloud droplets and rain.  These schemes, or earlier versions of them, have been used in 

severe convective weather modeling as well (e.g., M09, Adams-Selin et al. 2013).  It was 

desired to include the Milbrandt-Yau seven-class scheme (Milbrandt and Yau 2005)— 

which models hail, in addition to the other six classes—for examination as well, but the 

very high computational requirements of this scheme made this infeasible.  This research 

thus included two single-moment and three double-moment microphysics schemes. 

Studies exist comparing single- and double-moment microphysics schemes, 

though rarely in the context of severe thunderstorms or outbreaks.  As one example, 

Molthan and Colle (2012) examined several microphysics schemes—including Morrison, 

Thompson, and WSM-6—in the simulation of a synoptic-scale snow event caused by a 

mid-latitude cyclone.  They found that Thompson and Morrison microphysics 

represented water vapor and saturation best of the schemes, compared to observational 
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data.  These schemes also modeled the amount of snow better than WSM-6, which 

modeled much of the snow as cloud ice instead. 

In another study, Jankov et al. (2010) examined the effects of microphysics 

schemes on the modeling of an atmospheric river over the Pacific.  They considered, 

among others, the WSM-6, Thompson, and Morrison schemes, finding that these three 

schemes modeled moisture in the atmospheric river and cloud infrared brightness 

temperatures comparably to each other.  The Thompson and Morrison physics exhibited 

higher skill at forecasting brightness temperatures than WSM-6, but WSM-6 and 

Morrison modeled banding patterns in the clouds better than other schemes, including 

Thompson, which modeled a “smooth” cloud top.  The Thompson scheme exhibited a 

slight warm bias compared to observational data. In the context of an atmospheric river, 

brightness temperatures can reflect the depth and density of clouds. 

Adams-Selin et al. (2013) examined the simulation of a bow echo with several 

microphysics parameterization schemes, including WSM-6, WDM-6, and Morrison. 

They found that the Morrison scheme did not produce more accumulated precipitation 

than single-moment microphysics schemes, in contrast with previous studies involving 

this scheme.  The reason for this result is that in the bow echo case, Morrison 

microphysics produced smaller graupel pellets, which led to higher rates of melting and 

evaporation.  Adams-Selin et al. also found that WDM-6 microphysics produced an area 

of convection much larger than that produced by WSM-6, but that this did not result in a 

larger area of precipitation, due to increased evaporation from small graupel sizes.  The 

WDM-6 scheme produced much more intense convection than Morrison microphysics, as 

well as a very strong cold pool. 
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The Jankov et al. (2012) and Molthan and Colle (2012) studies suggest that 

WSM-6 and Morrison microphysics may model severe thunderstorms especially 

intensely.  These storms contain large amounts of cloud ice and often have overshooting 

tops indicative of powerful thermodynamically driven updrafts.  Additionally, the 

Adams-Selin et al. (2013) study suggests that WDM-6 could model strong convection 

and cold pools well due to its handling of cloud graupel processes.  However, it should be 

noted that the Adams-Selin et al. study employed MYJ PBL physics in all of its model 

runs, whereas this research examines two additional PBL schemes as well as MYJ. 

3.1.2 PBL Physics Parameterization Schemes 

The MYJ boundary layer scheme (Janjić 1994) is a local PBL scheme used in the 

operational Eta model.  It employs a turbulent kinetic energy model to measure 

turbulence in the boundary layer.  Janjić (1994) developed this scheme to address 

modeling of heavy spurious maritime precipitation in the Eta model that was found to be 

generated from excessive vertical turbulent heat and moisture flux and observed that 

spurious precipitation was reduced relative to other NWP forecasts.  Later work with the 

MYJ scheme involving land events found that the local closure of this scheme resulted in 

its production of a cold, moist bias in summertime thermodynamically driven PBL 

development (Hu et al. 2010), and the underdevelopment of a dry convective boundary 

layer (Gibbs et al. 2011).  The scheme does not perform vertical PBL mixing of nonlocal 

plumes or eddies.  This characteristic is significant for severe convective weather 

modeling because updrafts, downdrafts, inflow jets, and rising air parcels all cross 

vertical layers of the PBL. 
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The revised Asymmetric Convection Model (ACM2) scheme (Pleim 2007) is a 

nonlocal PBL scheme that employs first-order eddy diffusion in unstable PBL 

environments and uses local turbulence closure in stable PBLs.  ACM2 attempts to 

address a known limitation of local-closure PBL schemes such as MYJ, namely that these 

schemes assume that turbulent eddies must occur at a scale smaller than the vertical grid 

spacing.  ACM2 was developed to perform mixing at both the local (one vertical layer) 

and nonlocal (across vertical layers) scale (Pleim 2007).  In the Hu et al. (2010) study, 

ACM2 produced heat and moisture flux values in a humid summertime environment 

similar to those produced by YSU, a result that they attributed to the nonlocal mixing 

capability of this scheme. In the Gibbs et al. (2011) study, ACM2 modeled heat flux 

values of a dry PBL the least accurately of the three PBL schemes tested.  The study also 

found, however, that ACM2 modeled potential temperature in a dry cold front case 

closely to observations. 

The Yonsei University PBL scheme (YSU) is a nonlocal general-purpose PBL 

scheme.  Hong et al. (2006) developed the scheme to resolve problems with vertical 

boundary layer mixing in the Medium-Range Forecast (MRF) PBL scheme (Hong and 

Pan 1996).  The MRF scheme produced excessive mixing in PBL environments with high 

wind shear and too little mixing in primarily thermodynamically driven convective 

environments.  Hong et al. (2006) performed a case study of 10 November 2002, a 

frontally driven tornado outbreak, to test the YSU against the MRF scheme, using the 

WRF model.  They found that YSU produced a more intense frontal boundary and 

stronger convection for this tornado outbreak than MRF, and that the physical cause of 

this difference was higher prefrontal CAPE in the YSU simulation due to a shallower but 
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moister PBL.  Prefrontal convection was also diminished with YSU, which more closely 

matched observations.  As intended, the scheme minimized boundary layer mixing across 

a frontal boundary in high-shear environments associated with katabatic fronts.  As 

described in section 1 of this document, YSU was also found by Hu et al. (2010) to 

increase vertical mixing in a non-frontal summertime PBL environment in Texas.  Gibbs 

et al. (2011) further found that YSU produced the most accurate simulations of PBL heat 

flux in a dry boundary layer in Oklahoma, in both dry cold frontal and dryline conditions. 

3.1.3 WRF Model Configuration 

This phase, in common with all three phases of this study, employed the WRF 

model (version 3.4.1).  The WRF runs for phase II were initialized at 1800 UTC the day 

preceding a given outbreak (to allow for model spin-up) to 1200 UTC the day after the 

outbreak (a 42 hour simulation).  A two-way nested configuration was used, and phase II 

domains were as close as possible to those of phase I in dimensionality and geographical 

location.  For phase II, the outer domain was a 12 km grid identical in spatial extent and 

geographical dimensions to the background fields of phase I (Fig. 2.1).  The inner 

domains were 4 km grids that very closely matched the 4 km outbreak domains generated 

in phase I after data assimilation (Fig. 2.4).  Some of these inner domains were not 

strictly identical in size or geographical location to their phase I counterparts, due to 

WRF model requirements of the positioning of nested domains relative to the parent 

domain. However, these differences were no larger than two grid points (8 km) in any 

direction. 

The vertical dimension encompassed 28 vertical levels with a model top of 100 

hPa.  Model physics that were not varied in the simulations are shown in Table 3.1, while 
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the variants chosen for study are shown in Table 3.2.  In the 12 km parent domains, Kain-

Fritsch cumulus physics were used, but cumulus physics were disabled for the 4 km 

nests.  The Kain-Fritsch cumulus scheme is commonly used in convective event 

modeling (e.g., Wheatley et al. 2012). 

Table 3.1 Phase II WRF Model Physics Schemes Used for All Runs 

WRF physics option Configuration Reference 
Longwave radiation Rapid Radiative Transfer Mlawer et al. 1997 

Model 
Shortwave radiation Dudhia Dudhia 1989 
Surface layer For ACM2 and YSU PBL: Dudhia 1996 

MM5-derived 
For MYJ PBL: Monin- Janjić 2002 
Obukhov/Eta similarity 

Land surface Noah land surface model Tewari et al. 2004 
Urban surface None 
Cumulus physics For 12 km nest: Kain-Fritsch Kain 2004 

For 4 km nest: None 
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Table 3.2 Phase II Cloud Microphysics and PBL Physics Variations 

Physics Option Reference 
Goddard single-moment 
microphysics 
Morrison double-moment 
microphysics 
Thompson double-moment 
microphysics 
WRF Double-Moment 6-class 
microphysics 
WRF Single-Moment 6-class 
microphysics 
Yonsei University PBL physics 
Mellor-Yamada-Janjić PBL 
physics 
Asymmetric Convection Model 
PBL physics 

Tao et al. 1989 

Morrison et al. 2009 

Thompson et al. 2008 

Lim and Hong 2010 

Hong and Lim 2006 

Hong et al. 2006 
Janjić 1994 

Pleim 2007 

3.1.4 SVM Classification of Outbreak Mode 

As in phase I, support vector machines were used to discriminate between 

outbreak modes.  The data were prepared for the SVM in an identical manner to that of 

phase I.  The same seven important severe weather covariates—0-1 km SRH, 0-3 km 

SRH, 0-1 km bulk shear, 0-1 km EHI, CIN, CAPE x 0-1 km bulk shear, and LCL 

height—were calculated on the 4 km domains for each of the outbreaks at outbreak valid 

time (section 1.4.2).  These values were interpolated to 12 km resolution by data thinning, 

to minimize the effects of data noise generated by WRF at isolated locations at high 

horizontal resolutions.  A 32 x 32 grid was extracted from this interpolated data set, and 

an S-mode rotated principal component analysis was conducted on each ensemble 

member (each microphysics and PBL combination, a total of 15) to generate PCA scores.  

These scores were then input to the SVMs. 

69 



 

    

 

  

   

  

  

 

 

  

 

  

 

   

 

 

 

 

 

 

In this phase, identically to phase I, the following kernel functions were 

considered: 

Linear:  yxy)(x, TK

Polynomial: dK y)x(y)(x, T

Radial Basis (Gaussian): )exp( 2yxy)(x,  K

(3.1) 

(3.2) 

(3.3) 

where x and y are vectors in original linear space, γ is a user-defined Gaussian 

spread parameter associated with the polynomial and radial basis kernels, and d is the 

degree of the polynomial (the user dictates this value).  In this study, we considered all 

three kernel functions and multiple degree d values (2, 3, 4, 0.5, and 0.333), yielding a 

total of seven kernel functions considered.  Additionally, cost function values ranging 

from 1 (no penalty to points far from the margin) to 10000 (severe penalty to points far 

from the margin) on a log10 scale, and γ values of 0.01, 0.05, and 0.1 were considered.  

This led to a total of 95 kernel-cost-gamma combinations (the linear kernel is not a 

function of γ, so only five linear kernel experiments were done for the five cost values). 

To identify the best kernel-cost-gamma combination of the 95 tested, a bootstrap 

2-fold cross-validation routine was implemented (Efron and Tibshirani 1993), 

withholding 20 of the 40 events randomly for each bootstrap replicate.  Each kernel-cost-

gamma combination was tested with the same 1000 random samples of training and 

testing sets to ensure pairwise comparisons were possible. 

Determination of forecast skill was made by calculating contingency statistics on 

the forecasts of the SVMs.  Probability of detection (POD), false alarm ratio (FAR), bias, 

and Heidke skill score (HSS) were computed (Wilks 2011).  Bootstrap intervals (1000 
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iterations of the bootstrap procedure) were calculated for the contingency statistics, 

yielding results for the most skilled SVM.  The highest-skilled SVM for each model run 

is shown in Table 3.3. 

Table 3.3 SVM with Highest Median Heidke Skill Score for Parameterization Runs 

WRF Run SVM 
Goddard/ACM2 Linear, cost=100 
Goddard/MYJ Linear, cost=10,000 
Goddard/YSU Linear, cost=1000 
Morrison/ACM2 Radial basis, cost=1000, γ=0.01 
Morrison/MYJ Radial basis, cost=10,000, γ=0.01 
Morrison/YSU Linear, cost=10,000 
Thompson/ACM2 Radial basis, cost=10,000, γ=0.01 
Thompson/MYJ Radial basis, cost=1000, γ=0.05 
Thompson/YSU Radial basis, cost=10,000, γ=0.05 
WDM-6/ACM2 Linear, cost=10,000 
WDM-6/MYJ Radial basis, c=1000, γ=0.01 
WDM-6/YSU Linear, cost=1000 
WSM-6/ACM2 Linear, cost=1000 
WSM-6/MYJ Linear, cost=10,000 
WSM-6/YSU Linear, cost=100 

3.1.5 Euclidean Distance Calculations and Outbreak Composites 

As in phase I, bootstrapped Euclidean distances between tornadic and nontornadic 

outbreaks were calculated for the mean fields of each covariate for each of the 15 

parameterization ensemble members.  Outbreak mean bootstrapped composites for the 

32x32 grid were also generated for the 15 ensemble members for tornadic and 

nontornadic outbreak types, using the same methodology as in phase I. 

Since one of the goals of the research was to quantify certain sources of model 

uncertainty in severe weather outbreak forecasting, it was desirable to determine the 
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effect of PBL physics parameterization and cloud microphysics parameterization 

individually on each covariate.  However, microphysics or PBL physics could produce 

such a strong effect on covariate values that the influence of the other type of model 

physics could be difficult to discern, rendering statistical techniques such as k-means 

cluster analysis (Wilks 2011) unsuitable for determining the effect.  Instead, fields of 

each covariate were averaged across all ensemble members that had been run with a 

given microphysics or PBL physics option.  For example, an average of 0-1 km SRH was 

generated from the Goddard/ACM2, Goddard/MYJ, and Goddard/YSU runs for the 

outbreak domain at valid time for each of the 40 outbreaks, producing a “Goddard 

microphysics” mean of each outbreak.  Outbreak averages were conducted in this manner 

for each of the microphysics options and PBL options for every covariate, for a total of 

40 mean values per covariate per microphysics or PBL physics scheme. 

3.2 Results 

After the SVMs were run for the phase II physics parameterization ensemble, the 

best SVM output from the cross-validation step of the kernel-cost-gamma SVM 

optimization was compared among all fifteen WRF simulations using contingency 

statistics (probability of detection—POD, false alarm ratio—FAR, bias, Heidke skill 

score—HSS; Wilks 2011) to establish effects from physics parameterization.  

