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5.3 Fuselage/tail Testing 

 

5.3.1   Experimental Set Up and Procedure 

The modal characteristics of the fuselage structure are determined for a free-free 

configuration which is simulated by suspending the fuselage structure from the wing 

attachment points. Figure 5.13 shows the fuselage body mounted in the UTS. 

 

 
Figure 5.13   

Fuselage vibration test set up 

 

Designed to match the wing/ fuselage connection points, the test fixture is 

suspended from the support beam of the UTS by two large springs, which are connected 

to the fixture through turnbuckles as shown in Figure 5.14 The shaker system, which is 

centrally attached to the bottom member of the test fixture via a steel stinger rod, is used 

to induce vertical oscillations in the structure. 
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Figure 5.14 

Fuselage vibration test fixture 

 

 The signal measurement system for the wing vibration testing was also utilized 

for the fuselage/tail structure, which was also instrumented with 19 dual axis 

accelerometers. In the wing vibration testing, the wing is essentially considered as a flat 

surface; therefore, the responses were obtained in the chordwise and in the normal 

directions.  However, each accelerometer on the fuselage/tail structure has two axes of 

measurement direction (lateral, vertical up and down, or chordwise), which entirely 

depend on the accelerometer placement. Various sensor configurations were considered 

to ensure that the responses of the test structure were fully obtained.  In the first 

configuration, shown in Figure 5.15, the first 11 sensors (A1-A11) were located along the 
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bottom of the fuselage body, equidistantly spaced from nose to tail. The next four 

accelerometers (A12-A16) were mounted on the left aft side of the fuselage and the 

remaining three accelerometers (A17-A19) were mounted on the left side of the vertical 

tail. Vibration tests were also conducted for an additional three sensor configurations 

(Figure 5.15-5.18) to verify the modal data obtained from configuration #1. From the 

preliminary results, some of these sensors were relocated to the area of interest. For 

example, in sensor configuration #2 as shown in Figure 5.16, five accelerometers (A12-

A16) were relocated to the horizontal tail, whereas accelerometers A1-A11 remained at 

the same location.  To further obtain the responses from the aft fuselage and horizontal 

tail, the vibration tests were performed using sensor configuration #3 (Figure5.17) and 

sensor configuration #4 (Figure 5.18), respectively. While these figures only show the 

location of the sensors on the bottom and left side of structure, it is to be noted that the 

accelerometers which are underlined represent the mirror image location on the right side 

of the structure. For example, in Figure 5.17, A12 is located on the right side of the 

horizontal tail at the same location as A14. In each configuration, a total of 38 discrete-

point accelerations are measured and recorded. The frequency sweeps from 5 Hz to 100 

Hz were conducted at a sampling rate of 500 Hz. 
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                                                  (a)                                                (b) 

 
(c) 

 

Figure 5.21 

Frequency spectrums for A1, A8, and A10 in the (a) x-direction and 

(b) y- direction using (c) the coordinate system 

 

 Figures 5.22a and 5.22b show the frequency spectrums for the x and z directions 

for accelerometers A14 and A16. These accelerometers are located on the aft side of the 

fuselage.  Minimal response is obtained from the out-of-plane (x-axis) channels (Figure 

5.22a), but in the z-direction (Figure 5.22b), which is the longitudinal axis of the 

fuselage, the spectrums show small amplitude peaks at all the natural frequencies. 

 

Z 
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                                           (a)                                                   (b) 

 
(c) 

 

Figure 5.22 

Frequency spectrums of A14 and A16 in the (a) x-direction and (b) z- direction using  

(c) the coordinate system 

 

 The frequency spectrums in the x and z directions for accelerometers A17, A18, 

A19, located on the left side of the vertical stabilizer, are shown in Figures 5.23a and 

5.23b, respectively.  As expected, amplitudes at the resonant frequencies on the vertical 

stabilizer are much larger in magnitude than those obtained from the fuselage body.  It is 

seen that although the first natural frequency of 13.5 Hz appears in both directions, the 

peak amplitude in the x –direction is much larger than the amplitude in the z –direction, 

indicating lateral bending of the tail as the predominant mode, which is clearly observed 

during test.  It is also noted that the second peak at approximately 25 Hz is significant in 

Z 
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the z-direction, indicating a chordwise motion, which is also visible during testing.  

Figures 5.23a and 5.23b also show the minimal response of A17, which is expected since 

it is located at the root of the vertical stabilizer.   

