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CHAPTER I 

INTRODUCTION AND SELECTIVE REVIEW OF  

EXISTING LITERATURE 

1.1 Introduction 

The Engine out emissions regulations set in place by the National Highway 

Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) 

have become increasingly stringent1. The need for more efficient engine operation has 

reached an all-time high. The US accounts for 25% of all energy usage in the world 

causing the push for more efficient engine operation to become a very prominent 

concern. According to the 2015 annual energy outlook projections in the US, emissions 

levels of carbon dioxide (CO2) will continue to remain below the levels in 2005. The 

energy outlook projections state that this is due to two main variables. Improved 

efficiency and a shift away from carbon intensive fuels2. Figure 1 shows a tabulated 

comparison of the carbon dioxide emissions concentrations for various fuel types. 

  

                                                 
1 http://www.nhtsa.gov/Laws+&+Regulations/CAFE+-+Fuel+Economy/ld-cafe-midterm-evaluation-2022-
25 
2 http://www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf 
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Table 1.1 CO2 emissions from various sources 3. 

  Pounds CO2 Kilograms CO2 

Pounds 

CO2 

Kilograms 

CO2 

Carbon Dioxide (CO2) 

Factors: 

Per Unit of Volume or 

Mass Volume or Mass 

Million 

Btu Million Btu 

For homes and businesses 

Propane 12.70/gallon 5.76/gallon 139.05 63.07 

Butane 14.80/gallon 6.71/gallon 143.20 64.95 

Butane/Propane Mix 13.70/gallon 6.21/gallon 141.12 64.01 

Home Heating and Diesel 

Fuel (Distillate) 

22.40/gallon 10.16/gallon 161.30 73.16 

Kerosene 21.50/gallon 9.75/gallon 159.40 72.30 

Coal (All types) 4,631.50/short ton 

thousand cubic 

2,100.82/short ton 210.20 95.35 

Natural Gas 117.10/thousand cubic 

feet 

53.12/thousand 

cubic feet 

117.00 53.07 

Gasoline 19.60/gallon 8.89/gallon 157.20 71.30 

Residual Heating Fuel 

(Businesses only) 

26.00/gallon 11.79/gallon 173.70 78.79 

Other transportation fuels 

Jet Fuel 21.10/gallon 9.57/gallon 156.30 70.90 

Aviation Gas 18.40/gallon 8.35/gallon 152.60 69.20 

  

                                                 
3 www. Eia.gov 
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Table 1.1 (Continued) 

Industrial fuels and others not listed above 

Flared natural gas 120.70/thousand cubic 

feet 

54.75/thousand cubic 

feet 

120.60 54.70 

Petroleum coke 32.40/gallon 14.70/gallon 225.10 102.10 

Other petroleum & miscellaneous 22.09/gallon 10.02/gallon 160.10 72.62 

Nonfuel uses 

Asphalt and Road Oil 26.34/gallon 11.95/gallon 166.70 75.61 

Lubricants 23.62/gallon 10.72/gallon 163.60 74.21 

Petrochemical Feedstocks 24.74/gallon 11.22/gallon 156.60 71.03 

Special Naphthas (solvents) 20.05/gallon 9.10/gallon 160.50 72.80 

Waxes 21.11/gallon 9.57/gallon 160.10 72.62 

Coal by type 

Anthractie 5,685.00/short ton 2,578.68/short ton 228.60 103.70 

Bituminous 4,931.30/short ton 2,236.80/short ton 205.70 93.30 

Subbituminous 3,715.90/short ton 1,685.51/short ton 214.30 97.20 

Lignite 2,791.60/short ton 1,266.25/short ton 215.40 97.70 

Coke 6,239.68/short ton 2,830.27/short ton 251.60 114.12 

Other fuels 

Geothermal (average all 

generation) 

NA NA 16.99 7.71 

Municipal Solid Waste 5,771.00/short ton 2,617.68/short ton 91.90 41.69 
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Table 1.1 (Continued) 

Tire-derived fuel 6,160.00/short ton 2,794.13/short ton 189.54 85.97 

Waste oil 924.0/barrel 419.12/barrel 210.00 95.25 

Source: U.S. Energy Information Administration estimates. 
Note: To convert to carbon equivalents multiply by 12/44. Coefficients may vary 
slightly with estimation method and across time. 