Contingency statistics for the SVMs (Fig. 3.1) indicated that the use of the WRF double-

moment 6-class microphysics scheme (WDM-6) and YSU PBL physics produced the 

highest skill of any microphysics-PBL physics combination, generating an HSS of 0.658 

(Fig. 3.1c).  This score was significantly (at the 95% confidence level) greater than the 

HSS of any other physics combination examined.  This run produced the lowest FAR 
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(Fig. 3.1b; tied with Morrison/YSU and WSM-6/ YSU) and highest POD (Fig. 3.1a; tied 

with Goddard/ YSU).  The Goddard/ YSU, Morrison/Yonsei, and WSM-6/ YSU runs 

also produced the highest HSS after the WDM-6/Yonsei run. 

Examination of the contingency scores of the same microphysics or PBL scheme 

across the model runs revealed other interesting patterns.  PBL physics generated greater 

differences in skill than microphysics.  YSU PBL physics had the highest skill of the 

three PBL physics schemes with every microphysics option examined, and its scores 

were highly significant for every microphysics option except Thompson.  MYJ PBL 

physics generally performed poorest of the three, with the exception of the Morrison 

microphysics, for which the ACM2 PBL physics produced the lowest skill at modeling 

outbreaks. 

PBL physics had a strong impact on FAR.  The YSU PBL scheme produced the 

lowest FAR of the three examined PBL physics parameterizations for every microphysics 

option (Fig. 3.1b).  Except for the Morrison/ACM2 run, ACM2 PBL physics produced 

lower FAR than MYJ PBL physics for every microphysics, though the difference was not 

significant for the Goddard runs.  No discernible pattern of FAR was apparent with 

microphysics variation, except that the Goddard runs were more tightly clustered than 

any other set of microphysics runs. 

POD (Fig. 3.1a) scores also exhibited patterns more strongly linked with PBL 

physics than with microphysics.  YSU PBL physics yielded significantly highest POD for 

Goddard, Morrison, and WDM-6.  The bootstrap means were also highest of the three 

PBL schemes for Thompson and WSM-6, though these statistics were not significantly 

higher.  Most runs exhibited a clear over-prediction bias (Fig. 3.1d).  The lowest-skilled 
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Morrison/ACM2 run was close to zero bias at its mean, and zero bias was within the 

confidence intervals of Thompson/MYJ and WSM-6/ YSU. 

The sensitivity of microphysics to PBL physics variation, and PBL physics to 

microphysics variation, was also examined.  The magnitude of microphysics sensitivity 

to PBL varied with each microphysics option.  The Morrison and WDM-6 microphysics 

runs contained a greater range of HSS among their PBL options than did the Goddard, 

Thompson, and WSM-6 microphysics runs.  Morrison microphysics proved to be most 

sensitive to PBL physics variation, with a difference of 0.133 between the means of the 

highest- and lowest-skilled Morrison runs.  WDM-6 microphysics exhibited a range of 

0.117 between the highest- and lowest-skilled runs.  In comparison, Goddard 

microphysics runs had a range of 0.058, Thompson runs had a range of 0.069, and WSM-

6 runs had a range of 0.046.  This sharp difference between the highly sensitive 

microphysics and the other three is attributable to a poorly performing MYJ run for 

WDM-6, a poorly performing ACM2 run for Morrison, and skilled YSU runs for both. 

The magnitude of PBL physics sensitivity to microphysics did not vary nearly as 

much. ACM2 PBL physics proved most sensitive to microphysics variations, with a 

range of 0.087 HSS between its highest-skilled (WDM-6) and lowest-skilled (Morrison) 

runs. MYJ PBL physics was the least sensitive to microphysics variation, showing a 

range of 0.0514 HSS between its highest-skilled (Goddard) and lowest (Thompson) runs 

(Fig. 3.1c).  YSU PBL physics had a range of 0.0539 HSS between its highest-skilled 

(WDM-6) and lowest-skilled (Thompson) runs. 
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Figure 3.1 95% Confidence Intervals for POD (a), FAR (b), Heidke Skill Score (c), 
and Bias (d) of the Best-Performing SVMs for Phase II 

3.2.1 Covariate Mean Analysis 

As described previously, average values of each covariate were generated for each 

outbreak event for all ensemble members that had been run with a given microphysics or 

PBL physics scheme.  The goal of this analysis was to determine which covariates, if any, 

75 



 

 

 

  

 

 

   

 

 

 

 

 

   

exhibited large variations in magnitude among microphysics or PBL physics runs.  These 

mean values were examined in box and whisker plots, one diagram for each model 

physics scheme (five microphysics and three PBL), to compare data ranges and extreme 

values (Fig. 3.2).  Tornadic and nontornadic outbreaks were analyzed separately.  The 

analysis found that, for both tornadic and nontornadic outbreaks, greater variability in the 

mean fields existed among PBL runs for all covariates. 

Figure 3.2 depicts box and whisker plots for 0-1 km bulk shear, 0-1 km SRH, and 

LCL height means for tornadic and nontornadic cases.  As is evident in Fig. 3.2a and 

3.2b, LCL height varied significantly for PBL physics runs and much less so for 

microphysics runs.  Similar patterns appear in tornadic and nontornadic outbreaks for this 

covariate.  ACM2 PBL physics generated higher LCL values than the other two PBL 

physics, and MYJ generated much lower LCL heights, especially in the nontornadic 

outbreaks (Fig. 3.2b).  The outlier values for MYJ were also lower than the outliers for 

other runs.  Variability did exist among microphysics for this covariate, with the 

Thompson physics scheme generating larger LCL height means in the third quartile 

(Q3)—and the fourth quartile (Q4) as well for nontornadic outbreaks—than the other 

microphysics options.  This indicates that this scheme produced greater PBL mixing and 

vertical growth.  More variability existed in LCL height means for the nontornadic 

outbreaks than the tornadic outbreaks for the microphysics runs, with most of this 

variability occurring in the Q3 and Q4. 

WDM-6, the microphysics scheme used in the ensemble member that had the 

most skill at forecasting outbreak mode, had its quartiles distributed fairly symmetrically 

for this covariate for tornado outbreaks.  Notably, its Q1 and Q4 had larger ranges than 
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those of the other microphysics.  For the nontornadic outbreaks, WDM-6 had a smaller 

upper whisker than the other microphysics, indicating that the maximum LCL heights in 

Q4 were lower than those of the other microphysics runs. 

Tornado outbreak 0-1 km SRH and 0-1 km bulk shear means exhibited some 

features in common on the box plots.  A long upper whisker was apparent for both fields 

in all model physics, indicating few—but high—upper-end values in Q4 for these 

covariates.  Thompson microphysics appeared to increase 0-1 SRH values for all 

quartiles, while increasing 0-1 km bulk shear values noticeably more for Q1 and Q2 (data 

points representing domain-averaged less intense events for this covariate) than Q3 or 

Q4. However, PBL physics generated more variability for both covariates for tornado 

outbreaks than microphysics.  Close examination of Fig. 3.2c and Fig. 3.2e reveals that 

the PBL physics variability is entirely due to the stark difference between the plots for 

ACM2 and MYJ; YSU PBL physics generates box plots largely similar to those 

generated by the five microphysics options (with the exception of having higher values in 

Q4 for both covariates).  ACM2 physics generates shear and helicity values that are lower 

than any other physics option in every quartile.  MYJ physics has the highest Q1, Q2, and 

Q3 mean values of these covariates for tornado outbreaks, but as noted, its highest Q4 

values are not as high as the YSU values or the Morrison and Thompson Q4 values. 

Nontornadic outbreak 0-1 km SRH and 0-1 km bulk shear fields exhibited some 

patterns in common with tornado outbreak fields, while other patterns were distinct to 

this category of outbreak.  Once again the MYJ physics modeled shear and helicity 

values higher than the other model physics, and ACM2 physics modeled 0-1 km SRH 

low overall.  Interestingly, however, YSU physics modeled 0-1 km bulk shear Q4 upper 
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values significantly lower than any other model physics, including ACM2.  Among the 

microphysics options, 0-1 km SRH means followed a similar pattern to 0-1 km SRH in 

tornado outbreaks for microphysics.  For both kinds of outbreaks, Thompson physics 

produced a higher Q3 maximum.  Goddard and WSM-6 microphysics produced lower Q3 

maxima than the other microphysics. 

An interesting pattern was apparent with YSU PBL physics in the shear and 

helicity covariate means.  The Q4 maximum for this scheme for tornadic 0-1 km SRH 

and bulk shear is higher than the Q4 for any other physics scheme.  In the nontornadic 

outbreaks, this scheme produced outlier values of both covariates that are higher than the 

outliers for any other physics scheme, but not Q4 values.  For 0-1 km bulk shear, the 

YSU Q4 was, as noted, lower than that of any other physics scheme.  It should be 

recalled that these box plots describe 40 data points apiece, each point representing the 

average of the entire outbreak domain at valid time, averaged again over three or five 

model runs (depending on whether the plot is for a microphysics or PBL physics scheme 

average).  Apparently, YSU modeled a few nontornadic outbreaks with high shear and 

helicity values, but this occurred infrequently enough that these averages appear as 

outliers.  This may have aided the SVM in discrimination. 
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Figure 3.2 Box Plots of LCL Height, 0-1 km SRH, and 0-1 km Bulk Shear Means 
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3.2.2 Tornadic and Nontornadic Covariate Composites 

To determine the specific physical impact of microphysics and PBL physics 

parameterization on each type of outbreak, an average composite of LCL, 0-1 km SRH, 

and 0-1 km bulk shear for each outbreak type was formulated for the WDM-6/ YSU, 

WSM-6/ YSU, Thompson/ACM2, Goddard/ACM2, Morrison/MYJ, and WDM-6/MYJ 

runs. These runs were selected to include the highest-skilled (WDM-6/MYJ) and lowest-

skilled (Morrison/MYJ) variants and a range of all other microphysics and PBL options.  

These covariates were chosen in order to include the one (LCL) whose distance was 

maximized by the most-skilled WDM-6/ YSU run and two covariates that were 

dynamically driven to balance this thermodynamic covariate.  The composites were 

generated across the 32 x 32 (12 km grid) outbreak-centered field that was input to the 

SVM.  The contrasts in these composites help demonstrate the exact impacts of model 

physics parameterization on the simulations. 

3.2.2.1 Tornadic Outbreak Composite 

LCL height in tornado outbreaks exhibited a similar pattern among all 

parameterization runs, although differences did exist.  As was expected, PBL physics 

generated greater differences in the spatial characteristics of covariate fields than did 

microphysics.  As Fig. 3.3 shows, runs that were modeled with MYJ PBL physics (Fig. 

3.3c and 3.3f) produced lower minima for this covariate, and larger areas thereof, than the 

other two PBL physics.  However, MYJ runs also exhibited a more diffuse gradient 

between low and high LCL than runs modeled with YSU (Fig. 3.3a and 3.3d) and ACM2 

(Fig. 3.3b and 3.3e) PBL physics. 
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Since the composites represent the bootstrapped means of the approximate 

outbreak centers at outbreak peak times, this gradient likely represents a temperature or 

moisture boundary.  Two outbreaks featured a dryline passage, and four cases involved 

the passage of quasi-linear mesoscale convective systems (MCS) in the absence of a 

synoptic cold front in the region.  In an MCS, storm outflow creates a cold pool in the 

wake of the storms, producing a mesoscale thermal-moisture boundary between the line 

of storms and the pool.  In the remaining 14 tornado outbreaks, a synoptic cold front was 

present, but for approximately half of these cases, the frontal passage over the center of 

the outbreak domain occurred approximately three to six hours after outbreak peak time.  

A quasi-linear convective system (QLCS) or broken line of thunderstorm cells traversed 

the domain at outbreak valid time.  These observations show that the feature that appears 

in the LCL height composites for tornado outbreaks is likely an averaged mesoscale cold 

front associated with cold pool growth from storm passage.  This indicates that fronts 

were modeled more intensely with YSU and ACM2 PBL physics even at the mesoscale. 

Of these two PBL physics, YSU generated lower LCL height minima than 

ACM2. Lower LCL heights are strongly associated with tornado development in 

conducive environments, since a lower LCL height indicates a less mixed, moister PBL, 

as well as a shorter distance over which vertical rotation between the surface and the 

cloud base must remain intact.  This effect was more pronounced for the single-moment 

microphysics parameterization WSM-6 than for the double-moment WDM-6, with the 

WSM-6 runs having lower LCL heights than the WDM-6 runs in the prefrontal region.  

However, WSM-6 also generated lower LCL heights than WDM-6 west of the boundary 

in the LCL composites, which coincides with the findings of Adams-Selin et al. (2013) in 
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which WDM-6 generated a very strong cold pool in the wake of a bow echo.  Cloud icing 

and graupel processes could modify the PBL in cases where strong prefrontal convection 

developed, but the WDM-6 does not use a second moment for frozen hydrometeors, so 

this factor alone cannot explain the difference between WDM-6 and WSM-6.  Adams-

Selin et al. (2013) also found, however, that WDM-6 modeled smaller graupel pellets 

than WSM-6 in their study, and this resulted in greater evaporative cooling.  The WDM-6 

does model rain and cloud droplets with a second moment, and this may have resulted in 

more evaporative cooling in general in this research due to the tendency of double-

moment schemes to model smaller hydrometeors than single-moment schemes. 

For 0-1 km SRH (Fig. 3.4) and 0-1 km bulk shear (Fig. 3.5), pronounced 

differences are once more apparent among the PBL physics parameterization runs.  MYJ 

PBL physics generated the highest values of 0-1 km SRH (Fig. 3.4c, Fig. 3.4f) and 0-1 

km bulk shear (Fig. 3.5c, Fig. 3.5f).  However, the physics scheme mean analysis (section 

3.2.1) found that MYJ tornadic runs, on average, increased SRH and bulk shear in the 

less strongly sheared outbreak domains, whereas YSU produced (in its casewide 

averages) higher values than MYJ in highly sheared outbreak domains.  This result is not 

readily apparent in the composites in Fig. 3.4 and 3.5, but these composites use gridpoint 

bootstrap averages, whereas the analysis in section 3.2.1 averaged the covariate across 

the entire domain for each case. 

Of the two MYJ runs examined in the composites, MYJ with Morrison 

microphysics displayed higher values of 0-1 km SRH and 0-1 km bulk shear than MYJ 

with WDM-6.  YSU PBL physics generated the second-highest values of 0-1 km SRH 

(Fig. 3.4a, Fig. 3.4d) and 0-1 km bulk shear (Fig. 3.5a, Fig. 3.5d).  Not much difference 

82 



 

 

   

 

 

    

 

was noted between the fields of WDM-6/YSU (Fig. 3.4a, Fig. 3.5a) and WSM-6/YSU 

(Fig. 3.4d, Fig. 3.5d) for these covariates, though WDM-6/ YSU did produce a slightly 

larger area of high values of each covariate than WSM-6/ YSU.  For these two covariates, 

ACM2 PBL physics generated fields with the lowest values (0-1 km SRH—Fig. 3.4b, 

Fig. 3.4e; 0-1 km bulk shear—Fig. 3.5b, Fig. 3.5e). 

