





5.3  Fuselage/tail Testing

5.3.1 ExperimentaBSet Lp and Procedure
The modal characteristics of the fuselage structure are determined for a free-free
configuration which is simulated by suspending the fuselage structure from the wing

attachment points. Figure 5.13 shows the fuselage body mounted in the UTS.

Figure 5.13

Fuselage vibration test set up

Designed to match the wing/ fuselage connection points, the test fixture is
suspended from the support beam of the UTS by two large springs, which are connected
to the fixture through turnbuckles as shown in Figure 5.14 The shaker system, which is
centrally attached to the bottom member of the test fixture via a steel stinger rod, is used

to induce vertical oscillations in the structure.
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Figure 5.14

Fuselage vibration test fixture

The signal measurement system for the wing vibration testing was also utilized
for the fuselage/tail structure, which was also instrumented with 19 dual axis
accelerometers. In the wing vibration testing, the wing is essentially considered as a flat
surface; therefore, the responses were obtained in the chordwise and in the normal
directions. However, each accelerometer on the fuselage/tail structure has two axes of
measurement direction (lateral, vertical up and down, or chordwise), which entirely
depend on the accelerometer placement. Various sensor configurations were considered
to ensure that the responses of the test structure were fully obtained. In the first

configuration, shown in Figure 5.15, the first 11 sensors (A1-A11) were located along the
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bottom of the fuselage body, equidistantly spaced from nose to tail. The next four
accelerometers (A12-A16) were mounted on the left aft side of the fuselage and the
remaining three accelerometers (A17-A19) were mounted on the left side of the vertical
tail. Vibration tests were also conducted for an additional three sensor configurations
(Figure 5.15-5.18) to verify the modal data obtained from configuration #1. From the
preliminary results, some of these sensors were relocated to the area of interest. For
example, in sensor configuration #2 as shown in Figure 5.16, five accelerometers (Al12-
A16) were relocated to the horizontal tail, whereas accelerometers A1-Al1l remained at
the same location. To further obtain the responses from the aft fuselage and horizontal
tail, the vibration tests were performed using sensor configuration #3 (Figure5.17) and
sensor configuration #4 (Figure 5.18), respectively. While these figures only show the
location of the sensors on the bottom and left side of structure, it is to be noted that the
accelerometers which are underlined represent the mirror image location on the right side
of the structure. For example, in Figure 5.17, A12 is located on the right side of the
horizontal tail at the same location as Al4. In each configuration, a total of 38 discrete-
point accelerations are measured and recorded. The frequency sweeps from 5 Hz to 100

Hz were conducted at a sampling rate of 500 Hz.
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Frequency spectrums for A1, A8, and A10 in the (a) x-direction and
(b) y- direction using (c) the coordinate system
Figures 5.22a and 5.22b show the frequency spectrums for the x and z directions
for accelerometers Al4 and A16. These accelerometers are located on the aft side of the
fuselage. Minimal response is obtained from the out-of-plane (x-axis) channels (Figure
5.22a), but in the z-direction (Figure 5.22b), which is the longitudinal axis of the

fuselage, the spectrums show small amplitude peaks at all the natural frequencies.
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Figure 5.22
Frequency spectrums of Al4 and A16 in the (a) x-direction and (b) z- direction using
(c) the coordinate system

The frequency spectrums in the x and z directions for accelerometers A17, A18,
A19, located on the left side of the vertical stabilizer, are shown in Figures 5.23a and
5.23Db, respectively. As expected, amplitudes at the resonant frequencies on the vertical
stabilizer are much larger in magnitude than those obtained from the fuselage body. It is
seen that although the first natural frequency of 13.5 Hz appears in both directions, the
peak amplitude in the x —direction is much larger than the amplitude in the z —direction,
indicating lateral bending of the tail as the predominant mode, which is clearly observed

during test. It is also noted that the second peak at approximately 25 Hz is significant in
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the z-direction, indicating a chordwise motion, which is also visible during testing.

Figures 5.23a and 5.23b also show the minimal response of A17, which is expected since

it is located at the root of the vertical stabilizer.
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Figure 5.23

Frequency spectrums of A17, A18, and A19 in (a) x direction and (b) z-direction using
(c) the coordinate system

The resulting mode shapes at 13.5 Hz, 24.6 Hz, 36.3 Hz and 45.2 Hz are shown in
Figure 5.24. The lateral bending of the tail at the first frequency as well as the chordwise

motion at the second frequency is evident from these figures. As expected, due to the
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complex geometry of the structure, all vibration modes are mixed modes having some

combination of bending and torsion.

Figure 5.24

Red-mode shape at (a) 13.5 Hz (b) 24.6 Hz (c) 36.3 Hz (d) 45.4 Hz
Black-mode shape at 0 Hz

Table 5.7 summarizes the modal characteristics (resonant frequencies, mode

shapes, and associated damping ratios) of the fuselage/tail structure obtained from the
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FRFs of each sensor channel. All data was post—processed using Mathcad and MATLAB

programs.