 

Examining the chart above it becomes clear that exploring various options of fuel 

types can prove to be a beneficial step in the battle against energy pollution. A study 

published by the EPA stated that 29% of all greenhouse gas emissions in 2007 were 

generated from the various sources of transportation. The EPA also states that the 

transportation industry is the fastest growing source of greenhouse gases in the US since 

1990. According to eia.gov the heavy duty sector which consist of the United States 

primary shipping options accounted for 6% of the total US greenhouse gas emissions and 

20% of the total transportation greenhouse gas emissions in 2007.  

The NHTSA and the EPA are co-heading the drive for more efficient operating 

vehicles and has previously released the first phase of this plan. In the second phase the 

EPA plans a separate standard for complete vehicle and engine-out emissions. The 

emissions output of the engine is not dependent on the use of certain technological 

advances, however this is left open ended 4.    

                                                 
4 "US EPA, DOT Propose Phase 2 GHG and Fuel Efficiency Standards for Heavy-duty Trucks." News:. 

N.p., n.d. Web. 18 June 2016.  
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Throughout the past decade many proposed solutions have come to light. Dating 

back to the 1800s there has historically been only two main types of engines. The first 

engine uses gasoline as the primary source of fuel energy. This engine operates using a 

spark plug placed in the center of the cylinder head to provide the energy necessary to 

start the combustion process. This engine type is typically referred to as a spark ignited 

(SI) engine. Alternatively, a diesel engine operates without a spark plug to initiate 

combustion. Diesel engines operate by the use of high cylinder pressure and temperature 

to auto-ignite the fuel. This engine type is typically referred to as a compression ignited 

engine (CI). The above emissions restrictions have pushed the advancement in engine 

technology and control strategies as well as the advancements of new combustion 

strategies. Diesel engines, however, have risen in popularity due to the high combustion 

efficiency, fuel conversion efficiency, engine reliability, and cost effective design. The 

use of high compression ratios and throttle-less design has also increased the popularity 

of diesel engines [1,2]. 

A comparison of the operation of a spark ignited engine, compression ignited 

engine, and a homogeneous charge compression ignited engine can be seen in Figure 1.1.  
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Figure 1.1 Visual representation of engine operation [3]  

Each of the commonly found engines displayed above have several advantages and 
disadvantages. A comparison of these engine types found in Figure 1.1 can be found in 
Table 1.2.  
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Table 1.2 Comparison between popular engine operation types [4] 

Engine type SI HCCI CI 

Ignition method Spark Ignited  Auto-ignition Auto-ignition 

Charge Premixed 

homogeneous 

before ignition 

Premixed and 

homogeneous 

In-cylinder 

heterogeneous 

Injection point Single  Single 

Throttle loss Yes No No 

Compression Ratio Low High High 

Speed High Low/med  Low/med 

Combustion  Flame propagation Multi-point auto-

ignition 

Lifted non 

premixed 

turbulent flame 

Fuel economy Good Best Better 

Max. efficiency 30%  at wide open 

throttle 

>40% 40% 

Major emissions HC, CO, and NOx HC and CO NOx, PM, and 

HC 

Injection type Port Injection or 

Direct Injection 

Simultaneous Port 

and Direct Injection 

Direct Injection 

Injection pressure Low Low High 
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The diesel engine is a major contributor to the overall environmental pollutants 

particularly oxides of nitrogen (NOx) and Particulate Matter (PM) [5] [6]. As the energy 

demand increases alternative fuels are being explored to decrease the output emissions of 

the vehicle. In order to ease the contradiction between the need for increased energy and 

the decreasing oil resources while at the same time reduce pollutant emissions, the 

utilization of alternative fuels has been found to be an attractive solution. The various 

benefits of the supplemented fuels are discussed in detail below.  