Figure 3.3 Phase II Tornadic Composites of LCL Height 
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Figure 3.4 Phase II Tornadic Composites of 0-1 km SRH 
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Figure 3.5 Phase II Tornadic Composites of 0-1 km Bulk Shear 

3.2.2.2 Nontornadic Outbreak Composite 

For LCL height, a PBL physics-based pattern was apparent in the nontornadic 

model runs.  As was the case for the tornado outbreak composites of this covariate, MYJ 

PBL physics produced a larger region of low LCL heights than the other two PBL 

physics (Fig. 3.6).  The overall spatial distribution and visual appearance of the covariate 

means was similar across all the ensemble members.  However, the strong difference in 

the modeling of apparent frontal boundaries that was present in the tornadic LCL 

composites was not present in the nontornadic composites.  Research conducted in phase 

III of this study implies that the likely reason for this was that many nontornadic 
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outbreaks were not associated with a katabatic cold front, deep trough, or mid-latitude 

cyclone, whereas all the tornado outbreaks were.  Furthermore, examination of radar and 

surface observations for the nontornadic cases—as was conducted for the tornadic 

cases—found a difference in the orientation of organized storm systems between the two 

types of outbreaks.  The tornado outbreaks usually had a line of storms oriented 

southwest-northeast and which traveled generally west to east.  The nontornadic 

outbreaks contained storm clusters of varying shapes which more often had a greater 

north to south direction in their movements. 

SRH from 0-1 km (Fig. 3.7) and 0-1 km bulk shear (Fig. 3.8) for the nontornadic 

outbreaks also displayed a strong PBL physics-based distinction.  As was the case with 

the tornado outbreaks, ACM2 PBL physics decreased values of 0-1 km SRH (Fig. 3.7b, 

Fig. 3.7e) and 0-1 km bulk shear (Fig. 3.8b, Fig. 3.8e) relative to the other two PBL 

physics parameterizations.  The role of microphysics in 0-1 km SRH and 0-1 km bulk 

shear nontornadic outbreak variations was very difficult to discern, with no consistent 

patterns appearing between single-moment and double-moment schemes. 
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Figure 3.6 Phase II Nontornadic Composites of LCL Height 
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Figure 3.7 Phase II Nontornadic Composites of 0-1 km SRH 
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Figure 3.8 Phase II Nontornadic Composites of 0-1 km Bulk Shear 

3.2.3 Euclidean Distance Calculations 

As in phase I, it was important to identify the impact of microphysics and PBL 

physics parameterization choices on the average magnitudes of these variables.  

Improved SVM discrimination capability should result when the statistical (Euclidean) 

distance between the predictor covariate fields is maximized, as this emphasizes the 

differences in the two classes.  The bootstrap Euclidean distance between the mean field 

for each outbreak type was formulated for each covariate. 

Table 3.4 shows all covariates and ensemble runs for this phase, with the largest 

distance for each covariate in bold.  Clear patterns emerged from this analysis regarding 
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PBL scheme effects on modeled environment.  The ACM2 PBL physics scheme 

produced the minimum distances of the three PBL schemes for every covariate that 

included shear or helicity:  0-1 km SRH (Table 3.4), 0-3 km SRH (Fig. 3.9a), 0-1 km 

bulk shear (Fig. 3.9b), CAPE * 0-1 km bulk shear (Fig. 3.10a), and 0-1 km EHI (Fig. 

3.10b).  This effect occurred with every microphysics scheme examined, including the 

Thompson physics.  It can be inferred from this analysis that ACM2 does not model 

differences in low-level shear between tornadic and nontornadic environments as strongly 

as the other two PBL schemes studied, at least in conjunction with the WRF 

configuration employed for this study.  The MYJ PBL physics produced consistently 

greater outbreak mode Euclidean distances than the YSU PBL scheme for 0-1 km bulk 

shear and 0-1 km SRH.  This effect was decreased for 0-3 km SRH, 0-1 km EHI, and the 

product of CAPE and 0-1 km bulk shear.  The MYJ scheme produced lesser distances 

between tornadic and nontornadic LCL for every microphysics, though the difference 

between it and YSU was not significant for the WSM-6 microphysics.  The implications 

of the LCL results for SVM classification are discussed later in the document. 

The choice of microphysics had little effect on the distance calculations for 0-1 

km bulk shear, 0-1 km SRH, and 0-3 km SRH.  However, thermodynamic and partially 

thermodynamic covariates did exhibit sensitivity to microphysics.  Among each PBL 

scheme, the Thompson microphysics scheme maximized distances for CAPE * 0-1 km 

bulk shear (Fig. 3.10a), CIN (Fig. 3.11a), and 0-1 km EHI (Fig. 3.10b).  It is also notable 

that for CIN, Thompson microphysics maximized the distances for CIN very clearly.  

Thompson microphysics also produced larger outbreak mode distances for 0-1 km EHI 

than any other microphysics when paired with MYJ and YSU PBL physics.  These 
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results indicate that Thompson microphysics models CAPE-related differences between 

tornadic and nontornadic environments the most distinctly of the microphysics studied. 

Interestingly, the highest-skilled WDM-6/YSU run produced the maximum 

distance among the fifteen total runs for LCL only, although it performed middling to 

well for all the covariates.  Its success at modeling distinctions between outbreak mode 

may be attributed to generally good modeling of all of these parameters rather than 

performing exceptionally well with a select number of them.  Alternatively, the 

classification algorithm for the WDM-6/YSU SVM may have heavily weighted LCL as a 

discriminating factor.  This possibility is explored in the following section. 
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Table 3.4 Mean Bootstrapped Euclidean Distances Between Tornadic and 
Nontornadic Outbreaks for Each Covariate and Parameterization Set 

0-1 km 0-3 km CIN 0-1 km CAPE x LCL 0-1 km 
SRH SRH Bulk 0-1 km EHI 

Shear Bulk 
Shear 

Goddard/ACM2 4644.60 6701.81 1009.50 60.75 86786.2 13400.6 48.00 

Goddard/MYJ 6253.82 8015.74 990.25 75.24 116950.0 12519.5 62.52 

Goddard/YSU 5591.81 7660.86 1084.83 69.11 112756.8 13178.6 63.18 

Morrison/ACM2 4772.42 6854.94 1057.83 59.44 87143.0 13291.3 51.23 

Morrison/MYJ 6035.54 7731.14 1113.72 73.41 119267.5 12788.3 65.20 

Morrison/YSU 5506.08 7460.78 1137.78 70.15 118545.2 13445.3 65.07 

Thompson/ACM2 4822.03 6909.63 1235.73 62.07 88771.3 13387.3 52.96 

Thompson/MYJ 6401.19 7950.04 1359.34 76.00 121096.4 12760.7 71.92 

Thompson/YSU 5660.07 7680.35 1292.67 70.68 122446.7 13249.8 68.82 

WDM-6/ACM2 4576.09 6539.98 1104.75 59.21 84221.4 13970.9 48.09 

WDM-6/MYJ 5902.21 7484.08 1158.60 72.16 116569.4 13203.2 63.46 

WDM-6/YSU 5462.90 7400.42 1157.89 67.95 111690.3 14153.8 61.48 

WSM-6/ACM2 4626.76 6538.27 1125.88 56.86 84576.7 13603.7 49.36 

WSM-6/MYJ 6078.96 7763.67 1076.36 72.76 120675.3 13156.4 65.83 

WSM-6/YSU 5504.99 7443.54 1185.10 68.01 112037.6 13314.7 62.70 
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Figure 3.9 95% Confidence Intervals on Euclidean Distance Calculations Between 
Tornadic and Nontornadic Values of 0-3 km SRH (a) and 0-1 km Bulk 
Shear (b) for Phase II 

Figure 3.10 95% Confidence Intervals on Euclidean Distance Calculations Between 
Tornadic and Nontornadic Values of CAPE x 0-1 km Bulk Shear (a) and 0-
1 km EHI (b) for Phase II 
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Figure 3.11 95% Confidence Intervals on Euclidean Distance Calculations Between 
Tornadic and Nontornadic Values of CIN (a) and LCL Height (b) for Phase 
II 

3.3 Discussion 

The predominant finding of phase II was that PBL physics parameterizations 

greatly influence the modeling of significant severe weather covariates as compared to 

microphysics parameterization.  The YSU PBL scheme, which is commonly used in 

severe convective weather modeling studies, performed especially well in generating 

NWP forecasts with high skill at predicting severe weather outbreak mode.  The revised 

Asymmetric Convection Model PBL scheme performed second-best of the examined 

PBL schemes, and the Mellor-Yamada-Janjić scheme generated NWP forecasts with the 

lowest level of skill at predicting outbreak mode. 

The domain-mean covariate analysis of section 3.2.1 indicates that MYJ physics 

models 0-1 km SRH values higher than YSU physics in most nontornadic cases and the 

less intense tornado outbreaks.  However, examination of individual cases indicates that 
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the overall domain mean of 0-1 km SRH is higher in all the YSU runs than the MYJ runs 

for 7 January 2008, 25 April 2011, 26 April 2011, and 27 April 2011.  In addition, 5 

February 2008, 9 April 2009, 15 April 2011, 16 April 2011, and 24 May 2011 had YSU 

and MYJ domain-mean 0-1 km SRH values that were similar, and in some of these cases 

YSU did produce higher 0-1 km SRH means with certain microphysics parameterization 

schemes.  This selection of cases includes most of the strongest tornado outbreaks 

examined in this research.  As the analysis of section 3.2.1 indicates, the MYJ scheme 

produced higher domain-mean 0-1 km SRH values for nontornadic outbreaks, but the 

YSU scheme produced higher domain-mean 0-1 km SRH in “outlier” cases.  These cases 

were 11 February 2011 and 3 April 2011, a pair of spring-season outbreaks driven by 

powerful mid-latitude cyclones.  These results indicate that MYJ may inflate 0-1 km SRH 

for less intense cases, while YSU increases it for events with more powerful dynamics.  

This result supports previous work (Hong et al. 2006) finding that YSU modeled fronts 

more intensely than a control PBL physics scheme in a simulation of a frontally driven 

tornado outbreak.  A stronger front generally implies a deeper warm sector, a region of a 

low pressure system in which low-level winds have a southerly component but upper-

level winds follow the jet stream with a west-to-east flow.  Increased wind flow and wind 

shear in this sector lead to higher helicity values. 

Similarities exist between the patterns of the outbreak bootstrap composites in this 

study and the findings of previous researchers.  Notably, the MYJ PBL scheme generated 

apparent moist biases in the modeling of LCL height for both tornadic and nontornadic 

outbreaks.  MYJ modeled LCL height in the nontornadic composite the lowest of all the 

PBL schemes.  In the tornadic composite, the prefrontal side of the mean domain was 
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modeled with lower LCL heights with MYJ than with the other two schemes, and the 

frontal boundary itself was more diffuse.  These results support the findings of Hu et al. 

(2010), who also found that this scheme generated moist biases in convective 

environments.  The sharp gradient of the frontal boundary in the YSU tornadic LCL 

composites supports the findings of Hong et al. (2006), who also found that this scheme 

produced intense frontal boundaries in a single tornado outbreak case.  It is noted that the 

Hong et al. case was an autumn tornado outbreak, but that the scheme’s generation of a 

sharply defined frontal boundary has now been shown to appear in many spring tornado 

outbreaks as well.  Considering that the frontal boundary was also sharply defined with 

the ACM2 scheme in the tornadic composites, a scheme that—like YSU—utilizes 

nonlocal closure, it is likely that nonlocal closure in the YSU and ACM2 accounts for the 

well-defined front.  Unlike MYJ, these schemes can model mixing in the vertical 

dimension across PBL layers, rather than limiting mixing to each discrete layer. 

The SRH and bulk shear results are more difficult to explain.  One possible reason 

for those results is that in both tornadic and nontornadic composites, 0-1 km SRH and 0-1 

km bulk shear were highest in the MYJ composites and lowest in the ACM2 composites.  

The MYJ scheme uses only local closure and the YSU scheme is nonlocal, but the ACM2 

PBL scheme is a hybrid, utilizing both local and nonlocal mixing.  It is possible that by 

employing mixing both within PBL layers and across them, the ACM2 scheme mixed 

excessively, minimizing the wind shear effects through friction.  Tentative support for 

this hypothesis exists in the nontornadic LCL composites, which show the highest 

values—and thus the greatest amount of vertical mixing in a convective PBL—in the 

ACM2 runs. The sharp boundary of the tornadic composites makes it difficult to say 
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with certainty that this is also occurring in the tornado outbreaks, though the higher LCL 

heights (relative to both YSU and MYJ composites) in the prefrontal sectors of the 

ACM2 tornadic composites are suggestive.  

The MYJ scheme may have produced higher shear and SRH values than the 

nonlocal YSU scheme because of its known cold bias in convective environments.  A 

shallower PBL will have lower amounts of friction and turbulence of PBL origin, 

permitting dynamically driven winds to exert a stronger influence.  Another possible 

source of higher shear and SRH values in MYJ model runs is the local closure of this 

scheme.  The scheme performs mixing within individual vertical layers and does not mix 

across this dimension.  Explicitly modeling vertical transport across layers may decrease 

horizontal wind magnitudes within some layers.  Further research into this topic should 

be conducted. 

The role of microphysics in LCL height simulation was less apparent than that of 

PBL physics, but a slight effect was observed between the WDM-6 and WSM-6 runs.  

The double-moment scheme produced higher LCL heights than the single-moment 

scheme across tornado outbreak domains, both in front of and behind the mesoscale cold 

front that appeared in most of the tornadic cases.  Behind the boundary, this result can be 

readily explained by previous studies (such as Adams-Selin et al. 2013) that found that 

WDM-6 produced very strong cold pools behind thunderstorms.  In the warm sector 

ahead of the boundary, the slightly higher LCL may be caused by greater evaporative 

cooling and drying due to smaller rain and cloud droplet sizes in WDM-6. 