Table 5.7

Vibration characteristics and observed mode shape of fuselage/tail structure

Mode No. Natural Dam_p 'ng Observed Primary Mode
Frequency Coefficient

1 13.5 Hz 0.07 Lateral bending

5 24.6 Hz 0.04 Vertical tail - chordwwe be.ndlng
Fuselage - vertical bending

3 26.1 Hz 0.15 Lateral bending

4 36.3 Hz 0.21 Vertical tail - IaFeraI ben(?mg
Fuselage - vertical bending

5 45.4 Hz 0.17 Vertical tail - lateral bending

Fuselage - vertical bending
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CHAPTER 6

CONCLUSIONS

In this study, the results of an investigation examining the static and vibration
characteristics of carbon composite wing and fuselage/tail structures of an ultralight UAV
are presented. A whiffletree system proved effective in loading the wing structure with a
distribution based on a high-g pull-up maneuver condition. The use of tail loading fixture
to simulate the combination of symmetric and unsymmetric loadings during various flight
maneuvers was relative simple to design and implement. The load-deflection and load-
strain data were collected using a computerized data acquisition system and examined.
The responses from the right and left wings were generally consistent with most
deviation being in the fore spar at GS1. The wing is found to be very stiff and strong,
with the structure supporting more than forty times its weight at the point of failure. From
the fuselage/ tail structure testing, the static measurements from the pull-down and push-
up loadings were found to be in good agreement for most part, with the greatest
discrepancy appearing in the GS2.

A shaker-table approach was used for wing vibration testing, whereas the
fuselage/tail structure was mounted in a free-free configuration and vertically excited.

Both approaches provided a simple and reliable method for excitation of the structures
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with minimal shaker force requirement. The placement of dual-axis accelerometers
enabled the measurement of acceleration in in-plane and out-of-plane direction. Using the
swept sine technique, g load data were obtained for a range of desired frequencies. FRFs
were computed to determine the resonant frequencies and the associated mode shapes and
damping coefficients. The vibration methodology presented here proved to be a simple
and effective procedure from which the modal characteristics of large structures are

determined.
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APPENDIX A

APPARATUS
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APPENDIX B

LABVIEW PROGRAM
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APPENDIX C

RESULTS FROM CHORDWISE VIBRATION TESTING

OF WING STRUCTURE
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Figure C.1: Frequency spectrum based on out-of-plane acceleration measurements at
accelerometer location (a) Al and (b) A5 of Wing #1
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Figure C.2: Frequency spectrum based on in-plane (chord-wise) acceleration
measurements at accelerometer location (a) Al and (b) A5 of Wing #1
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Table C.1: List of peak frequencies of in-plane channels of Wing #1

Accelerometer # Peak Frequency (Hz)

1 502 2468 64.03 70.35
2 507 2467 6395 70.80
3 502 2468 63.78 7125
4 502 2468 63.62 70.80
5 5.05 24.67

6 505 24.68

7 498  24.68

8 5.03 24.68

9 5.08 24.67

10 5.08

11 503 2468 6395 70.80
12 498 2468 6353 70.80
13 512 24.68

14 5.08 24.68

15 498  24.68

16 5.08 24.67

17 502 19.12

18 507 19.33 71.77
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Table C.2: List of peak frequencies of out-of-plane channels of Wing #1

Accelerometer # Peak Frequency (Hz)

1 9.93 36.20 64.53 74.17
2 9.92 24.68 36.20 63.62

3 9.92 64.37 73.82
4 9.92 24.68

5 9.88 36.20 64.03 72.22
6 9.90 36.20 72.28
7 36.20 73.82
8 36.20 74.17
9 9.92 36.18 71.77
10 73.32
11 9.90 36.20

12 9.93 36.20

13 9.90 36.20 63.60 73.32
14 9.93 36.20 74.17
15 9.90 36.22

16 9.90 36.22

17 73.32
18 73.82
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Figure C.3: Frequency spectrum based on out-of-plane acceleration measurements at
accelerometer location (a) Al and (b) A5 of Wing # 2
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Figure C.4: Frequency spectrum based on in-plane (chord-wise) acceleration
measurements at accelerometer location (a) Al and (b) A5 of Wing # 2
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Table C.3: List of peak frequencies of in-plane channels of Wing #2

Accelerometer # Peak Frequency (Hz)
1 13.5 355 68.2
2 13.3 355 71.0
3 13.5 355 68.2
4 13.5 355 68.2
5 13.3 34.5 68.2
6 13.3 355 68.2
7 13.3 715
8 14.0 71.0
9 13.5 71.0
10 13.5 71.0
11 13.3 71.0
12 13.3 71.0
13 13.3 35.5 71.0
14 13.3 35.5 71.0
15 13.5 35.2 71.0
16 13.3 35.5 71.0
17 13.3 35.5 71.0
18 13.5 35.5 71.0
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Table C.4: List of peak frequencies of out-of-plane channels of Wing #2

Accelerometer # Peak Frequency (Hz)

1 64 230 483 70.2
2 64 230 473 697
3 64 230 69.7
4 6.4 23.0 70.2
5 6.4 483  68.2
6 6.4 483 70.2
7 64 230 473 697
8 64 230 473 70.2
9 64 230 70.2
10 6.4 23.0 70.2
11 64 230 70.2
12 6.4 23.0

13 64 230 473 70.2
14 64 230

15 23.0 483 702
16 23.0

17 70.2
18 70.2
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