1.2 Natural Gas 

The main component of natural gas is methane, which is the simplest 

hydrocarbon. The combustion of natural gas is clean and emits less CO2 than almost all 

other petroleum-derivate fuels. Natural gas as a fuel source to power vehicles has been 

used since the 1930s [7]. Natural gas based dual fueling has proven to result in significant 

reduction in NOx when compared to single fuel diesel operation. This reduction in NOx 

is a direct consequence of the difference of the in-cylinder composition prior to ignition 

and combustion events [7]. Douville et al [8] concluded that the dynamic performance is 

maintained and CO2 emissions are reduced along with higher CH4 emissions at all 

operating points when an engine is varied from diesel operation to direct injection natural 

gas engine; the ignition delay is similar to that of regular diesel operation mode and the 

combustion rate is more equally distributed, resulting in lower local temperatures and 

consequently, lower NOx emissions. Natural gas engines have already been developed 

and are produced by companies such as Cummins, Inc. Cummins Inc., touts that the use 

of natural gas as an alternative fuel source provides ultra-low emissions, excellent torque, 

high fuel efficiency and robust performance [9]. With the development of natural gas 
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combustion technology, utilization of natural gas engines has also been extended to 

heavy-duty trucks and marine main impellers, where good power performance is in great 

demand [10-14]. 

Natural gas engines however show a reduction of the brake thermal efficiency 

when compared to operation with typical pump diesel [14-18]. Alternatively, natural gas 

can be used to achieve dual fuel combustion. Diesel as an ignition source is better than a 

spark plug due to its higher ignition energy. As a result, lean mixtures of natural gas can 

be ignited. In this scenario a high reactivity fuel (typically diesel) is injected into the 

cylinder along with the natural gas to provide the natural gas a reliable ignition source. In 

this scenario the natural gas is fumigated into the cylinder upstream of the intake valves. 

This allows the gaseous fuel to become well mixed with the intake air of the engine. Low 

load emissions, however, suffer in this scenario causing an increase in unburned 

hydrocarbons emissions compared to typical diesel combustion which results in lower 

thermal efficiencies [19]. 

In an effort to combat the high THC values many researchers have implemented 

various strategies such as using hot exhaust gas recirculation [20], intake air temperature 

sweeps [21], advancing the pilot injection of diesel [22] and increasing the quantity of 

diesel used in the pilot jet [23].  

In this dissertation the implementation of a secondary diesel injection to phase the 

location of 50% heat release location (CA50) and smooth the cylinder pressure curve will 

be explored; however, the primary fuel source is propane.  
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1.3 Biodiesel 

Another well researched alternative fuel source is biodiesel. Biodiesel is a 

manmade fuel that is a product of a trans-esterification reaction of triglycerides of 

vegetable oils and alcohol in the presence of a catalyst. The result of the chemical 

reaction consists of fatty acids of alkyl esters with properties similar to that of 

conventional pump diesel [24].  

Research indicates the use of biodiesel as the primary fuel in a compression 

ignited engine yield lower engine out carbon monoxide, hydrocarbon, and particulate 

matter concentrations [25]. 

The EPA however has published that biodiesel operation results in increased 

oxides of nitrogen (NOx). The table below represents the average emissions impact by 

the substitution percentage of biodiesel used by a compression ignited engine [26].  

 

Figure 1.2 Emission behavior as a function of increasing biodiesel substitution [27] 
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By only changing the fuel input properties of the biodiesel the expected NOx 

emission increase can be within a range of 16.7 to 38% depending on the operating point. 

Figure 1.2 shows there is a linear relationship to the increased percentage of NOx found 

in the engine-out emissions based on the substitution percentage of biodiesel. Particulate 

matter, carbon monoxide, and hydrocarbon emissions however show a healthy decrease 

as more biodiesel is substituted into the engine. The increase in NOx is considered to be 

caused by the presence of fuel bound oxygen within the composition of the biodiesel as 

well as the higher flame temperature [27]. In an effort to combat the NOx penalty 

associated with using biodiesel, J. Thangaraja [27] states two major control measures 

involving altering the injection duration and location, and selection or modification of the 

fuels (FR) are being widely investigated. A summary of the effect of the control measures 

and their effects can be found in Figure 1.3.  
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Figure 1.3 Biodiesel NOx penalty and control measures [27] 

 

Another method used to combat NOx is a lean NOx trap. A typical 3-way catalyst 

will not operate in O2 levels greater than 1% and thus will not work for a conventional or 

unconventional diesel engine. For this reason, a NOx absorber was developed. These 

devices operate using zeolite which traps the NO and NO2 molecules until full. Once full 

a purge cycle is done to regenerate the trap. Typical purge cycles consist of the injection 

of fuel before the absorber. The NOx will then react with the hydrocarbons of the fuel to 

produce a chemical reaction whose products are water and nitrogen [27]. 