Examination of observed data for these events indicates that the boundary in the 

tornadic LCL composites was probably the result of the passage of a QLCS or a broken 
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line of discrete thunderstorms.  Most of the cases did feature a synoptic cold front, but in 

about half of the cases with a synoptic front, it passed over the outbreak domain center up 

to 6 hours after the outbreak peak time.  This boundary was not present in the 

nontornadic LCL composites to nearly the same degree, because many of these cases 

were not linearly oriented or did not travel west to east, and it is likely that the SVMs— 

especially the most-skilled WDM-6/YSU, which maximized tornadic-nontornadic 

Euclidean distance for the covariate—used this strong distinction between outbreak types 

heavily in their classification functions.  The fact that the boundary in tornadic 

composites appears to be the result of the passage of the line of storms itself indicates that 

it is not a truly prognostic variable, but instead, that the SVM is identifying an artifact of 

tornadic outbreak occurrence after the outbreak has already happened for part of the 

model domain. However, this research did not examine SVM forecasts with NWP model 

output from before the outbreak valid time, so the possibility that the SVM might identify 

such a pattern as highly significant was “built in” to the experimental design.  Within an 

NWP framework, this possibility should not be a concern for operational forecasters, who 

do not only use model output valid for times before the peak of a severe weather 

outbreak, but also the model prediction of the outbreak peak time.  The strong distinction 

between tornadic and nontornadic LCL height fields may be an artifact of cold pool 

development from the main severe storm line, but if so, the SVM outbreak prediction 

results still indicate that the NWP model is simulating the type of outbreak well in the set 

of experimental cases. 
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CHAPTER IV 

PHASE III—SYNOPTIC COMPOSITES OF DATA ASSIMILATION AND PHYSICS 

PARAMETERIZATION RUNS 

4.1 Methodology 

In this third and final phase of the study, the objective is to determine the effects 

that data assimilation (as conducted in phase I) and microphysics/PBL parameterization 

(as conducted in phase II) have on the modeling of synoptic-scale weather features in 

tornadic and nontornadic outbreaks.  With regard to parameterization, it is hypothesized 

that microphysics parameterization will influence the modeling of upper-level cloud and 

wind features more strongly (as these features are heavily influenced by microphysics 

parameterization selection), whereas PBL physics will heavily influence lower-level 

thermodynamic and wind variables.  With regard to data assimilation, it is hypothesized 

that conventional observations will most strongly influence thermodynamic variables 

given their direct measurements of atmospheric moisture, while satellite radiances will 

influence cloud features and upper-level winds since it is inferred from satellite infrared 

radiance temperatures, making those observations highly sensitive to data quality issues.  

4.1.1 WRF model 

Examining synoptic-scale fields requires a large enough domain to capture the 

extent of these features.  The 4 km outbreak-centered domains developed for phases I and 

II were, for some smaller outbreaks, insufficiently large to effectively show the full 
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extent of synoptic features such as troughs and mid-latitude cyclones.  For this reason, 12 

km input fields were modeled.  For all 40 cases, the WRF model was configured with a 

domain identical to that in Fig. 3. 

The background fields generated by the GSI in phase I could not be used directly 

for synoptic analysis of the data assimilation runs because these fields were not processed 

by WRF at 12 km resolution after the data assimilation procedure, but instead were used 

as boundary conditions for the 4 km outbreak-centric domains.  A new set of 12 km WRF 

model output was generated for analysis.  Instead of NARR observations as initial fields 

for the WRF model, the final output fields from the GSI were used in the WRF model. 

Model physics for this set of runs were identical to those used in the 12 km background 

field stage of phase I and are shown in Table 4.1. 

Table 4.1 Phase III Assimilation Ensemble WRF Physics Parameterizations 

WRF physics option Configuration 
Cloud microphysics Thompson et al. (2008) 
Longwave radiation Rapid Radiative Transfer Model (Mlawer 

et al. 1997) 
Shortwave radiation Dudhia (Dudhia 1989) 
Surface layer MM5-derived (Beljaars 1994) 
Land surface 5-layer thermal diffusion (Dudhia 1996) 
Urban surface None 
Planetary boundary layer Yonsei University (Hong et al. 2006) 
Cumulus physics Kain-Fritsch (Kain 2004) 

The 12 km parent domains generated in phase II were also unsuitable for synoptic 

analysis.  These runs were produced with a two-way nesting configuration, which 

produced feedback from the smaller 4 km domains in the 12 km domains.  No such 

feedback existed in the 12 km data assimilation runs generated for phase III.  Therefore, a 

new set of 12 km parameterization ensemble runs was generated for phase III as well.  
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These runs used the NARR data as initial input.  Model physics used in all cases for this 

set of runs are shown in Table 4.2, with microphysics and PBL physics variations in the 

parameterization ensemble shown in Table 4.3.  There were four data assimilation runs 

and 15 physics parameterization runs, for a total of 19 variations for phase III. 

Table 4.2 Phase III Parameterization Ensemble WRF Model Physics Schemes Used 
for All Runs 

WRF physics option Configuration Reference 
Longwave radiation Rapid Radiative Transfer Mlawer et al. 1997 

Model 
Shortwave radiation Dudhia Dudhia 1989 
Surface layer For ACM2 and YSU PBL: Dudhia 1996 

MM5-derived 
For MYJ PBL: Monin- Janjić 2002 
Obukhov/Eta similarity 

Land surface Noah land surface model Tewari et al. 2004 
Urban surface None 
Cumulus physics For 12 km nest: Kain-Fritsch Kain 2004 

For 4 km nest: None 
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Table 4.3 Phase III Cloud Microphysics and PBL Physics Variations 

Physics Option Reference 
Goddard microphysics Tao et al. 1989 
Morrison double-moment Morrison et al. 2009 
microphysics 
Thompson microphysics Thompson et al. 2008 
WRF Double-Moment 6-class Lim and Hong 2010 
microphysics 
WRF Single-Moment 6-class Hong and Lim 2006 
microphysics 
Yonsei University PBL physics Hong et al. 2006 
Mellor-Yamada-Janjić PBL Janjić 1994 
physics 
Asymmetric Convection Model Pleim 2007 
PBL physics 

4.1.2 Synoptic Composites 

Following the methodology of Mercer et al. (2012), synoptic composites of 

geopotential height, relative humidity, temperature, and u and v wind components were 

generated for all data assimilation and physics parameterization variations modeled in 

phases I and II.  Pressure levels and corresponding approximate altitudes at which they 

were extracted are shown in Figure 4.1.  Since this was a synoptic-scale analysis, and to 

minimize the effect of mesoscale noise in the analysis, these variables were linearly 

interpolated from NWP model output to a preset latitude-longitude grid of 72 km 

resolution. 

A T-mode rotated principal component analysis (Richman 1986) was employed in 

generating analysis matrices. A T-mode RPCA was chosen instead of an S-mode RPCA 

because in an S-mode analysis, the correlations examined are between gridpoints, 

whereas in a T-mode, correlations between entire cases are examined.  The size of the 

correlation matrices in an S-mode RPCA for this data set would have made the analysis 
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computationally infeasible even with a 72 km grid.  For tornadic and nontornadic 

outbreaks (20 cases each), RPCA scores were generated separately for each of the 19 

model variations.  This RPCA entailed a correlation that was computed along the 

dimension of number of outbreaks, producing 20x20 correlation matrices for tornadic and 

nontornadic outbreaks for each run.  The RPCA was conducted on 60 different variable-

height fields for each case, with horizontal dimensions of 34 x 34 data points on the 72 

km grid. 
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Figure 4.1 Pressure Levels and Altitudes of Examined Variables 

4.1.2.1 K-means Cluster Analysis 

Since a variety of atmospheric “setups” and thermodynamic or forcing 

mechanisms can contribute to the generation of severe weather, and such differences 

would be averaged out, it was possible that synoptic composites could be produced that 

did not resemble the actual synoptic pattern of many of the tornadic or nontornadic cases.  
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To prevent this problem from occurring, k-means clustering analyses were conducted on 

the nontornadic and tornadic outbreaks.  This method of clustering data requires a prior 

expectation of the number of clusters to be generated.  Since this number was unknown, a 

variety of clusters and PCA loadings were examined.  The optimal number of loadings 

and clusters was determined by calculating the silhouette coefficient (Rousseeuw 1987).  

This number is calculated by: 

Separation(a) Cohesion(a)Silhouette (a) 


.  

max[ Separation(a),Cohesion(a)]
(4.1) 

Separation in this equation is the distance between the nearest cases in each of the 

clusters.  Cohesion represents the distance of each case within a cluster from the cluster’s 

center point.  Therefore, for the most distinct set of clusters, maximizing separation and 

minimizing cohesion is ideal.  It was found that, for tornadic and nontornadic outbreaks, 

three PC loadings and four clusters optimized the silhouette coefficient, for a total of 

eight clusters (four for each type of outbreak).  This result was found to be optimal for 

every model configuration examined across the data assimilation and the physics 

parameterization ensembles, although the individual membership of each cluster varied 

among some of the model runs.  The tornadic clusters had average silhouette widths of 

0.35 to 0.41, and the nontornadic clusters had average widths of 0.5 to 0.55.  Synoptic 

variables as listed—geopotential height, relative humidity, temperature, and u and v wind 

components—were then extracted and averaged for each cluster to generate synoptic 

fields. 
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Further following the methodology of Mercer et al. (2012), manual examination 

of the resulting synoptic composites was conducted to determine variations between 

tornadic and nontornadic cases and the effect upon the analyzed synoptic fields by 

physics parameterization and assimilation of satellite radiances and conventional 

observations. 

4.2 Results 

Differences existed among the model ensemble in terms of which tornado 

outbreaks were assigned to each cluster.  The nontornadic outbreaks were all assigned to 

the same clusters irrespective of data assimilation or model physics parameterization 

variations. 

Table 4.4 shows cluster assignments for each outbreak (note that the numbers simply 

represent cluster membership, not priority or intensity).  Since all nontornadic outbreaks 

sorted into the same clusters irrespective of data assimilation or model physics, and since 

all data assimilation runs of tornado outbreaks sorted into the same clusters, these events 

are represented by single columns in the table.  Cluster mean fields were generated from 

the individual fields of each cluster’s constituent outbreaks, and standard synoptic 

variables and levels were then visualized for each cluster. 
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4.2.1 Composites of Tornadic Outbreaks 

The four tornado outbreak clusters exhibited several synoptic features in common 

with each other.  The most obvious differences were of magnitude rather than type.  All 

clusters showed a pronounced trough at 500 mb, with areas of high mid-level (700 mb) 

relative humidity in the base of the trough and temperature advection occurring at 850 mb 

due to a thermal gradient and warm sector.  A southwest-to-northeast temperature 

gradient existed for all clusters at 850 mb, with the warmest values apparent in clusters 1 

and 3.  These warm isotherms were 5 K warmer than the warmest of clusters 2 and 4.  

However, in clusters 2 and 4, the minimum isotherms were 10 K cooler than the minima 

of clusters 1 and 3.  Based on manual analysis of the maps and calculation of mean fields 

at 850 mb, thermal advection was weaker in clusters 2 (0.11 K/hr mean) and 3 (0.09 

K/hr) due to the broader pressure gradient and flatter pressure areas south of the trough.  

Strong thermal advection was present in clusters 1 (0.13 K/hr) and 4 (0.18 K/hr). 

Synoptic composites of temperature, humidity, pressure, and wind fields are 

shown for tornado outbreaks in Fig. 4.2 and Fig. 4.3.  These composites represent the 

outbreaks as modeled with Thompson microphysics and YSU PBL physics for phase II.  

This set of microphysics and PBL parameterizations was also used for the phase I data 

assimilation runs, although the phase I runs employed a different land surface physics. 

Cluster 1 depicted a trough of 5500 m at 500 mb and a tight pressure gradient to 

the southeast of the trough.  A comma cloud shape was apparent in relative humidity 

fields at 700 mb (Fig. 4.2a).  A jet streak was present at 300 mb, with a very tight wind 

gradient on the northwest side of the jet (Fig. 4.3a).  Moderate wind shear was present at 

the mid-to-lower levels of the atmosphere, with winds exhibiting a strong westward 
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component at 500 mb and a southerly component at 925 mb.  Wind speeds were 

generally 5 to 15 knots faster at 500 mb than at 925 mb ahead of the jet stream, indicating 

that this was primarily a directional shearing pattern.  Beneath the jet stream itself, the 

difference was up to 60 knots. 

Cluster 2 showed a strong negatively tilted trough as well (a height field of 5550 

m), though isohypses south of the trough were broader and more attenuated.  This cluster 

also exhibited a comma cloud shape at 700 mb in relative humidity values (Fig. 4.2b).  

Winds in this cluster were very strong, with a large region of 80 knot winds at 300 mb.  

High directional and speed shear existed at lower levels, with winds from the west or 

northwest at 500 mb and winds from the south or southwest at 925 mb (Fig. 4.3b).  The 

speed difference between these two altitudes ranged from 5 to 25 knots in front of the jet. 

Cluster 3 was similar in appearance to cluster 2 at 500 mb, but it was less intense, 

with the trough having a height of 5650 m.  The comma shape present in the 700 mb 

relative humidity fields for clusters 1 and 2 was less pronounced in this cluster (Fig. 

4.2c).  Wind fields for this cluster illustrated a right rear quadrant jet stream flow pattern, 

with the highest magnitude winds at 300 mb in the northeast corner of the composite and 

a southwest-west directional shear pattern apparent from 925 mb to 500 fields (Fig. 4.3c).  

This composite was the most weakly forced of the tornado outbreak composites. 

Cluster 4 depicted a deep, spatially broad trough with a height of 5450 m at the 

center and a tight height gradient.  At 700 mb, an area of high relative humidity existed in 

the low, but this cluster lacked the north-south area of high humidity at this level that was 

present, to varying degrees, in the other three clusters (Fig. 4.2d).  Wind fields at 300 mb 
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were characterized by a southwest-northeast jet with peak wind speeds up to 100 knots 

and high speed shear from 925 to 500 mb (Fig. 4.3d). 

Overall, all four tornado outbreak clusters exhibited important synoptic 

similarities.  These clusters all depicted a trough, a typical synoptic-scale feature 

associated with spring-season tornado outbreaks.  Cluster 4 featured the most intense 

system in terms of height, followed by cluster 1 and cluster 2.  Cluster 3 depicted the 

system with the weakest dynamic forcing.  However, clusters 1 and 4 held areas of 

apparent stronger thermal advection than clusters 2 and 3, based on visual analysis of 

temperature and height fields.  These two clusters’ similarity in terms of strong thermal 

advection accounts for the sorting of the record outbreak 27 April 2011 into cluster 1 or 

cluster 4, depending on the model configuration. 
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Figure 4.2 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Tornadic Clusters, Modeled with Thompson Microphysics and YSU PBL 

Geographic underlays are provided for scale only and do not reflect the geographical 
location of synoptic features in all the constituent outbreaks. 
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Figure 4.3 Composites of 300 mb Wind Magnitude, 500 mb Magnitude-Direction, and 
925 mb Magnitude-Direction in Tornadic Clusters, Modeled with 
Thompson Microphysics and YSU PBL 

500 mb wind barbs are blue; 925 mb wind barbs are red.  Wind speeds are in knots.  
Geographic underlays are provided for scale only and do not reflect the geographical 
location of synoptic features in all the constituent outbreaks. 
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4.2.1.1 Assimilation Ensemble Modeling Variations 

As Table 4.4 indicates, several tornado outbreaks were assigned to different 

clusters for the four “phase I” data assimilation runs (three runs with data assimilated and 

one run with no data assimilation but the land surface physics different from the “phase 

II” runs).  The outbreaks of 7 January 2008, 5 February 2008, and 4 April 2011 were 

assigned to cluster 2 in these four runs and to cluster 4 in all the physics parameterization 

runs. 10 May 2010 was assigned to cluster 1 in the four “phase I” runs and cluster 3 in 

the “phase II” runs.  27 April 2011 was assigned to cluster 4 in these runs, but to cluster 1 

in all the physics parameterization runs except one.  22 May 2011 was assigned to cluster 

3 in these four runs, but its assignment varied among the physics parameterization runs. 