 

         
                                                (a)                                                   (b) 

 

(c) 

 

Figure 5.23 

Frequency spectrums of A17, A18, and A19 in (a) x direction and (b) z-direction using 

(c) the coordinate system 

 

  

 The resulting mode shapes at 13.5 Hz, 24.6 Hz, 36.3 Hz and 45.2 Hz are shown in 

Figure 5.24.  The lateral bending of the tail at the first frequency as well as the chordwise 

motion at the second frequency is evident from these figures. As expected, due to the 

Z 
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complex geometry of the structure, all vibration modes are mixed modes having some 

combination of bending and torsion.   

 

 
                                   (a)                                                                        (b) 

 

 
                                   (c)                                                                        (d) 

 

Figure 5.24 

Red-mode shape at (a) 13.5 Hz (b) 24.6 Hz (c) 36.3 Hz (d) 45.4 Hz 

Black-mode shape at 0 Hz 

 

 Table 5.7 summarizes the modal characteristics (resonant frequencies, mode 

shapes, and associated damping ratios) of the fuselage/tail structure obtained from the 
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FRFs of each sensor channel. All data was post–processed using Mathcad and MATLAB 

programs.  

 

Table 5.7 

Vibration characteristics and observed mode shape of fuselage/tail structure 

 

Mode No. 
Natural 

Frequency 

Damping 

Coefficient 
Observed Primary Mode 

1 13.5 Hz 0.07 Lateral bending 

2 24.6 Hz 0.04 
Vertical tail - chordwise bending 

Fuselage - vertical bending 

3 26.1 Hz 0.15 Lateral bending 

4 36.3 Hz 0.21 
Vertical tail - lateral bending 

Fuselage - vertical bending 

5 45.4 Hz 0.17 
Vertical tail - lateral bending 

Fuselage - vertical bending 
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CHAPTER 6 

CONCLUSIONS 

 

 In this study, the results of an investigation examining the static and vibration 

characteristics of carbon composite wing and fuselage/tail structures of an ultralight UAV 

are presented. A whiffletree system proved effective in loading the wing structure with a 

distribution based on a high-g pull-up maneuver condition. The use of tail loading fixture 

to simulate the combination of symmetric and unsymmetric loadings during various flight 

maneuvers was relative simple to design and implement. The load-deflection and load-

strain data were collected using a computerized data acquisition system and examined. 

The responses from the right and left wings were generally consistent with most 

deviation being in the fore spar at GS1. The wing is found to be very stiff and strong, 

with the structure supporting more than forty times its weight at the point of failure. From 

the fuselage/ tail structure testing, the static measurements from the pull-down and push-

up loadings were found to be in good agreement for most part, with the greatest 

discrepancy appearing in the GS2. 

 A shaker-table approach was used for wing vibration testing, whereas the 

fuselage/tail structure was mounted in a free-free configuration and vertically excited. 

Both approaches provided a simple and reliable method for excitation of the structures 
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with minimal shaker force requirement. The placement of dual-axis accelerometers 

enabled the measurement of acceleration in in-plane and out-of-plane direction. Using the 

swept sine technique, g load data were obtained for a range of desired frequencies. FRFs 

were computed to determine the resonant frequencies and the associated mode shapes and 

damping coefficients. The vibration methodology presented here proved to be a simple 

and effective procedure from which the modal characteristics of large structures are 

determined.
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APPENDIX B 

LABVIEW PROGRAM 



 

F
ig

u
re

 B
.1

: 
 L

ab
V

IE
W

 p
ro

g
ra

m
 f

o
r 

st
at

ic
 t

es
ti

n
g
 o

f 
w

in
g
 s

tr
u

ct
u
re

 (
fr

o
n
t 

p
an

el
) 

 

 

113



 

F
ig

u
re

 B
.2

: 
 L

ab
V

IE
W

 p
ro

g
ra

m
 f

o
r 

st
at

ic
 t

es
ti

n
g
 o

f 
fu

se
la

g
e 

st
ru

ct
u
re

 (
fr

o
n
t 

p
an

el
) 

 

 
 

114



 

F
ig

u
re

 B
.3

: 
 L

ab
V

IE
W

 p
ro

g
ra

m
 f

o
r 

st
at

ic
 t

es
ti

n
g
 (

b
lo

ck
 d

ia
g
ra

m
) 

 

  
  
  
  
  
  
  
  

 

 

 

115



 