Other disadvantages of biodiesel include the fuels higher viscosity, higher pour 

point, lower calorific value and lower volatility. Biodiesel, however has also been 
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accredited with the corrosion of some components. It has been stated to attack plastic 

materials used for seals, hoses, paints and coatings of an engine. Perhaps more 

importantly however, the biodiesel shows increased dilution and polymerization of the 

engines oil, thus requiring more frequent oil changes [28-36]. 

1.4 Hydrogen 

Hydrogen has recently become an increasingly attractive fuel source. Hydrogen is 

a non-toxic, odorless, renewable and recyclable alternative fuel. The only major 

combustion product of hydrogen is water and NOx, thus it can potentially and 

significantly improve the quality of air. In short, hydrogen is a promising candidate as the 

next generation clean energy source for both compression-ignition and spark-ignition 

engines. More importantly, hydrogen fuel has the benefits of long-term, continuous 

availability, unlike typical petroleum or other fossil fuels that are found in depleting 

reserves [37-44]. 

Among this there are several reasons for applying hydrogen as an additional fuel 

to accompany diesel fuel in the internal combustion (IC) compression ignition (CI) 

engine. Firstly, it increases the hydrogen to carbon ratio of the entire fuel. The benefits of 

this will be further discussed and explored in Chapter 7. Secondly, injecting small 

amounts of hydrogen to a diesel engine could decrease heterogeneity of a diesel fuel 

spray due to the high diffusivity of hydrogen which makes the combustible mixture better 

premixed with air and provide more uniform combustion. It could also reduce the 

combustion duration due to hydrogen’s high flame propagation speeds in relation to other 

fuels. The laminar flame speed for hydrogen is 1.9 m/s at atmospheric pressure and 
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temperature conditions, and it is almost five times higher when compared to 0.4 m/s for 

most hydrocarbon fuels [45]. 

Hydrogen also has a wide flammability limit which can operate as lean and rich as 

an air-fuel ratio of 10 to 0.14 respectively. This allows the engine load to be varied 

drastically through changes in equivalence ratio. It has also been proven that the 

flammability limits widen as the intake temperature is increased, however increases in 

pressure will cause the lower flammability limits to increase narrowing the operation of 

hydrogen [46]. 

The use of hydrogen for in cylinder combustion has its drawbacks. Using 

hydrogen as a fuel in a compression ignited engine produces favorable conditions for 

combustion knock. The high compression ratios of compression ignited engines enhance 

this effect [47-48].  

Combustion knock is the effect from spontaneous combustion of the end gas 

ahead of the propagating flame. When this type of combustion occurs a sonic pressure 

wave travels across the cylinder producing an audible ping heard outside of the engine. 

This pressure wave is largely responsible for the mechanical engine failure of the 

crankshaft, piston, and engine block. The increased hydrogen in the cylinder will also 

lead to faster combustion which can cause higher in-cylinder peak pressures and 

temperatures [49]. Hydrogen, although being the most abundant element in the universe 

is not readily available in its molecular form. The molecules must be separated to 

produce elemental hydrogen which requires the use of external energy sources. For this 

reason, hydrogen is considered an energy carrier rather than an energy source [50]. The 

need to use external energy to obtain elemental hydrogen and the potential for 
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mechanical damage to an engine have limited the advancement of hydrogen as a primary 

fuel source. 

1.5 Propane  

Propane has long been considered a clean-burning, high energy alternative fuel 

commonly found in light, medium and even heavy duty engines. Propane is a three 

carbon alkane (C3H8) which is stored under pressure at 150 psig as liquefied petroleum 

gas (LPG) allowing for ease of storage and efficient transportation. As pressure is 

released and flow is started the liquid vaporizes and turns into a gas which is then 

fumigated into an engine’s intake air stream to be used as fuel. Propane accounts for 2% 

of the energy used in the US, however less than 2% is used for transportation. Propane is 

instead more commonly found in water heating, cooking, and other home uses. Propane 

has an octane rating higher than gasoline however the energy density of the fuel is lower 

requiring more fuel to be used to travel the same distance 5. Propane remains an attractive 

option in the United States due to the existing distribution channels that can quickly adapt 

to the growing market demand.  