The physics parameterization runs also exhibited differences among themselves in 

cluster assignment for 15 April 2011 (assigned to cluster 1 in WDM-6/ACM2 and WSM-

6/ACM2, and to cluster 4 in all other runs), 27 April 2011 (assigned to cluster 4 in 

Goddard/ACM2 and cluster 1 in all other runs), and 22 May 2011 (assigned to cluster 1 

or 3 approximately equally). 

It is evident from the “disagreement” among the model runs that 22 May 2011 

was not a clear-cut fit for either cluster 1 or 3, and as described previously, these two 

clusters exhibited similar forcing patterns, though cluster 3 showed weaker dynamics.  

Although this event is best remembered for the Joplin, MO EF-5 tornado, a swath of 

scattered tornadoes developed from extreme northeastern Oklahoma along a diagonal into 

northern Wisconsin.  That the SD12 highest-ranked tornado outbreak, 27 April 2011, was 

assigned to different clusters was unexpected.  An examination of the observed synoptic 

fields for this event reveals that a large, deep trough 5460 m in height was centered over 
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the upper Midwest, which more closely resembles the 500 mb fields of cluster 1, but the 

wind pattern at 300, 500, and 925 mb more closely resembled the intense jet stream 

pattern of cluster 4.  During the height of the outbreak, the jet stream had 100 knot 

streaks at 300 mb.  Cluster 4 depicted up to 100 knot winds in the jet stream. 

Differences in synoptic modeling between the data assimilation runs and the 

physics parameterization runs may be attributable to the use of different land surface 

physics (5-layer thermal diffusion in the assimilation runs and Noah land surface in the 

parameterization runs), or to different cluster assignments in the assimilation runs of 

several tornado outbreaks.  Therefore, variations among the synoptic fields are 

considered within each category of model runs separately. 

Within the assimilation runs and no-assimilation control, the troughs in all 

clusters were not as deep in the two runs containing conventional observations as they 

were in the control run and the HIRS-4 run.  Slight differences in orientation also 

occurred, with the troughs slightly more negatively tilted in the control and HIRS-4 runs.  

The exception was cluster 2 in the HIRS-4/conventional run, in which the trough was 

slightly deeper than in any other assimilation run.  Differences in the 700 mb moisture 

field were very small, but a slight pattern was observed in clusters 2 and 3 with drier 

moisture fields in a small area of the southwestern part of the domain in the conventional 

and HIRS-4/conventional runs.  This indicates weaker dynamically driven moisture flow 

toward the trough.  The 850 mb temperature field in cluster 2 extended warm isotherms 

farther north in the conventional and HIRS-4/conventional runs, but this pattern was not 

observed for the other clusters.  Overall the addition of conventional observations slightly 

weakened the magnitude of the troughs and associated temperature and moisture 
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advection, indicating that—since the data assimilation procedure was found in phase I to 

be functioning correctly—the WRF model configuration used in this phase, or the NARR 

data, natively modeled the troughs too deep.  A possible cause is the Thompson 

microphysics scheme used in the data assimilation ensemble, which was found in phase II 

to increase values of certain thermodynamic fields compared to other microphysics 

schemes. 

Far clearer differences existed among the wind fields for the assimilation runs.  

The conventional and HIRS-4/conventional runs demonstrated stronger 300 mb winds 

and larger areas of high 300 mb winds in all four clusters than did the runs not containing 

conventional observations.  HIRS-4 radiances alone also generated a larger area of high 

300 mb winds in clusters 1 and 2 than were apparent in the control run.  The HIRS-4 run 

also produced higher winds at 500 mb in cluster 2 than any other assimilation run or the 

control.  The conventional run exhibited greater directional shear from 925-500 mb in 

cluster 3 than any other assimilation run. 

The wind results of this phase mirror the results of phase I, in which 12 km 

tornadic outbreak composites with conventional data assimilated (both the conventional-

only and the HIRS-4/conventional runs) had notably higher values of 0-1 km bulk shear, 

0-1 km EHI, and CAPE x 0-1 km bulk shear than the control and the HIRS-4 composites.  

The phase III results indicate that assimilation of conventional observations increases 

wind magnitudes above the near-surface layer of the atmosphere and at a synoptic scale.  

It is also important to recall that the observations test of phase I, which found that 

conventional and HIRS-4/conventional runs exhibited lower RMSE, was performed on 

standard atmospheric variables (geopotential height at 500 mb; u-winds at 925, 850, 700, 
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500, 400, 300, 250, 200, 150, and 100 mb; v-wind at the same pressure levels; specific 

humidity at 700 and 500 mb; and temperature at 925, 850, 700, and 500 mb).  These 

variables include fields examined in the synoptic analysis of phase III, indicating that 

conventional data assimilation improves the accuracy of NWP output of these cases in 

addition to increasing the values of these variables. 

4.2.1.2 Parameterization Ensemble Modeling Variations 

The physics parameterization runs also generated slight differences in the 

modeling of tornado outbreak synoptic features, though these features were not apparent 

for all clusters and all microphysics options.  Morrison and Thompson microphysics 

modeled the trough in cluster 1 at a lower height than Goddard microphysics, especially 

in conjunction with ACM2 PBL physics (Fig. 4.4, Fig. 4.5).  WDM-6 (Fig. 4.6) and 

WSM-6 microphysics modeled this feature at a lower height still.  However, the trough 

extended slightly farther south with Goddard microphysics.  The 290 K isotherm in the 

850 mb temperature field of cluster 3 extended farther to the north with the Morrison and 

Thompson microphysics than the other microphysics, especially in conjunction with MYJ 

PBL physics (Fig. 4.7). 

Examination of the wind fields across the physics parameterization ensemble 

reveals that, with ACM2 PBL physics, the Goddard microphysics parameterization 

models the jet streak in cluster 1 over a smaller region than any other microphysics (Fig. 

4.8).  This result is expected given the less intense trough modeled by this set of 

parameterizations.  The temperature difference in cluster 3 did not translate into any 

visible differences in wind at 300 mb among the microphysics runs with MYJ PBL 

physics, but the 925-500 mb crossover shear for Morrison and especially Thompson 
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microphysics is slightly greater than that of other microphysics-MYJ runs over the region 

where the 290 K isotherm extends in these runs.  These schemes model rain and cloud ice 

with two moments, unlike the other microphysics schemes in this research (the WDM-6 

models rain and cloud water droplets with two moments).  The region of the 290 K 

isotherm in which the highest shear occurs is very slightly to the southeast of the highest 

300 mb winds, which also coincides with an area of deep 700 mb moisture.  The double-

moment cloud ice resolution of Morrison and Thompson physics likely produced, in this 

case, a more intense area of strong convection.  Phase II also found that Thompson 

microphysics increased 0-1 km bulk shear values more in the less intense tornado 

outbreaks.  Cluster 3 was the most weakly forced of the tornado outbreak clusters and, in 

the Thompson/MYJ run, contained all but one of the tornado outbreaks with 0-1 km bulk 

shear domain averages below the 50th percentile rank for the tornado outbreak data set.  

The evaporative effect that has resulted in weaker convection in past research with 

schemes that model double-moment cloud ice may be less pronounced in severe 

convective cases that involve weaker winds.  Nonetheless, the shear magnitude difference 

was still small, approximately 5-10 knots. 

Composites of selected physics parameterization fields are shown in figures 4.4, 

4.5, 4.6, 4.7, and 4.8.  In all composites, geographical maps are provided for scale only 

and do not reflect the geographical location of synoptic features in all the constituent 

outbreaks. 
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Figure 4.4 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Tornadic Clusters, Modeled with Morrison Microphysics and ACM2 PBL 
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Figure 4.5 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Tornadic Clusters, Modeled with Goddard Microphysics and ACM2 PBL 
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Figure 4.6 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Tornadic Clusters, Modeled with WDM-6 Microphysics and ACM2 PBL 
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Figure 4.7 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Tornadic Clusters, Modeled with Morrison Microphysics and MYJ PBL 
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Figure 4.8 Composites of 300 mb Wind Magnitude, 500 mb Magnitude-Direction, and 
925 mb Magnitude-Direction in Nontornadic Clusters, Modeled with 
Goddard Microphysics and ACM2 PBL 
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4.2.2 Composites of Nontornadic Outbreaks 

In contrast with the tornadic outbreaks, the nontornadic outbreaks sorted into four 

very different clusters.  Cluster 1 depicted a broad trough and tight geopotential 

height/temperature gradients across the north side of the domain.  Cluster 2 was the most 

similar to the tornado outbreak clusters, showing a trough 5400 m in height at 500 mb 

and a very tight pressure gradient.  Cluster 3 was quite distinct, showing a ridge of 5900 

m and a temperature gradient on the north side of the ridge.  Cluster 4 was characterized 

by a trough to the northeast and a northwesterly flow pattern to the west of the trough. 

In cluster 1, isotherms at 850 mb were mostly parallel with isohypses at 500 mb, 

with the exception of a large region of high temperatures with a north-south bend south 

of the trough.  A region of high relative humidity at 700 mb with a southwest-northeast 

orientation was also aligned with the height and temperature gradient (Fig. 4.9a).  Wind 

patterns for this cluster (Fig. 4.10a) illustrated a strong jet streak in the northeast region 

of the cluster.  A southwesterly flow pattern was evident in the southern region, 

indicating a right rear quadrant jet streak pattern. 

Cluster 2, as mentioned, showed a classic intense mid-latitude cyclone pattern, 

with a very pronounced comma cloud shape of mid-level moisture and a deep warm 

sector (Fig. 4.9b).  The wind fields for this cluster exhibited high magnitudes and a strong 

directional shearing pattern (Fig. 4.10b).  300 mb winds were very strong and a deep dip 

in the jet was apparent.  The mid- and lower-level wind fields in this cluster were 

suggestive of a left front jet streak entry pattern.  Altogether this cluster depicted a very 

strongly forced synoptic pattern. 
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Clusters 3 and 4 depicted environments not characterized by a classic trough, but 

examination of observational data for individual cases within clusters 3 and 4 indicated 

that the modeled flow patterns were representative of the constituent outbreaks.  The 

environment of cluster 3 was characterized by southwesterly flow, veering to westerly, 

across the northern extent of a ridge and through a generally east-west thermal boundary 

(Fig. 4.9c, Fig. 4.10c).  This environment is associated with derechos and quasi-linear 

convective systems (QLCS).  Indeed, all cases comprising cluster 3 were summertime 

QLCS and derecho events.  These events occurred in the months of June, July, and 

August.  The springtime nontornadic events—11 February 2009, 6 April 2010, 23 March 

2011, 3 April 2011, 11 April 2011, and 20 April 2011—sorted into clusters 1 and 2, the 

clusters that most closely resembled mid-latitude storm setups in the spring months.  

These findings indicate that a seasonally based sorting did occur to an extent.  As the 

cluster analysis shows, nontornadic severe weather outbreaks are commonly produced by 

a variety of very different atmospheric setups, which occur at different times of the year, 

whereas most non-tropical tornado outbreaks are produced by a similar type of weather 

feature that is unusual in summer months. 

Cluster 4 was composed of only 3 events, but these events all exhibited a trough 

and northwesterly flow pattern (Fig. 4.10d) suggestive of an upper-level low across a 

northwest-southeast 850 mb temperature gradient that defined the cluster (Fig. 4.9d).  

The upper-level flow pattern for this cluster was weak, though strong directional shear 

existed from 500 to 925 mb due to consistent—but weak—south-southwesterly flow 

toward the trough at this level. 
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The outbreaks that were primarily hail—15 May 2009, 3 June 2009, 6 April 2010, 

23 March 2011, and 3 April 2011—sorted into clusters 1 and 2, the trough and mid-

latitude cyclone clusters.  The outbreaks that were mixed-mode—15 June 2008, 24 July 

2008, and 9 August 2011—sorted into clusters 3 and 4.  No clear pattern existed in terms 

of the clustering of nontornadic outbreaks that were primarily wind; these outbreaks 

appeared in all four clusters and during both spring and summer.  Although hail-dominant 

and mixed-mode outbreaks occurred in both the spring and summer, a seasonal bias does 

appear in the type of synoptic weather patterns that produced these outbreaks.  The hail-

dominant events—with the exception of 3 June 2009—were springtime outbreaks, 

whereas the mixed-mode outbreaks occurred in the summer.  This result is generally 

reflective of hail and severe wind climatology.  Doswell et al. (2005), for instance, found 

that hail events in the United States have notably higher probabilities of occurrence 

during the April-June period than severe wind events, which have peak occurrences from 

June-August. 
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Figure 4.9 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Nontornadic Clusters, Modeled with Thompson Microphysics and YSU 
PBL Physics 

Maps are provided for scale only and do not reflect the geographical location of synoptic 
features in all the constituent outbreaks. 
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Figure 4.10 Composites of 300 mb Wind Magnitude, 500 mb Magnitude-Direction, and 
925 mb Magnitude-Direction in Nontornadic Clusters, Modeled with 
Thompson Microphysics and YSU PBL 

500 mb wind barbs are blue; 925 mb wind barbs are red.  Wind speeds are in knots.  
Maps are provided for scale only and do not reflect the geographical location of synoptic 
features in all the constituent outbreaks. 
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4.2.2.1 Assimilation Ensemble Modeling Variations 

Each nontornadic outbreak was assigned to the same cluster irrespective of model 

configuration.  This prevented the large variations among some of the clusters that were 

apparent in the tornado outbreaks.  It is suspected that the reason that the nontornadic 

outbreaks were always assigned to the same clusters was that the clusters themselves 

were markedly different in the types and locations of synoptic features present in each 

one, whereas the tornado outbreak clusters all indicated a typical spring-season trough of 

varying amplitude.  Nonetheless, differences in model configuration did influence the 

modeling of these features for the nontornadic outbreaks as well. 

