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auxialries suitable for the preparation of enantiopure tertiary -hydroxy acids using 

organo zinc reagents.19 D-isosorbide’s (2) rigid, chiral, and non-toxic nature, was useful 

in the synthesis of polymers with high glass transition temperatures and/or with special 

optical properties.20 A wide range of amorphous and semi-crystalline polymers 

containing D-isosorbide (2) were reported in the literature.20-21 They include polyesters, 

polyurethanes, polyamides, polycarbonates, polyethers, poly(ester-imide)s, 

poly(esteramide)s, poly(ether-urethane)s, or polytriazoles. 

Like bisphenol A (BPA), D-isosorbide (2) has two hydroxyl groups and a rigid 

architecture. In addition, it is a chiral molecule. It was found to exhibit acceptable 

thermal and mechanical properties like BPA.22 Hence, it was proposed to be an effective 

replacement for BPA.22 BPA is widely included in the polymers used in the food, plastic 

and beverage bottle industries. BPA incorporation influences the toughness of these 

polymers. Hydrolytic degradation of BPA-containing polycarbonates releases BPA, 

which is thought to be an estrogen mimic that could be harmful for health.22 Hence, 

finding effective replacements for BPA is an active field of research with great 

commercial interest.  

1.3.6 Polymers containing D-isosorbide (2). 

Aliphatic polyesters, furan-containing polyesters, poly(ester-amides)s and 

poly(ester-carbonate)s have been synthesized by polycondensation using 1,4:3,6-

dihydrohyexitol-containing monomers.23 Their biodegradability ranged from days to 

years when tested using soil burial degradation tests, active sludge treatment and 

enzymatic degradation tests. Novel poly(ether–ester)s based on the diol-ether of D-

isosorbide (2) and adipoyl chloride or terephthaloyl chloride (6) were synthesized by 
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Scheme 1.3 Synthesis of poly(1-vinyl-4-dianhydrohexitol-1,2,3-triazole)s (PVDTs) 
(17) by RAFT polymerization.27 

 

1.4 Olefin metathesis polymerization. 

Olefin metathesis is one of the most useful reactions in organic synthetic and 

polymer chemistry.28 It is performed in many forms29 (Figure 1.7) including cross 

metathesis (CM), ring-opening metathesis (ROM), ring-closing metathesis (RCM), ring-

rearrangement metathesis (RRM), ring-opening metathesis polymerization (ROMP), and 

acyclic diene metathesis (ADMET) polymerization. ROMP and ADMET 

polymerizations are used in the synthesis of a number of polymer architectures. ROMP 

and ADMET produce polymers in a “living” manner (unlike polycondensation or 

kinetically controlled polymerizations). A living polymer should “proceed without chain 

transfer or termination.”30 A living polymer should show a linear relationship between 

the monomer to catalyst mole ratio and the molecular weight of the polymer or exhibit a 
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linear relationship between the degree of polymerization (DP) (typically measured in 

terms of number-averaged molecular weight, Mn), monomer molecular weight and 

monomer consumption.31 

 

Figure 1.7 Examples of various forms of olefin metathesis reactions. 

Cross metathesis (CM), ring-opening metathesis (ROM), ring closing metathesis (RCM), 
acyclic diene metathesis (ADMET) and ring-opening metathesis polymerization 
(ROMP).29 

1.4.1 Ring-opening metathesis polymerization (ROMP). 

Ring-opening metathesis polymerization (ROMP) is a chain-growth 

polymerization technique where a highly strained ring system containing a carbon-carbon 

double bond polymerizes in a living manner.  With the advent of novel well-defined, 

commercially available metathesis catalysts, ROMP has become a widely used method 

for the synthesis of well-defined polymeric materials.32 Homopolymers,33 random 

copolymers,34 block copolymers,35 graft copolymers,36 telechelic polymers,37 multi-

shaped copolymers,43 amphiphilic polymers,38 alternating copolymers39 and cross-linked 

copolymers40 were all synthesized using ROMP. In addition, new kinds of polymer 

architectures are also plausible with ROMP 32 (Figure 1.8). 
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3.2.3.1.1.1 Polymer poly(NbISB) 81. 