The high octane rating of propane makes it suitable for spark ignited engines 

which operate with a centrally placed spark plug to initiate combustion. In dual fuel 

operation small amounts of diesel are used to ignite the propane in order to control the 

start of combustion. Polk [51] found that at all engine loads the engine out NOx 

emissions were decreased as propane substitution increased. ISHC emissions, however, 

suffered with the increased propane substitution. Most importantly it was discovered that 

                                                 
5 http://www.afdc.energy.gov/fuels/propane_benefits.html 
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the location of the CA50 plays an important role in the brake specific energy 

consumption. Polk also found as the CA50 was phased closer to TDC of the expansion 

process the fuel conversion efficiency (FCE) increased. If the CA50 phasing was 

accompanied by simultaneous decrease in the combustion duration however, the trend 

become more obscure and load dependent. The understanding of this trend will play a 

significant role in the understanding of dual fuel combustion. The explained results will 

be further explored in this dissertation by implementing a similar combustion strategy 

while optimizing the engine to operate under split injection.  

1.6 Homogeneous Charge Compression Ignition (HCCI) 

HCCI is an attractive method for engine operation due to the increased 

homogeneity [52]. The increased homogeneity has been shown to yield higher thermal 

efficiencies and lower the engine-out NOx and particulate matter [53]. Gasoline usage in 

compression ignited engines has been gaining popularity over the years. Gasoline 

however is difficult to auto ignite due to the high octane rating. Due to this operation of 

an engine using HCCI gasoline remains challenging due to the difficulty of controlling 

the ignition timing and controlling the combustion phasing. Implementing gasoline in a 

compression ignition engine provides extended time for fuel/air to properly mix within 

the cylinder by increasing the duration between start of injection to the start of 

combustion. This is caused by the reduced reactivity of the gasoline fuel compared to 

diesel fuel. Due to the challenges associated with using pure gasoline operation of a 

compression ignition engine dual fuel gasoline-diesel combustion strategies are currently 

being heavily researched [54]. It has been found by Park et al. [55] that using a blend of 

diesel and gasoline the increased quantities of gasoline decrease the overall surface 
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tension of the mixture. This allows the fuel droplets to separate easier decreasing the 

air/fuel mixture process. Controlling the auto ignition of the gasoline fuel has been shown 

to provide simultaneous reduction of NOx and soot emissions. This is due to the extended 

ignition delay inherent in the poor auto ignition which as shown above increases the 

homogeneity of the air fuel mixture and operates the engine under a premixed low 

temperature combustion regime [56].  

1.7 Reactivity Controlled Compression Ignition (RCCI) 

Another popular control strategy used to implement gasoline in a compression 

ignition engine is reactivity controlled compression ignition (RCCI). RCCI is a low 

temperature combustion strategy used to achieve more efficient clean combustion [57]. 

RCCI combustion process operates using a low reactivity fuel such as gasoline that is 

fumigated into the intake to create a premixed charge within the cylinder. A high 

reactivity fuel such as diesel is then directly injected into the cylinder. The high reactivity 

fuel auto ignites first causing the combustion to gradually spread from the higher 

reactivity zone which initiates the auto ignition of the secondary lower reactive fuel. 

Operating and engine under RCCI mode allows for more precise control over the heat 

release rate compared to that of HCCI combustion processes [58]. The major issue 

surrounding RCCI operation is the limitation of its use under high loads. Under high load 

operation RCCI suffers from increased pressure rise rates or NOx and Soot emissions.   

1.8 Gasoline Compression Ignition (GCI) 

  A more recent trend in fuel substitution is the use of gasoline as the fuel source in 

a diesel style engine. GCI differs from other methods by using solely the gasoline to 
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DETAILED EXPLANATION OF DEVICES USED 
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A.1 Coriolis flow meter 

A Coriolis mass flow meter works by measuring the force resulting from the 

acceleration caused by mass moving toward or away from a center of rotation. Our 

device uses a two pipe system. Both pipes are of U-shaped design. One pipe remains free 

of the working fluid while the other pipe allows the fluid to flow through the device. A 

magnetic field is then generated to force the two U-shaped tubes to oscillate at a constant 

frequency. This frequency is measured by the device and used as a baseline indicating 

there is a zero flow condition. As fluid begins to flow through the tube the Coriolis effect 

causes a change in the oscillating frequency compared to the tube without flow. The time 

delay between the inlet and outlet frequency that is generated is used to determine the 

mass flow rate of the fluid through the device as seen in Figure A.1. Internal calibration 

of the device then measures this offset of the frequency and the increase of the magnitude 

of the produced sine wave and then outputs the highly accurate mass flow rate in kg/s.  
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Figure A.1 Sample time delay of the measured frequency between the inlet and outlet 
of the flow tubes. 