Data assimilation generated variations among thermodynamic and wind field 

composites for all four nontornadic outbreak clusters, but the nature of the variation was 

different for certain clusters.  Clusters 1 and 2 exhibited decreased strength of the trough 

in the conventional and HIRS-4/conventional runs as compared to the HIRS-4 and 

control runs.  This decrease was apparent in the 500 mb height fields and the 850 mb 

temperature fields.  Cluster 4, however, demonstrated a strengthened trough in the 

conventional assimilation runs as compared to the runs without this data assimilation.  In 

cluster 3, which was characterized by the north side of a strong ridge, the northeastward 

extent of this ridge was lowered in the conventional and HIRS-4/conventional runs and 

the top of the ridge was slightly to the west.  The decrease in trough strength for 

nontornadic clusters 1 and 2 mirrors the tornado outbreak composites for tornadic clusters 

1, 3, and 4, in which the same effect occurred with conventional data assimilation.  The 

Thompson microphysics scheme is suspected to be the cause of this in the tornado 

outbreaks, due to the increase in CAPE that it generated in phase II.  As previously noted 
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in phase II, the Thompson scheme’s warming effect was even more pronounced for the 

nontornadic outbreaks. 

Wind fields showed expected patterns among the assimilation composites, given 

the thermodynamic fields.  In clusters 1 and 2, the amplitude of the jet stream was weaker 

in the conventional and HIRS-4/conventional runs than in the HIRS-4 and control runs.  

In cluster 3, the northward extent of a jet streak was greater in the HIRS-4 and control 

runs. In cluster 4, weak upper-level winds characterized the composite field for all runs, 

but the amplitude of the wave in the upper-level jet is greater in the HIRS-4/conventional 

and conventional runs.  Lower-level winds were less strongly influenced than upper-level 

winds in all clusters, but the conventional and HIRS-4/conventional runs appeared to 

exhibit small increases in 500 mb and 925 mb wind magnitudes, especially in the 

comparatively weakly forced clusters 3 and 4.  Cluster 1 also exhibited a slight increase 

in wind magnitudes at these levels.  Interestingly, the most strongly forced nontornadic 

composite, cluster 2, did not exhibit a readily discernible difference in lower-level wind 

magnitude among the assimilation runs. 

The nontornadic composites reinforced the results of phase I for combination 

thermodynamic-dynamic covariates, which were that the conventional and HIRS-

4/conventional model runs generated lower values of 0-1 km EHI and CAPE x 0-1 km 

bulk shear for nontornadic outbreaks than did the control and HIRS-4 runs. In addition, 

the slightly increased values of 0-1 km bulk shear apparent in the phase I nontornadic 

composites for conventional and HIRS-4/conventional runs may be due to the slight 

increase of lower-level shear found in phase III in the weakly forced nontornadic events, 

even though this increase was not apparent in the strongly forced cluster 2.  However, the 
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strength of the trough in cluster 2 at 500 mb was decreased in the conventional and 

conventional/HIRS-4 runs.  Again in reference to the observations test conducted in 

phase I, which found that conventional data assimilation brought atmospheric parameters 

closer to observed values, these results indicate that assimilation of these data aids the 

WRF model in simulating tornadic and nontornadic environments distinctly. 

4.2.2.2 Parameterization Ensemble Modeling Variations 

PBL physics parameterization produced significant differences for some 

nontornadic clusters and variables.  In clusters 3 and 4, MYJ PBL physics (Fig. 4.11) 

produced a much smaller area of 295 K temperatures at 850 mb than the other two PBL 

physics.  This effect was observed very strongly for all microphysics options for these 

clusters.  The effect was also apparent in clusters 1 and 2, though it was not observed as 

strongly.  These clusters were characterized by a broad trough and a mid-latitude cyclone 

pattern respectively, whereas clusters 3 and 4 were characterized by westerly flow over 

the top of a ridge and northwesterly flow around the western edge of an upper-level low.  

In cluster 2, the deepest region of the trough extended slightly farther west with MYJ 

PBL physics than ACM2 or YSU PBL physics.  These results support the previously 

mentioned cold bias of the MYJ scheme (relative to other PBL schemes) in convective 

environments.  The results of phase II implied such a bias for this scheme at the 

mesoscale and the lowest layers of the atmosphere, and the results for this phase confirm 

it on the synoptic scale. 

In clusters 3 and 4, YSU University PBL physics (Fig. 4.9) produced a slightly 

larger area of 295 K temperatures than ACM2 PBL physics (Fig. 4.12).  In cluster 2, 

YSU physics produced a larger area of 280 K and 275 K temperatures than ACM2 
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physics, but little difference was apparent between these two PBL schemes in cluster 1.  

700 mb moisture fields in these clusters exhibit noticeable differences among the PBL 

physics schemes.  In clusters 2, 3, and 4 especially, the RH fields are significantly 

moister in the ACM2 runs, while the MYJ runs are the driest. 

In phase II of the research, the YSU PBL physics model runs generated values of 

CAPE x 0-1 km bulk shear that were higher than ACM2 physics runs and lower than the 

MYJ runs for nontornadic outbreaks.  LCL heights among the YSU nontornadic runs 

were higher than those of the MYJ runs and lower than those of the ACM2 runs.  The 

phase III results indicate that moisture levels, rather than temperatures, are likely the 

primary physical cause of the phase II thermodynamic covariate differences among the 

PBL runs.  Dry air at 700 mb is usually associated with higher values of CAPE in 

convective environments. 

The wind fields depict expected patterns among the PBL physics, given the 

patterns observed in pressure and thermodynamic fields.  In clusters 1 and 3, the jet 

streak is smaller in size with MYJ physics (Fig. 4.14) than with the other two PBL 

physics.  This feature could account for the more northerly extent of warm 850 mb 

temperature fields with YSU and ACM2 PBL physics.  In cluster 3, the 925 mb winds 

immediately due south of the jet streak on the north side of the ridge were west-

northwesterly with ACM2 and YSU PBL physics, whereas these winds were west-

southwesterly with MYJ PBL physics. 

Microphysics parameterization did not consistently influence the modeling of 

most features, comparably to the tornado outbreak clusters.  However, in cluster 4, the 

265 K isotherm at 850 mb extended farther northeast with Morrison and Thompson (Fig. 
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4.9, Fig. 4.11) microphysics than Goddard (Fig. 4.13), WDM-6, or WSM-6.  This pattern 

was observed with all PBL physics parameterizations. 

Composites of selected physics parameterization fields are shown in figures 4.11, 

4.12, 4.13, and 4.14.  In all composites, geographical maps are provided for scale only 

and do not reflect the geographical location of synoptic features in all the constituent 

outbreaks.  In the thermodynamic maps, 700 mb RH is shown in green and 850 mb 

temperature is shown in colored isotherms.  In the wind map, 500 mb wind barbs are 

blue; 925 mb wind barbs are red.  Wind speeds are in knots. 
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Figure 4.11 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Nontornadic Clusters, Modeled with Thompson Microphysics and MYJ 
PBL 
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Figure 4.12 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Nontornadic Clusters, Modeled with Thompson Microphysics and ACM2 
PBL 
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Figure 4.13 Composites of 500 mb Height, 700 mb RH, and 850 mb Temperature in 
Nontornadic Clusters, Modeled with Goddard Microphysics and ACM2 
PBL 
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Figure 4.14 Composites of 300 mb Wind Magnitude, 500 mb Magnitude-Direction, and 
925 mb Magnitude-Direction in Nontornadic Clusters, Modeled with 
WSM-6 Microphysics and MYJ PBL 
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4.3 Discussion 

Data assimilation, especially of conventional observations, produced a consistent 

effect in tornadic and nontornadic outbreak environments that featured strong troughs:  

slightly weakening these troughs and decreasing the northern extent of warm areas at 850 

mb. In the nontornadic cluster that featured a weak trough and northwesterly flow, this 

trough was strengthened by data assimilation.  In the nontornadic cluster that featured a 

ridge, this meteorological feature was very slightly edged west by data assimilation.  The 

effect of data assimilation on 700 mb moisture fields was largely to move the areas of 

high moisture slightly east, rather than any observable increase or decrease. 

Despite weakening the strong ridges and the northern extent of the warm sectors, 

data assimilation increased the magnitudes of upper-level winds and lower-level wind 

shear in tornado outbreaks.  In severe weather outbreaks, high-shear environments and 

intense jet streaks do not always correspond with extremely warm temperatures in the 

warm sector, especially in late winter and early spring.  High shear can produce tornadic 

environments even when instability is comparatively low.  Notably, this effect did not 

occur in the two “moderate-strong trough” clusters of nontornadic outbreaks.  Although 

instability was decreased in these clusters with data assimilation, wind values were also 

decreased.  These results suggest that the WRF model, in this configuration, simulated 

environments that were too unstable in trough environments, while at the same time not 

translating the strength of the trough to high enough wind shear values in tornado 

outbreaks.  Further data assimilation research should be done to determine if this is a 

problem with the physics suite used in this phase (particularly the Thompson 

microphysics), the NARR data, or if the WRF model itself exhibits this behavior.  Data 
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assimilation corrected the model background fields to more accurately represent the high-

shear environments in tornado outbreaks. 

Effects of physics parameterization on the synoptic clusters were less obvious 

than effects of data assimilation, especially consistent effects on the wind fields of the 

tornado outbreaks.  The WSM-6 and WDM-6 microphysics resulted in a deeper trough in 

one of the tornadic clusters, but not the other clusters.  Although this may seem to suggest 

that the issue of low wind magnitudes in tornado outbreaks is caused by the WRF or the 

NARR data, a direct comparison between the physics ensemble and the assimilation 

ensemble is not possible due to the use of different land surface physics. 

Microphysics did not consistently influence the modeling of the nontornadic 

clusters either.  However, PBL physics did affect these clusters.  The MYJ PBL physics 

generated a cold bias in all nontornadic clusters at 850 mb, confirming similar results in 

phase II of the work as well as previous research showing such a bias with this scheme.  

YSU physics produced warmer temperatures than the other PBL physics in three of the 

four nontornadic clusters, as well as drier 700 mb moisture fields.  This result is 

consistent with the vertical mixing mechanism of this scheme.  The 700 mb layer of the 

atmosphere is usually above the PBL, especially in the eastern United States, where most 

of these outbreaks occurred.  A PBL physics scheme such as ACM2, which uses both 

local and nonlocal mixing in the vertical, was shown in phase II to produce high LCL 

heights relative to the other model runs, likely due to excessive vertical mixing.  This 

would result in the boundary layer itself being drier than with other PBL schemes, but its 

vertical extent would be higher and the vertical gradient of moist to dry air—and 

therefore convective instability—would be weaker with this very intense vertical mixing. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The purpose of this research was to determine the impact of data assimilation, 

microphysics, and PBL physics on the modeling of important features in tornadic and 

nontornadic severe weather outbreaks.  The research had three phases: 

1. A phase I to determine the effect of conventional observation and HIRS-4 

satellite radiance assimilation on especially significant outbreak-

discriminating atmospheric covariates and a support vector machine 

(SVM) outbreak type forecast; 

2. A phase II to determine the effect of cloud microphysics and planetary 

boundary layer (PBL) physics parameterization on these same covariates 

and SVM forecasts; 

3. A phase III to examine the effects of assimilation and physics 

parameterization on the modeling of synoptic weather features. 

In phase I, conventional meteorological observations and HIRS-4 satellite 

radiance observations were assimilated by the Gridpoint Statistical Interpolation (GSI) 

software to a WRF domain for each of a set of 20 tornadic and 20 nontornadic outbreaks.  

These observations were assimilated individually and in combination with each other.  

The WRF model was then run again at a higher resolution with the raw assimilated fields 

as initial background fields, with model domains centered on each outbreak.  A control 
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run without data assimilation performed was also created for comparisons.  Seven 

covariates found by previous research to be important in distinguishing between tornadic 

and nontornadic outbreaks—0-1 km storm relative helicity (SRH), 0-3 km SRH, CIN, 0-1 

km bulk shear, CAPE x 0-1 km bulk shear, LCL height, and 0-1 km Energy-Helicity 

Index (EHI)—were extracted from the high-resolution model output.  SVMs were trained 

on a subset of RPCA scores derived from the raw covariate data, and tested on the 

remaining scores.  Contingency statistics were computed for the forecasts of each SVM 

configuration to determine the highest skilled SVM for every model run (three data 

assimilation types and one control).  These highest-performing SVMs were then 

compared against each other to determine which form of data assimilation produced the 

most accurate outbreak mode forecasts.  Bootstrap mean Euclidean distances between 

tornadic and nontornadic covariate fields, and bootstrap mean composite fields of each 

covariate for tornadic and nontornadic outbreaks, were calculated as well to determine 

the impact of data assimilation on each of these covariates and outbreak types. 

In phase II, the same 20 tornadic and 20 nontornadic outbreaks were modeled 

with cloud microphysics and PBL physics parameterizations varied.  Five 

microphysics—Goddard, Morrison, Thompson, WRF Double Moment-6 class (WDM-6), 

and WRF Single Moment-6 class (WSM-6)—were used, and three PBL physics— 

Asymmetric Convection Model (ACM2), Mellor-Yamada-Janjić (MYJ), and Yonsei 

University (YSU)—were used, for a total of 15 model runs per case.  The WRF model 

was run in a nested domain configuration with outer domains identical to those of phase I 

and inner nested domains at the same resolution and very similar spatial dimensions to 

those of phase I.  The seven outbreak covariates were computed from the inner nest and 
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processed through an RPCA, with the same subset of resulting scores as in phase I used 

to train a group of SVMs.  The SVMs were then tested on the remaining subset, as in 

phase I.  Contingency scores were calculated for each SVM configuration, and the 

highest-skilled ones for each of the 15 model physics configurations were then compared 

to each other to determine the combination of microphysics and PBL physics that 

produced the highest skill at outbreak mode prediction.  Euclidean distances between 

tornadic and nontornadic outbreaks for each covariate, and outbreak mean composites of 

each covariate, were computed as in phase I.  For this phase, domain-mean analyses were 

performed on tornadic and nontornadic fields of each covariate for each microphysics and 

PBL physics scheme, with the goal of averaging out the effects from the other type of 

model physics and determining covariate value ranges among PBL physics and 

microphysics means. 

In phase III, the same 20 tornadic and 20 nontornadic outbreaks were simulated in 

the WRF model for all model variations in the research:  the 4 data assimilation runs and 

the 15 model physics parameterization runs.  The model was run with a domain identical 

to the parent domain of phases I and II.  Synoptic-scale fields were extracted from the 

model output at many atmospheric levels from 1000 mb to 100 mb, and k-means 

clustering analysis was performed on the tornadic and nontornadic outbreak fields 

separately to prevent the generation of composite mean fields that averaged two or more 

dissimilar synoptic setups together.  The resulting cluster mean fields were then 
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examined visually for differences among the data assimilation and physics 

parameterization runs. 