Translucent grey solid. 

Yield (% w/w) = 47 mg. 

GPC analysis results (in THF): Mn =35,840, Mw = 78,853, Mz = 174,018, PDI = 

2.2 and DP = 135 at Mn; by direct comparison with PS standards. 

Estimated absolute Mw = 236,559 using (Q-factor = ~ 3.0; calculated using 64). 

GPC analysis could not be performed in DMF due to the lack of sufficient sample 

for GPC analysis. 

1H NMR and IR spectra: These were the same as those of polymer 58. 

3.2.3.1.1.2 AB-type block polymer 82 of 46 and 51. 

Colorless-fluffy powdered granules. 

Yield (% w/w) = 92% (0.925 g). 

GPC analysis results (very poorly soluble in THF): Mn = 43,373, Mw = 98,688, 

Mz = 292,879, PDI = 2.01 and DP = 54 at Mn; by direct comparison with PS standards. 

GPC analysis results (in DMF): Mn = 597,254, Mw = 1,139,000, Mz = 1,731,000 

,PDI = 1.9, and DP= 742 at Mn; with light scattering detector, Mw absolute. 

1H NMR (500 MHz, DMSO-d6) δ 7.38 (m, 13H), 6.13 – 5.71 (m, 5H), 5.39 – 4.93 

(m, 5H), 4.64 (m, 3H), 4.48 – 3.69 (m, 6H), 3.67 – 3.47 (m, 6H), 3.40 (m, 1H), 2.93 (s, 

1H), 2.15 – 1.04 (m, 5H). 

IR (neat, cm-1):3424, 2941, 2868, 1780, 1709, 1496, 1456, 1372, 1171, 1046, 

1009, 967, 908, 833, 740, 690. 
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3.2.3.2 BA-type block polymer 84 of 46 and 51. 

 

Monomer 51 (400 mg, 1.65 mmol) was dissolved in dry, degassed DCM (7 mL). 

To this  solution, Grubbs’ second  generation catalyst, (1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium (27) 

(28 mg, 0.033 mmol) dissolved in DCM (1 mL) was added dropwise. This solution was 

stirred at room temperature for 1h under argon. To this living homopolymer of 51 

solution, the second monomer NbISB 46 (463 mg, 1.74mmol) dissolved in DCM (10 mL) 

was added dropwise. The solution was then stirred at room temperature for 8 h. The 

reaction mixture was then quenched by the dropwise addition of excess ethyl vinyl ether 

(0.5 mL), concentrated by rotary evaporation and precipitated into methanol (150 mL) to 

generate a white fluffy BA-type diblock copolymer 84. A small aliquot (0.5 mL) of the 

living polymer 51 was taken out once before the addition of monomer 46. This was also 

quenched in excess ethyl vinyl ether (0.1 mL), and washed in methanol (10 mL) to 

generate a colorless globular polymer 83. This polymer is the starting B block of BA-

diblock copolymer 84. Both polymers were filtered in a Buchner funnel and dried over-

night under vacuum at 40 oC to generate a white fluffy polymers 83 and 84. 
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3.2.3.2.1 Polymer 83. 

Colorless fluffy polymer. 

Yield = 15 mg. 

GPC (in THF): Not performed (insoluble in THF).  

GPC (in DMF): Not performed due to the lack of sufficient sample for GPC 

analysis. 

1H NMR and IR spectra: These were the same as those of polymer 66.  

3.2.3.2.2 BA-type block polymer 84 of 46 and 51. 

Slight grayish-powder with lumps. 

Yield (% w/w) = 99% (840 mg). 

1H NMR (500 MHz, DMSO-d6) δ 7.37 (m, 4H), 6.12 – 5.71 (m, 2H), 5.57 – 4.86 

(m, 3H), 4.64 (d, J = 13.2 Hz, 1H), 4.49 – 3.68 (m, 6H), 3.66 – 3.34 (m, 6H), 2.88 (m, 

1H), 2.17 – 1.03 (m, 5H). 

IR (neat, cm-1):3448, 2944, 2874, 1778, 1710, 1496, 1377, 1172, 1073, 1045, 

1010, 969, 912, 871, 832, 742, 691. 