Source: www3.emersonprocess.com 

A.2 Sonic nozzle flow meter 

The sonic nozzle used in our lab is a converging diverging type device. The 

nozzle operates by either pressurizing the inlet or evacuating the exit of the venturi to 

achieve a critical pressure ratio of at least 1.2:17. As long as this minimum requirement is 

met the flow is choked or in sonic state. When the nozzle is in sonic state only the 

upstream pressure and temperature of the device is needed to measure the flow rate. The 

flow through the device is irrelevant of the pressure downstream. The flowrate under 

these conditions behaves linearly. i.e. doubling the inlet pressure to the venturi will 

double the flow rate through the device. A diagram of the configuration of the sonic 

nozzle can be seen in Figure A.2. 

                                                 
7 http://www.flowmaxx.com/sonic.htm 
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Figure A.2 Sonic Nozzle configuration used 

 

A.3 Thermocouples  

For measurement of all the necessary temperature measurements type K 

thermocouples are used. Thermocouples consist of two dissimilar metals welded together 

at what is called the junction. When a temperature gradient is introduced a voltage 

potential is created. This voltage potential is directly proportional to the temperature 

being measured. Type K thermocouples use Nickel-Chromium and Nickel-Alumel as the 

metals to construct the device. A type K thermocouple has a very large range of operation 

temperatures that ranges from -454 to 2300F. Thermocouples do require a stable voltage 

reference and cold junction compensation (CJC) to operate. CJC removes the effect of 

voltage generated by these cold junctions to allow for a more accurate temperature 

measurement. In our lab CJC is handled internally in the data acquisition system.  

A.4 Fourier Transform Infrared spectrometer (FTIR)  

This device is used to measure the emissions output of our engines. This output is 

then compared with the 6 gas analyzer. When the readings of the two devices agree 

within a plus or minus 1% of the reading it gives confidence that both devices are 

working properly and the values obtained are accurate. The FTIR is a method of 
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obtaining infrared spectra by first collecting an interferogram of a sample signal and then 

performing a Fourier Transform on the interferogram to obtain a spectrum. The FTIR 

collects and digitizes the interferogram, preforms the Fourier transform function and 

displays the spectrum. Loaded into the FTIR are calibration files which contain spectra 

for the molecules which we intend to measure. The measured sample spectra are then 

compared to the calibration spectra to allow us to obtain a quantitative reading of each 

molecule constituent in the engine out exhaust such as CO, H2O, NO, NOx etc. An 

example of the FTIR read spectrum can be found in Figure A.3.  

 

Figure A.3 FTIR spectrum showing measurement of different gas species and their 
relative absorbance.  

Source: www.avl.com 
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A.5 Pressure transducer  

The pressure transducers used for measuring intake pressure, exhaust pressure and 

oil pressure for example are voltage output pressure transducers. These pressure 

transducers include integral signal conditioning to provide a much higher output than the 

alternative millivolt transducer. We use two types of these transducers which operate in 

nominal output ranges of either 0-5Vdc or 0-10Vdc. The use of the higher output 

pressure transducers are optimal for lab use due to the fact that the higher output voltage 

the pressure transducers are not susceptible to electrical noise. The conversion of pressure 

into the electrical signal desired takes place by the physical deformation of a strain gauge 

that has been bonded into the diaphragm of the pressure transducer and wired into a 

Wheatstone bridge configuration. When pressure is applied the diaphragm will deflect 

introducing strain to the gauge. The strain will then produce an electrical resistance 

change proportional to the pressure seen by the transducer. The output voltage vs 

pressure is then plotted to obtain the calibration scale. This scale is then input into a data 

acquisition device to ensure the accuracy of the pressure reading by the device.  

A.6 Piezoelectric in-cylinder pressure sensor  

A Kistler 6052C piezoelectric pressure transducer was designed to operate in a 

custom drilled hole leading directly into the combustion chamber of the engine. The 

cylinder pressure acts through the diaphragm on the quartz crystal measuring element 

causing internal polarization which transforms the pressure in bar into an electrostatic 

charge measured in Pico Coulombs. The electrostatic charge is then sent to a signal 

conditioner to eliminate any noise and scale the charge into a voltage output that can be 

read by the data acquisition device. Since the charge is produced with relative pressure 
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changes a piezoelectric pressure transducer requires a pegging pressure. Randolph [124] 

describes many pressure pegging strategies, however the most common involves setting a 

point of known pressure and fitting a polytropic process to the compression of the engine. 