5.1 SVM Outbreak Mode Forecasting 

Data assimilation and physics parameterization produced clear winners in SVM 

forecast skill.  Data assimilation in particular produced a progression of forecast skill 

levels that was experimentally expected and which supports the idea that additional 

amounts and types of data, when ingested well by assimilation procedures, improve 

forecasting skill.  With physics parameterization, a clear difference was noted between 

PBL physics and microphysics with regard to effects on forecast skill for outbreak mode 

classification.  The seven covariates were mostly computed in the lower atmosphere, and 

PBL physics parameterization more significantly influenced the modeling of these 

covariates and thus the skill of the SVMs trained on the model data. 

5.1.1 Data Assimilation 

Phase I determined that, of the three data assimilation runs and the control, the run 

that produced the highest-skilled SVM at predicting outbreak mode was the HIRS-

4/conventional run.  This run contained the greatest amount of input data of all the runs 

for this phase.  The second-highest-skilled SVM was the one for the conventional 

assimilation run, which contained the second-most observations.  The third-best 

performer was the HIRS-4 run.  The control run, which contained no assimilated data, 

performed the most poorly in terms of forecast skill.  Each difference of skill between a 

given pair of runs was statistically significant. 
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Root mean square error comparison of each assimilation run to a set of 

observations demonstrated that the conventional data assimilation in particular markedly 

improved the WRF simulations.  These observations consisted of geopotential height, 

specific humidity, temperature, u-wind, and v-wind measured at standard meteorological 

analysis levels for each parameter.  In the conventional and HIRS-4/conventional runs, 

error was decreased for 80 percent of data points, examined over all levels of the 

atmosphere, relative to the control.  These runs also exhibited lower model error over 

time than the control and HIRS-4 runs, demonstrating that assimilation of the 

conventional data was reducing cumulative model error relative to a control run.  These 

results indicate that the improved skill of the conventional and HIRS-4/conventional runs 

in predicting severe weather outbreak mode can be attributed to better modeling of 

atmospheric features, particularly troughs and low-level winds, with the additional data. 

Tornadic-nontornadic Euclidean distance calculations were maximized for 0-1 km 

bulk shear by the HIRS-4/conventional run.  This run and the conventional run 

maximized the distances for the CAPE x 0-1 km bulk shear product and CIN.  The 

conventional assimilation run maximized the distance for 0-1 km EHI.  For LCL, the 

control generated the maximum distance between tornadic and nontornadic outbreak 

modes. The Euclidean distance for SRH at 0-3 km was decreased from the control 

distance by the assimilation of conventional observations, 4.79% for the conventional-

only run and 4.33% for the HIRS-4/conventional run.  The HIRS-4-only run produced the 

maximum 0-1 km SRH distance; the conventional-only run decreased 0-1 km SRH 

distance from the HIRS-4  distance by 1.88% and the HIRS-4/conventional run by 

1.16%.  Compared to the control distance for 0-1 km SRH, the conventional-only run 
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decreased the distance by only 0.7% and the HIRS-4/conventional run produced an 

almost identical distance. 

The general pattern of the data assimilation effect on tornadic-nontornadic 

Euclidean distance was that conventional observations, either alone or in combination 

with HIRS-4 observations, increased outbreak distances for thermodynamic and dual 

thermodynamic-dynamic covariates.  The assimilation of these observations produced the 

opposite effect on SRH, though not bulk shear.  Examination of outbreak-mean 

composite fields for 0-3 km SRH, which demonstrated the same pattern as 0-1 km SRH, 

found that conventional assimilation increased the higher values of SRH in tornado 

outbreaks while decreasing the magnitudes of this variable elsewhere in the domain.  In 

the nontornadic composite, values were decreased by conventional data assimilation 

throughout the domain.  The result of conventional data assimilation, alone or with 

HIRS-4 radiances, was to produce a very strong similarity between tornadic and 

nontornadic outbreaks in the location of high and low SRH values, decreasing the 

statistical distance between the two outbreak types.  Nonetheless, SRH has been found by 

previous researchers to be less predictive of tornadic environments and the formation of 

supercells than bulk shear (Rasmussen and Blanchard 1998), so operational forecasters 

should not use it in isolation to predict outbreaks. 

The finding that conventional data assimilation produces more accurate model 

output, while at the same time decreasing the modeled difference between tornadic and 

nontornadic outbreak SRH, may be an undesirable outcome for operational forecasters.  

However, deterministic forecast tools such as the SVMs used in this research are often 

able to compute probabilities with high degrees of skill using several different covariates.  
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In addition, conventional data assimilation in tornado outbreaks did increase SRH values 

in domain regions where values were already high, a result that did not occur for 

nontornadic outbreaks.  Finally, the decreased false alarm ratio and increased skill of the 

SVMs that used conventional and HIRS-4 model runs indicate that such tools may 

provide a useful form of guidance for those in operational forecasting. 

5.1.2 Physics Parameterization 

Phase II determined that the WRF double-moment 6-class microphysics scheme 

(WDM-6) and YSU PBL physics produced the highest outbreak-mode forecasting skill of 

any microphysics-PBL physics combination, with an HSS of 0.658.  This result was 

significantly greater than the skill of any other run at the 95% confidence level.  This 

parameterization run produced this result by generating the lowest FAR and highest 

POD.  Other strong performers were Goddard/YSU, Morrison/YSU, and WSM-6/YSU. 

The most dominant theme of phase II was that PBL physics choice appeared to 

have a much greater impact than microphysics on all aspects of forecasting observed in 

this research.  This finding was affected by the fact that the seven highly significant 

covariates for discriminating between outbreak mode were all lower-atmospheric, 

measured either within or immediately above the PBL.  Variables such as LCL height, 

shear, helicity, and combined parameters that utilize these fields are especially affected 

by mixing in the PBL.  Although all PBL schemes produced acceptable levels of skill in 

outbreak-mode forecasts, the YSU PBL scheme, a commonly used parameterization for 

both general modeling and severe convective weather, generated high forecast 

discrimination skill with any microphysics choice examined.  MYJ PBL physics 

performed at the lowest level of skill, with the revised Asymmetric Convection Model 
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PBL physics performing in the middle of the group of three PBL physics 

parameterizations. 

Euclidean distance calculations found that the variables that exhibited more 

noticeable sensitivity to microphysics were thermodynamic covariates.  Cloud 

microphysics parameterization influences the way that the model handles water and ice 

processes, leading directly to evaporation and condensation effects in the atmosphere, as 

well as effects on cloud thickness and solar heating of the surface.  These processes 

strongly influence heating and cooling at all levels of the atmosphere.  Thompson 

microphysics in particular strongly influenced the modeling of CIN, 0-1 km EHI, and 

CAPE * 0-1 km bulk shear in tornadic and nontornadic outbreaks.  This finding coincides 

with previous studies showing a warm bias with the scheme. 

PBL physics, however, again produced larger differences between tornadic and 

nontornadic outbreaks for the remaining covariates.  ACM2 physics generated small 

distances between outbreak types for shear and helicity covariates; MYJ physics 

generated the largest distances for these covariates, though this notably did not increase 

the skill of MYJ runs to the level of most YSU runs.  It is not surprising that boundary 

layer physics parameterization has a greater impact on wind patterns at the 0-1 and 0-3 

km layers, than microphysics, but these findings empirically confirm it.  A possible cause 

of the differences in wind shear covariate modeling among PBL schemes is the distinct 

way that each scheme handles vertical transport of air parcels through the boundary layer.  

The MYJ scheme uses only local closure and the YSU scheme is nonlocal, but the ACM2 

PBL scheme utilizes both local and nonlocal mixing.  It is possible that by employing 

mixing both within PBL layers and across them, the ACM2 scheme minimized the wind 
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shear effects through friction.  Tentative support for this hypothesis exists in the 

nontornadic LCL composites, which show the highest values—and thus the greatest 

amount of vertical mixing in a convective PBL—in the ACM2 runs.  Higher LCL heights 

(relative to both YSU and MYJ composites) in the prefrontal sectors of the ACM2 

tornadic composites suggest that this pattern may be occurring in tornado outbreak cases 

as well as the nontornadic outbreaks.  The MYJ scheme may have produced higher shear 

and SRH values than the nonlocal YSU scheme because of its known cold bias in 

convective environments.  A shallower PBL will have lower amounts of friction and 

turbulence of PBL origin, permitting dynamically driven winds to exert a stronger 

influence.  Another possible source of higher shear and SRH values in MYJ model runs is 

the local closure of this scheme.  The scheme performs mixing within individual vertical 

layers and does not mix across this dimension.  Explicitly modeling vertical transport 

across layers may decrease horizontal wind magnitudes within some layers.  Further 

research into this topic should be conducted. 

The covariate that appeared to have the greatest impact on SVM outbreak-mode 

forecasting skill was LCL height.  The highest-skilled run, WDM-6/YSU, generated the 

maximum outbreak-mode distance for this covariate.  The results of this study concerning 

PBL physics and LCL height are interesting, and offer an added opportunity to examine 

the implications of this research in relation to other studies on PBL physics described in 

the literature review.  The finding that MYJ physics produces a diffuse, somewhat broken 

gradient of LCL heights for tornado outbreaks—different from the other two PBL 

physics, which produced a sharp gradient indicative of a cold front—as well as a shallow 

PBL in tornadic and nontornadic outbreaks supports the findings of Hu et al. (2010), who 
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found cold and moist biases in the modeling of the boundary layer with this 

parameterization.  The YSU LCL patterns also support the work of Hong et al. (2006), 

who found that YSU PBL physics modeled a cold front in an autumn tornado outbreak 

strongly and in closer concurrence with observations than a control PBL scheme. 

The role of microphysics in LCL height simulation was less apparent than that of 

PBL physics, but a comparison of the WDM-6 and WSM-6 runs shows that WDM-6 

produced higher LCL heights than WSM-6 across tornado outbreak domains, both in 

front of and behind a boundary that appeared in most of the tornadic cases.  WDM-6 has 

been shown in previous work (e.g., Adams-Selin et al.) to produce strong cold pools 

behind thunderstorms.  In the prefrontal region, the slightly higher LCL in WDM-6 than 

WSM-6 may be caused by evaporative cooling and drying due to smaller rain and cloud 

droplet sizes in the double-moment scheme. 

Examination of observed data for tornado outbreaks indicates that the boundary in 

the tornadic LCL composites was probably the result of thunderstorm passage.  This 

boundary was not present in the nontornadic LCL composites to nearly the same degree, 

and it is likely that the SVMs—especially the WDM-6/YSU—used this distinction 

between outbreak types heavily in their classification functions.  If so, this indicates that 

the SVM is identifying an artifact of tornadic outbreak occurrence after the outbreak has 

already happened for part of the model domain.  However, this research did not examine 

SVM forecasts with NWP model output from before the outbreak valid time, so the 

possibility that the SVM might identify such a pattern as highly significant was “built in” 

to the experimental design.  Within an NWP framework, this possibility should not be a 

concern for operational forecasters, who use model output valid for times before and 
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during the peak of a severe weather outbreak to issue a severe weather forecast.  The 

SVM outbreak prediction results still indicate that the NWP model is simulating the type 

of outbreak well. 

5.2 Synoptic Variable Modeling 

The findings of Phase III were not as starkly clear as those of phases I and II, 

though some phase III results did reinforce the results of phases I and II.  The synoptic 

features of the tornado outbreak composites were influenced in part by the distribution of 

outbreaks in each of four k-means clusters, a result that did not occur for the nontornadic 

outbreaks.  Rather than model differences, it is strongly suspected that the reason for this 

result is that a meteorologically similar synoptic pattern occurred during all the tornado 

outbreaks, whereas four very distinct synoptic patterns, likely caused by seasonal biases 

for certain types of atmospheric forcing, produced the nontornadic events.  However, 

some conclusions about the synoptic-scale modeling effects of data assimilation and 

physics parameterization can nevertheless be drawn. 

5.2.1 Data Assimilation 

In the tornado outbreaks, troughs were weakened slightly in the conventional and 

HIRS-4/conventional runs as compared to the HIRS-4 and control runs, except in cluster 

2. In this cluster, which contained several high-impact events, warm isotherms at the 850 

mb level extended farther north, indicating a stronger warm sector in the models.  A 

possible explanation for the weaker troughs in the conventional and HIRS-4/conventional 

runs in the other three clusters is the use of the Thompson microphysics in the 

assimilation ensemble.  This scheme is known to produce warm biases and in phase II 
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increased the values of CAPE-related covariates above other microphysics 

parameterizations. 

Upper-level winds in the modeled jet streams were also more intense for the 

tornadic clusters with conventional and HIRS-4/conventional runs.  The HIRS-4 run also 

generated stronger upper-level winds in two tornado outbreak clusters than the control, 

though this result did not generate a visibly stronger trough at lower levels.  Conventional 

data are acquired from all levels of the atmosphere, so in the absence of other 

experimental tests, it is difficult to say if this increase in trough intensity in the 

conventional and HIRS-4/conventional runs is due to the assimilation of surface or of 

upper-level data.  Satellite radiances, however, are interpreted by the assimilation 

procedure to indicate moisture fields, most typically clouds, so it is highly likely that the 

upper-level winds in HIRS-4 were due to the assimilation of data at upper levels of the 

atmosphere. 

The wind results of this phase reinforce the results of phase I, in which tornadic 

outbreak composites with conventional data assimilated (both the conventional-only and 

the HIRS-4/conventional runs) had notably higher values of 0-1 km bulk shear, 0-1 km 

EHI, and CAPE x 0-1 km bulk shear than the control and the HIRS-4 composites.  The 

phase III results indicate that assimilation of conventional observations increases wind 

magnitudes above the near-surface layer of the atmosphere and at a synoptic scale.  The 

observations test of phase I, which found that conventional and HIRS-4/conventional 

runs exhibited lower RMSE, was performed on standard atmospheric variables 

(geopotential height at 500 mb; u-winds at 925, 850, 700, 500, 400, 300, 250, 200, 150, 

and 100 mb; v-wind at the same pressure levels; specific humidity at 700 and 500 mb; 
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and temperature at 925, 850, 700, and 500 mb).  These variables include fields examined 

in the synoptic analysis of phase III, indicating that conventional data assimilation 

improves the accuracy of NWP output of these cases in addition to increasing the values 

of these variables. 

In nontornadic outbreaks, the effect of data assimilation on a cluster depended on 

the type of synoptic setup modeled in that cluster.  The two nontornadic clusters that were 

characterized by classic troughs exhibited decreases in the magnitude of the trough when 

conventional data were assimilated, either alone or in conjunction with HIRS-4 radiances.  

The small cluster characterized by a trough pattern suggestive of an upper-level low and 

weak northwesterly flow, however, had this feature strengthened by conventional and 

HIRS-4/conventional data assimilation.  The “derecho cluster,” which was characterized 

by a ridge, showed a westward shift of this ridge by the assimilation of conventional and 

conventional/HIRS-4 data, likely indicating a slight placement error by the model. 