GPC analysis results (in DMF): Mn = 539,535, Mw = 903,903, Mz = 1,379,000, 

PDI = 1.65, DP = 135 at Mn; with light scattering detector, Mw absolute. 
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3.2.3.3 Triblock polymerization. 

3.2.3.3.1 ABA-type block polymer 87. 

 

Monomer 46 (400 mg, 1.50 mmol) was dissolved in DCM (5 mL). To this 

solution, Grubbs’ second generation catalyst, (1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium (27) 

(26 mg, 0.03 mmol) dissolved in DCM (1 mL) was added dropwise. This solution was 

stirred at room temperature for 1 h under argon. To this living homopolymer, monomer 

51 (362 mg, 1.50 mmol) dissolved in DCM (5 mL) was added dropwise to get a cloudy, 

white solution and stirred at room temperature for 1 h to generate the diblock living 

polymer. To this living diblock copolymer, monomer 46 (400 mg, 1.50 mmol) dissolved 

in DCM (6 mL) was added dropwise and stirred at room temperature for 16 h. The 

reaction mixture was then quenched by the dropwise addition of excess ethyl vinyl ether 

(1 mL), concentrated by rotary evaporation, and precipitated into methanol (150 mL) to 

generate a white fluffy ABA-triblock polymer 87. Small aliquots (approx. 0.5 mL) of the 

living polymer solutions were sampled before the addition of the second (46) and third 

(51) monomers and quenched with the addition of ethyl vinyl ether (0.1 mL) and washed 

in methanol (10 mL) to generate polymers to get A-block and AB-block polymers, 85, 
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and 86, respectively. All the polymers were filtered in a Buchner funnel and dried over-

night under vacuum at 40 oC to get white colored polymers 85, 86 and 87. 

3.2.3.3.1.1 Polymer 85. 

Grey translucent solid. 

Yield = 13 mg.; 

GPC analysis results (in THF): Mn = 85,059, Mw = 297,735, Mz = 1,570,854 PDI = 3.5 

and DP = 320 at Mn; by direct comparison with PS standards. 

Estimated absolute Mw = 893,206 using Q-factor (~ 3.0; calculated using 64). 

GPC (in DMF): Not performed due to the lack of adequate amount of sample. 

1H NMR and IR spectra: These were the same as those of polymer 58. 

3.2.3.3.1.2 Polymer 86. 

Colorless fluffy powder. 

Yield = 47 mg. 

GPC analysis: Not performed (insoluble in THF). 

GPC (in DMF): Not performed due to the lack of adequate amount of sample. 

3.2.3.3.1.3 ABA-block polymer 87 of 46 and 51. 

Colorless fine powder. 

Yield (% w/w) = 54 % (616 mg). 

1H NMR (500 MHz, DMSO-d6) δ 7.39 (m, 3H), 5.92 (m, 1H), 5.70 – 4.82 (m, 4H), 4.57 

(s, 1H), 4.49 – 3.65 (m, 6H), 3.64 – 3.29 (m, 1H), 2.93 (s, 1H), 2.21 – 1.13 (m, 2H). 

IR (neat, cm-1):3475, 2843, 2871, 1780. 1710., 1497, 1456., 1374, 1172, 1046, 

1009, 968, 911, 832, 741., 691.. 
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GPC analysis results (very poorly soluble in THF): Mn = 36,722, Mw = 73,882, Mz = 

197,773, PDI = 2.01 and DP = 48 at Mn; by direct comparison with PS standards. 

GPC analysis results (in DMF): Mn = 106,093, Mw = 399,107, Mz = 1,180,000, PDI = 4.0 

and DP= 140 at Mn; with light scattering detector, Mw absolute. 