Under engine motoring conditions the pegging pressure used for this testing was set to 

atmospheric pressure when the piston is at BDC. Since the intake valves are opened and 

boost pressure remains atmospheric, this assumption remains valid.  

A.7 Kistler Charge Amplifier  

The 5010B charge amplifier is used to amplify the small signal produced by the 

Kistler 6052C cylinder pressure sensor. As the charge from the cylinder pressure sensor 

enters the device the signal is amplified in accordance to the selected scale. In our case a 

scale of 20MU/V was selected to allow ample resolution in data acquisition. A sample 

image of the Kistler 5010B charge amplifier can be seen in Figure A.4 Cleaning of the 

cables and connections between the sensor and the charge amplifier is vital to limit the 

presence of drift of the charge amplifier output. It is also suggested the charge amplifier 

be allowed a warm up period of approximately one hour before taking a measurement 

[125].  
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Figure A.4 5010B charge amplifier  

 

A.8 Air, water and oil temperature conditioner  

Our lab is equipped with the ability to control the air, water, and oil temperatures 

seen by the engine. This is accomplished by the use of a tuned PID. The set point for the 

various temperatures are input into the PID controller. The PID controller then operates a 

heating element which will increase the temperature of the incoming fluid to the correct 

temperature. Once the fluid reaches the correct temperature the heating element will 

oscillate on and off the ensure the temperatures of the fluid remains a constant.  Such a 

device is crucial in understanding various engine effects such as the parasitic losses of the 

engine with changing viscosity oil due to temperature or how the intake air temperature 

can affect the engine output emissions.  
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A.9 Crank Angle Encoder 

Crank angle encoders are used in the determination of the piston position at any 

given point in the combustion cycle. This is vital for all crank angle based measurements 

of the combustion engine. The crank angle encoder has a resolution of 0.1 degrees. This 

resolution is dependent on the number of trigger marks on the marker disc. These marks 

are scanned using a transmission photoelectric cell. The light intensity is typically 

regulated to ensure accurate readings despite any soiling. Crank angle encoders use of a 

wide speed range between 1 to 20,000 rpm allow accurate crank measurements even at 1 

rpm.  

Since the crank angle encoder only counts pulses it is vital to ensure the sensor is 

correctly phased with the engine cycle. A crank angle encoder can be installed at any 

angle. TDC for the encoder is determined as the angle between the trigger marker of the 

encoder and the physically determined TDC of the cylinder. To determine the physical 

TDC of the engine the cylinder pressure curve must be obtained using a cylinder pressure 

sensor. Plotting of the cylinder pressure trace will allow you to set an offset for the crank 

angle encoder to ensure the measurements are in sync with the engine location. 

A.10 Engine Exhaust Particle Sizer (EEPS)  

The engine exhaust particle sizer uses a diluted exhaust measurement to quantify 

the size, distribution, and concentration of the particles found in the exhaust. The EEPS 

device has a measuring range for particles within the window of 5.6 to 500 nanometers. 

A continuous flow of exhaust is fed to the measuring device. Once the exhaust gases 

enter the device a corona charger excites the particles providing them with a positive 

charge. These charged particles are then funneled toward a high voltage electrode 
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column. The electrode column is then supplied a positive voltage which causes the 

positively charges particles to be directed outward from the device according to the 

particles electrical mobility. Depending on the level of electrical mobility of the particle 

the particle then strikes a respective electrometer and transfers the charge. The higher the 

electrical mobility the higher in the stack of electrometers the particle transmits the 

charge. The EEPS device is configured in a manner that will allow for simultaneous 

measurements of the various particle sizes. An example working principle of the EEPS 

can be seen in Figure A.5. 

 

Figure A.5 Schematic of particle pathways in an Engine Exhaust Particle Sizer 

Source: www.tsi.com 
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A.11 Inlet metering valve (IMV)  

A solenoid device which operated on a commanded duty cycle to regulate the 

amount of fuel sent to the high pressure pump of an engine. This is used to regulate the 

fuel pressure of the engine and limit the cycle to cycle variations of fuel pressure seen 

inside the common rail system.  