The nontornadic composites reinforced the results of phase I for combination 

thermodynamic-dynamic covariates, which were that the conventional and HIRS-

4/conventional model runs generated lower values of 0-1 km EHI and CAPE x 0-1 km 

bulk shear for nontornadic outbreaks than did the control and HIRS-4 runs. In addition, 

the slightly increased values of 0-1 km bulk shear apparent in the phase I nontornadic 

composites for conventional and HIRS-4/conventional runs may be due to the slight 

increase of lower-level shear found in phase III in the weakly forced nontornadic events, 

even though this increase was not apparent in the strongly forced cluster 2, which most 

closely resembled a tornado outbreak cluster. 
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5.2.2 Physics Parameterization 

The effects of physics parameterization on cluster modeling were less pronounced 

than the effects of data assimilation, especially in the tornado outbreaks, but effects were 

still noticeable within this ensemble.  The trough of one tornadic cluster was modeled 

more intensely with WSM-6 and WDM-6 physics than other microphysics, but this result 

did not appear consistently in other tornadic clusters for these microphysics options.  

Wind fields did not exhibit any clear patterns across microphysics or PBL physics that 

appeared in all four clusters. 

For the nontornadic outbreaks, differences among parameterization runs were 

more readily apparent, at least among PBL physics runs.  Microphysics variation did not 

generate consistently and significantly different synoptic fields for nontornadic outbreak 

clusters.  MYJ PBL physics produced a strong cold bias (compared to the other two PBL 

physics) in the modeling of clusters 3 and 4, which was observed with all microphysics.  

This result confirms existing literature that found a cold bias with PBL scheme, as well as 

the phase II results of this study.  A less significant cold bias was observed with this PBL 

physics option for clusters 1 and 2.  YSU PBL physics generated warmer 850 mb 

temperatures in clusters 3 and 4. 

In clusters 3 and 4, YSU PBL physics produced a slightly larger area of 295 K 

temperatures than ACM2 PBL physics.  In cluster 2, YSU physics produced a larger area 

of 280 K and 275 K temperatures than ACM2 physics, but little difference was apparent 

between these two PBL schemes in cluster 1.  700 mb moisture fields in these clusters 

exhibit noticeable differences among the PBL physics schemes.  In clusters 2, 3, and 4, 
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the RH fields are significantly moister in the ACM2 runs, while the MYJ runs are the 

driest. 

In phase II of the research, the YSU PBL physics model runs generated values of 

CAPE x 0-1 km bulk shear that were higher than ACM2 physics runs and lower than the 

MYJ runs for nontornadic outbreaks.  LCL heights among the YSU nontornadic runs 

were higher than those of the MYJ runs and lower than those of the ACM2 runs.  The 

phase III results indicate that moisture levels, rather than temperatures, are likely the 

primary physical cause of the phase II thermodynamic covariate differences among the 

PBL runs.  Dry air at 700 mb is usually associated with higher values of CAPE in 

convective environments. 

5.3 Ensemble Variance Analysis 

The first question requires a final statistical analysis on the data to determine the 

variance within similar groups of model runs.  Using the bootstrapped tornadic and 

nontornadic composite fields generated in phases I and II for the seven critical covariates, 

variances were calculated for the following groups of model runs: 

 Conventional, HIRS-4/conventional, HIRS-4, and assimilation control for 

an assimilation ensemble variance; 

 The three PBL physics variations used with each of the five microphysics 

schemes (for example, the variance for a covariate over the combined data 

set of WDM-6/ACM2, WDM-6/MYJ, and WDM-6/YSU), for a set of five 

measures of variability due to PBL physics; 

 The five microphysics variations used with each of the three PBL physics 

schemes, for a set of three measures of variability due to microphysics. 
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This analysis was conducted for each of the seven covariates for tornadic and 

nontornadic outbreaks separately.  The variance groups for the five microphysics 

schemes (variability due to PBL physics) and the three PBL schemes (variability due to 

microphysics) were averaged for each covariate for tornadic and nontornadic outbreaks.  

Table 5.1 shows the variances for each covariate for tornadic outbreaks and Table 5.2 

shows the variances for each covariate for nontornadic outbreaks, with the ensemble-type 

averages for each covariate in bold. 

As the tables show, tornado outbreak variances were largest for the assimilation 

ensemble for every covariate except LCL height and 0-1 km EHI, for which the PBL 

mean variance was the largest.  PBL physics produced the second-largest variance for all 

of the other variables except for CIN, which had a variance that was slightly greater for 

the microphysics mean than for the PBL mean.  The assimilation ensemble produced 

variances in the dynamic fields (bulk shear and SRH) that were especially large 

compared to either the microphysics or PBL physics mean. 

In the nontornadic outbreaks, a different and in some ways opposite pattern was 

observed.  The PBL ensemble variance mean was largest for 0-1 km SRH, 0-3 km SRH, 

CAPE x 0-1 km bulk shear, and 0-1 km EHI, followed by the microphysics variance 

mean, and the assimilation ensemble variance was smallest.  For CIN, the microphysics 

ensemble variance mean was the largest.  However, for bulk shear and LCL height, the 

assimilation ensemble variance was largest and the microphysics mean variance was 

smallest. 

These results indicate that certain characteristics of outbreak modes influence the 

type of model uncertainty—observation-based or physics-based—that will be most 
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prominent in a given NWP forecast.  Tornado outbreaks are associated with higher values 

of low-level shear than nontornadic outbreaks, and, as the phase I tornadic composites of 

0-1 km bulk shear and 0-3 km SRH illustrated, data assimilation—particularly of 

conventional observations—greatly affected these values, sharply increasing their 

magnitudes relative to the control run in regions of strong shear or helicity.  Conventional 

data are recorded from many sources across the vertical dimension of the atmosphere, 

which significantly increases spatial coverage.  It is likely that the reason these dynamic 

covariates experienced such a stronger effect from data assimilation in tornado outbreaks 

is that the typical values of these variables are much higher in tornado outbreaks than 

nontornadic outbreaks.  However, even in nontornadic outbreaks, data assimilation 

produced a larger ensemble variance for 0-1 km bulk shear than microphysics or PBL 

physics.  This result illustrates the importance of having a spatially dense set of 

observations when forecasting low-level wind shear. 

It is also intuitive that PBL physics would have a greater effect on lower-

atmospheric parameters than cloud microphysics.  The temperature, humidity, and height 

of the PBL have a strong influence on both thermodynamic and dynamic variables, due to 

the effect of mixing.  As has been stated, the three PBL schemes examined in this 

research perform mixing in three distinct ways, which has been shown to lead to warm 

and dry or cool and wet biases in the PBL. 

Microphysics produced the largest variance for only one covariate, nontornadic-

outbreak CIN.  It also produced variances slightly smaller than the largest ensemble-type 

variance for tornadic LCL height and nontornadic 0-1 km EHI.  These are all variables 

that are at least in part thermodynamic.  Cloud microphysics affects evaporation and 
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condensation processes in clouds in the model, resulting in variations in the heat and 

moisture content of the atmosphere through changes in latent heat release, surface 

heating, precipitation, and many other processes. 

156 



 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

        

        

        

        

        

        

        

        

        

        

        

Table 5.1 Model Ensemble Variances for Severe Covariates (Tornadic) 

0-1 km 0-3 km CIN 0-1 CAPE x LCL 0-1 

SRH SRH km 0-1 km km 

Bulk Bulk EHI 

Shear Shear 

Assimilation 5656.373 8217.829 935.672 2.032 3132014 185125.7 0.295 

Goddard 

(PBL varied) 4157.259 7126.021 250.718 1.076 2877220 239392.0 0.462 

Morrison 3384.210 6280.115 198.395 0.916 2990122 242495.5 0.502 

Thompson 3155.090 6321.352 204.230 0.845 2733552 250423.9 0.527 

WDM-6 3360.033 6269.920 222.872 0.975 2393577 231679.3 0.501 

WSM-6 3500.944 6517.727 209.632 1.003 2803307 239282.2 0.514 

PBL Mean 3511.507 6503.027 217.170 0.963 2759556 240654.6 0.501 

ACM2 

(microphysics 

varied) 2129.441 4617.677 200.972 0.770 840933 230841.1 0.247 

MYJ 3802.787 7118.151 224.249 0.805 2774320 212710.4 0.600 

YSU 2984.251 6508.103 234.121 0.685 1729447 246383.2 0.433 

Microphysics 

Mean 2972.160 6081.310 219.781 0.754 1781567 229978.2 0.427 
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Table 5.2 Model Ensemble Variances for Severe Covariates (Nontornadic) 

0-1 km 0-3 km CIN 0-1 km CAPE x 0-1 LCL 0-1 km 

SRH SRH Bulk km Bulk EHI 

Shear Shear 

Assimilation 2251.776 1343.953 390.745 0.726 1210707 71084.6 0.033 

Goddard (PBL 

varied) 2625.024 2391.550 403.887 0.578 1967885 59624.2 0.117 

Morrison 2531.496 2019.281 441.764 0.550 1889523 65814.8 0.106 

Thompson 2375.027 2180.465 585.954 0.589 2449881 62427.7 0.152 

WDM-6 2448.140 2012.615 379.913 0.611 1721382 61330.0 0.114 

WSM-6 2632.119 2078.058 379.111 0.640 2084309 63696.3 0.115 

PBL Mean 2522.361 2136.394 438.126 0.594 2022596 62578.6 0.121 

ACM2 

(microphysics 

varied) 1744.174 1727.964 391.184 0.495 1223403 52917.4 0.105 

MYJ 2808.247 2198.095 541.546 0.497 2535675 61181.2 0.143 

YSU 2754.273 2333.139 477.086 0.549 1718236 53004.5 0.111 

Microphysics 

Mean 2435.565 2086.399 469.939 0.513 1825771 55701.0 0.120 
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5.4 Synthesis of Results 

The two main research questions that this project sought to answer were which 

model configuration in the data assimilation and physics parameterization ensembles 

produces the most accurate outbreak forecast, and whether model physics 

parameterization or data assimilation introduces produces greater model spread in 

atmospheric parameters that are important for severe weather.  The concluding answers 

to these questions are discussed. 

5.4.1 Forecast Skill 

As a preface, it should be noted again that land surface physics in phase II were 

different from those of phase I.  In phase I, 5-layer thermal diffusion physics were used, 

whereas in phase II, Noah land surface physics were used.  This was due to the fact that 

certain experimental physics parameterizations required the use of Noah land surface 

physics.  This difference in model configuration between phase I and II does not present a 

problem for individual phase results analysis since the model configurations were the 

same by phase of the work, but it does limit the ability of the data assimilation results to 

be directly compared to the physics parameterization results. 

It was determined that, among data assimilation runs, the HIRS-4/conventional 

assimilation run generated the most skilled forecasts of severe weather outbreak mode, 

and among physics parameterization runs, the WDM-6/YSU run had the highest skill.  

The reasons for why these runs were the most skilled were complex.  Analysis of 

covariate fields, outbreak-mode statistical distances, and observation error analysis 

indicated that the assimilation of HIRS-4 and conventional data brought model output 
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closer to an observed reality while, at the same time, differentiating between tornadic and 

nontornadic outbreak parameters more strongly than other model runs. 

In the case of the physics parameterization runs, the WDM-6/YSU run performed 

with the highest skill, apparently by modeling differences reasonably strongly for all 

seven analyzed covariates, whereas other physics ensemble runs failed to do so for at 

least one variable.  In addition, it seems likely that the SVM for this run heavily weighted 

LCL height, which exhibited a very distinct appearance between nontornadic and 

tornadic outbreak composites.  The tornadic LCL fields in particular assumed the 

appearance of a sharp boundary, and examination of surface analyses showed that in each 

tornadic case, either a dryline, a synoptic cold front, or a line of severe thunderstorms 

capable of producing a strong cold pool passed over the outbreak domain at valid time.  

The WDM-6 scheme was shown in previous research to produce stronger convection and 

stronger cold pools than other schemes due to its handling of graupel processes, and the 

YSU was shown to produce more intense fronts in a tornado outbreak case. 

5.4.2 Model Variability 

The other research question required three phases of research to answer. In 

tornado outbreaks, data assimilation, especially of conventional observations, creates the 

greatest amount of variation in model output, followed by PBL physics and microphysics 

respectively.  However, for the nontornadic outbreaks, PBL physics parameterization 

produces the greatest degree of model variation. 

For data assimilation, this finding was apparent at both the mesoscale (phase I) 

and synoptic-scale (phase III) levels of atmospheric analysis.  The variance analysis 

indicates that in tornado outbreaks, wind shear covariates are very strongly affected by 
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data assimilation, most notably in the form of increases of shear values in these events.  

Conventional data assimilation appears to improve the modeling of weather systems of 

all types, as evinced in phase I by the superior skill of these runs.  In phase III, it was 

possible to determine the effect of data assimilation on large-scale features that produce 

severe weather outbreaks.  Wind shear was increased in tornado outbreaks by the 

assimilation of this data set and decreased in nontornadic outbreaks.  More unusual 

synoptic features associated with severe weather, such as a northwesterly-flow regime, 

were strengthened by the assimilation of conventional data, but since this flow pattern 

was not apparent in tornado outbreaks, the strengthening of this feature likely only served 

to reinforce the difference between tornadic and nontornadic outbreaks to the SVMs in 

phase I. 

The consistent theme of physics parameterization analyses was that PBL physics 

had a strong impact on atmospheric covariates associated with severe weather, especially 

shear and helicity, whereas microphysics as a whole did not introduce as much variation 

to any covariate.  It was surprising that the PBL physics result was less apparent in the 

phase III synoptic composite analysis.  However, this effect did exist to a degree in the 

composites.  The cold bias of the MYJ scheme in particular was confirmed to exist at 

both the mesoscale (phase II) and synoptic scale (phase III).  YSU physics also generated 

slightly warmed 850 mb temperatures in nontornadic outbreak composites, but the most 

pronounced difference was in the moisture fields.  The ACM2 PBL scheme produced the 

most moisture at 700 mb in the nontornadic composites and the MYJ the least, which 

likely accounts for the higher CAPE values apparent in the phase II MYJ clusters.  The 

less pronounced (though still identifiable) synoptic-scale differences among model runs 
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indicate that the effects of PBL physics become most apparent at the mesoscale—and 

possibly microscale—levels of analysis rather than the synoptic.  Given the highly 

localized, often chaotic, nature of boundary layer phenomena, this result is not surprising. 

Modelers and operational forecasters can derive useful information from this 

research.  It is increasingly common for local National Weather Service offices to have 

custom model configurations for their local areas, and there is a desire for information 

about the best ways of fine-tuning of such local and regional models when particular 

types of weather are expected.  The results of this research indicate that, for modeling 

severe weather at the mesoscale in the eastern United States, the modeling choices that 

appear to matter the most for obtaining high forecast skill are the type and amount of 

high-quality data assimilated, and the choice of planetary boundary layer scheme. 
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