F
ig

u
re

 B
.4

: 
 L

ab
V

IE
W

 p
ro

g
ra

m
 f

o
r 

v
ib

ra
ti

o
n
 t

es
ti

n
g
 (

fr
o
n
t 

p
an

el
) 

 

 
 

116



 

F
ig

u
re

 B
.5

: 
 L

ab
V

IE
W

 p
ro

g
ra

m
 f

o
r 

v
ib

ra
ti

o
n
 (

b
lo

ck
 d

ia
g
ra

m
) 

 

  
  
  
  
  
  
  
  
 

117



118 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

RESULTS FROM CHORDWISE VIBRATION TESTING  

OF WING STRUCTURE 
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                                           (a)                                                           (b) 

 

Figure C.1: Frequency spectrum based on out-of-plane acceleration measurements at 

accelerometer location (a) A1 and (b) A5 of Wing #1 

 

 
                                         (a)                                                           (b) 

 

Figure C.2: Frequency spectrum based on in-plane (chord-wise) acceleration 

measurements at accelerometer location (a) A1 and (b) A5 of Wing #1 
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Table C.1: List of peak frequencies of in-plane channels of Wing #1 

   Accelerometer  # Peak Frequency (Hz) 

1 5.02 24.68 64.03 70.35 

2 5.07 24.67 63.95 70.80 

3 5.02 24.68 63.78 71.25 

4 5.02 24.68 63.62 70.80 

5 5.05 24.67   

6 5.05 24.68   

7 4.98 24.68   

8 5.03 24.68   

9 5.08 24.67   

10 5.08    

11 5.03 24.68 63.95 70.80 

12 4.98 24.68 63.53 70.80 

13 5.12 24.68   

14 5.08 24.68   

15 4.98 24.68   

16 5.08 24.67   

17 5.02 19.12   

18 5.07 19.33  71.77 
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Table C.2: List of peak frequencies of out-of-plane channels of Wing #1 

Accelerometer # 
Peak Frequency (Hz) 

1 9.93  36.20 64.53 74.17 

2 9.92 24.68 36.20 63.62  

3 9.92   64.37 73.82 

4 9.92 24.68    

5 9.88  36.20 64.03 72.22 

6 9.90  36.20  72.28 

7   36.20  73.82 

8   36.20  74.17 

9 9.92  36.18  71.77 

10     73.32 

11 9.90  36.20   

12 9.93  36.20   

13 9.90  36.20 63.60 73.32 

14 9.93  36.20  74.17 

15 9.90  36.22   

16 9.90  36.22   

17     73.32 

18     73.82 
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   (a)                                                               (b) 

 

Figure C.3: Frequency spectrum based on out-of-plane acceleration measurements at 

accelerometer location (a) A1 and (b) A5 of Wing # 2 

 

                                               
   (a)                                                           (b) 

 

Figure C.4: Frequency spectrum based on in-plane (chord-wise) acceleration 

measurements at accelerometer location (a) A1 and (b) A5 of Wing # 2 
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Table C.3: List of peak frequencies of in-plane channels of Wing #2 

   Accelerometer  # Peak Frequency (Hz) 

1 13.5 35.5 68.2 

2 13.3 35.5 71.0 

3 13.5 35.5 68.2 

4 13.5 35.5 68.2 

5 13.3 34.5 68.2 

6 13.3 35.5 68.2 

7 13.3  71.5 

8 14.0  71.0 

9 13.5  71.0 

10 13.5  71.0 

11 13.3  71.0 

12 13.3  71.0 

13 13.3 35.5 71.0 

14 13.3 35.5 71.0 

15 13.5 35.2 71.0 

16 13.3 35.5 71.0 

17 13.3 35.5 71.0 

18 13.5 35.5 71.0 
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Table C.4: List of peak frequencies of out-of-plane channels of Wing #2 

Accelerometer # Peak Frequency (Hz) 

1 6.4 23.0 48.3 70.2 

2 6.4 23.0 47.3 69.7 

3 6.4 23.0  69.7 

4 6.4 23.0  70.2 

5 6.4  48.3 68.2 

6 6.4  48.3 70.2 

7 6.4 23.0 47.3 69.7 

8 6.4 23.0 47.3 70.2 

9 6.4 23.0  70.2 

10 6.4 23.0  70.2 

11 6.4 23.0  70.2 

12 6.4 23.0   

13 6.4 23.0 47.3 70.2 

14 6.4 23.0   

15  23.0 48.3 70.2 

16  23.0   

17    70.2 

18    70.2 

 

 