A.12 6 gas emissions bench 

A.12.1 Flame Ionization Detector (FID)  

A FID is used to measure the THC of the engine out emissions. This remains as 

the industry standard for THC measurements. A heated sample line maintained at 191°C 

to prevent hydrocarbon condensation is used to obtain a small sample of the engine out 

exhaust gases and feed all of the emissions measuring systems. The gas sample that 

enters the FID becomes ionized in the flame and the electrostatic field causes the charged 

particles to migrate. This causes a small current that is directly proportional to the amount 

of hydrocarbon in the sample and is measured by the device. The current is then 

processed and output as a ppm reading. The schematic used for the FID can be seen in 

Figure A.6. 
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Figure A.6 FID schematic for the detection of ISHC molecules.  

Source: Altech E.S.A. emissions bench operation manual 

A.12.2 Chemiluminescence Detector (CLD) 

A CLD is the industry standard for the measurement of NO and NOx. The CLD 

operates on the fact that the chemical reaction between NO and ozone (O3) emits light.  

The chemical reaction can be seen below.  

NO + O3 → NO2* + O2+hυ 

The reaction is the basis for the CLD due to the protons produced. These Protons 

are then detected by a photo multiplier tube. The output voltage sent to the readout panel 

and is directly proportional to the NO concentration. NOx measurements are obtained by 

passing the sample gas over a heated catalyst designed to reduce NOx molecules to NO. 

This is done prior to entering the chamber. Once the sample gas enters the chamber the 

NOx measurements is done the same as explained before. The schematic used for the 

NOx and NO measurements can be seen in Figure A.7.  
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Figure A.7 Chemiluminescence detector schematic for the measurement of NO and 
NOx 

Source: Altech E.S.A. emissions bench operation manual 

A.12.3 Non-Dispersive Infra-Red detector (NDIR) 

The NDIR is used to obtain the CO and CO2 concentrations found in the sample 

gas. An NDIR operates similar to an FTIR but in a much narrower band. An NDIR shines 

an infra-red beam through a small container holding the sample gas. The amount of light 

absorbed is measured within the specific wavelength. The use of a chopper wheel alters 

the offset and gain within the machine to constantly correct the measurements and allows 
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the simultaneous measurement of CO and CO2 concentrations.  A schematic identifying 

the layout of the NDIR can be seen in Figure A.8. 

 

Figure A.8 NDIR Schematic for the measurement of CO and CO2 

Source: Altech E.S.A. emissions bench operation manual 

A.13 Smoke Meter 

Our lab uses and AVL 415 S smoke meter to measure the engine out soot or 

particulate matter levels. The exhaust gas is fed through a strip of filter paper. Once the 

gas passes through the filter paper a reflectometer is used to determine the relative 

blackening of the filter paper. The results of the reflectometer are sent to a micro 
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processing unit and ultimately to a readout panel which list the results as a unitless Filter 

Smoke Number (FSN). Two measurements are taken at each engine operating condition. 

These two measurements are then averaged together and recorded for examination. An 

image of the AVL smoke meter can be found in Figure A.9.  

 

 

Figure A.9 AVL smoke meter used in ACE lab 

 

A.14 Dynamometer speed and load  

 In order to ensure accurate speed and torque measurements over time 

dynamometer calibrations are required. In order to perform the dynamometer torque 
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calculation a calibration arm is fitted to the dynamometer shaft. This shaft extends 2 feet 

in length away from the center point of the dyno shaft. Known quantities of weight are 

slowly added to the calibration arm and the output is measured via a multimeter. Values 

for all weight are recorded and the linear calibration scale is input into the software to 

ensure accurate measurements. A sample calibration scale for the torque measurement 

can be found in Figure A.10.  

 

Figure A.10 Voltage output at various loads of the dynamometer calibration 
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 Dynamometer speed measurements are obtained using a magnetic pickup angle 

encoder. The output signal of the encoder is based on the engine speed. This device does 

not allow for calibration however the correct scale must be input into the recording 

software to ensure accurate speed measurements. A sample scale for the engine speed can 

be seen in Figure A.11.  

 

 

Figure A.11 Dynamometer output voltage as a function of shaft speed.  
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