3.2.3.3.2 BAB-type block polymer 90 of 46 and 51. 

 

NbIMPh (51) (400 mg, 1.65 mmol) was dissolved in DCM (5 mL). To this 

solution, Grubbs’ second generation catalyst, (1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine) ruthenium (27) 

(26 mg, 0.03 mmol) dissolved in DCM (1 mL) was added dropwise. This solution was 

stirred at room temperature for 1h under argon to generate polymer 88. To this living 

polymer of 51, the second monomer NbISB (46) (438 mg, 1.65 mmol) dissolved in DCM 

(5 mL) was added dropwise. The solution became cloudy white. This solution was then 

stirred for one more hour at room temperature to generate BA-type living polymer. To 

this living BA-diblock copolymer, monomer 51 (438 mg, 1.65 mmol) dissolved DCM (5 

mL) was added dropwise and stirred at room temperature for 16 h. Then, the solution was 

quenched by the dropwise addition of excess ethyl vinyl ether (1 mL), concentrated by rotary 

evaporation and precipitated into methanol (150 mL) to generate white, fluffy BAB-triblock 

copolymer 90. 
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Small aliquots (approx.0.5 mL) of the polymer solution were taken out before the 

addition of the second 46 and third 51 monomers. Each of these polymers were quenched 

with the addition of ethyl vinyl ether (0.1 mL) and washed in methanol (10 mL) to 

generate polymers B-block 88 and BA-block 89. All the polymers were filtered in a 

Buchner funnel and dried over-night under vacuum at 40 oC to generate white polymers 

88 to 90. 

3.2.3.3.2.1 B-block polymer 88. 

Colorless transparent powder. 

Yield (% w/w) = 11 mg. 

GPC analysis: Not performed (insoluble in THF). 

GPC (in DMF): Not performed due to the lack of adequate amount of sample. 

1H NMR and IR spectra were the same as 66. 

IR (neat, cm-1):1780.4, 1707.8, 1569.9, 1495.7, 1371.8, 1174.5, 1058.5, 1007.2, 

966.5, 906.4, 739.8, 689.3. 

3.2.3.3.2.2 BA-block polymer 89. 

Colorless granules. 

Yield (% w/w) = 11 mg. 

GPC analysis: Not performed (insoluble in THF). 

GPC (in DMF): Not performed due to the lack of adequate amount of sample. 

IR (neat, cm-1):3473, 2861, 1781, 1709, 1597, 1496, 1373, 1176, 1059, 1010, 967, 

907.5, 740, 690. 
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3.2.3.3.2.3 BAB-type triblock polymer 90. 

Colorless thick lumps. 

Yield (% w/w) = 1.10 g. 

1H NMR (500 MHz, DMSO-d6) δ 7.58 – 7.18 (m, 11H), 6.14 – 5.71 (m, 4H), 5.55 

– 4.87 (m, 5H), 4.78 – 4.53 (m, 3H), 4.50 – 3.69 (m, 6H), 3.47 (m, 5H), 2.89 (m, 1H), 

2.14 – 1.15 (m, 5H). 

IR (neat, cm-1): 3424, 2942, 2865, 1781, 1711, 1496, 1374, 1174, 1047, 1009, 

968, 908, 833, 741, 690. 

GPC analysis results (very poorly soluble in THF): Mn = 47,892, Mw = 90,924, 

Mz = 174,252, PDI = 1.9 and DP = 68 at Mn; by direct comparison with PS standards. 

GPC analysis results (in DMF): Mn = 568,258, Mw = 944,267, Mz = 1,391,000, 

PDI = 2.0 and DP = 806 at Mn; with light scattering detector, Mw absolute. 

3.3 ADMET polymerization of diallyl-D-isosorbide (52). 

 

Diallyl-D-isosorbide (52) (0.26 g, 1.165 mmol) was weighed in a Schlenk tube 

and was subjected to three cycles of freeze-thaw cycles over 1.5 h. To this bulk monomer 

52, Grubbs’ II catalyst (27) (1mg, 1.17x 10-3 mmol, [M]/[C] = 1000:1) was added and 

attached to the Schlenk line. The solution was then stirred under N2 at 40 C for 1 h. Gas 

bubbles were observed in the gas bubble tube. After 1 h, vacuum (3 – 4 mm Hg) was 

applied and the reaction mixture was allowed to stir for 7 h (to remove the released 
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ethylene) at 40 C. Then the temperature was increased to 80 C and the solution was 

stirred further for 13 h under vacuum (3-4 mm Hg). Then, the temperature was raised to 

100 C and the reaction was stirred under high vacuum for 88 h. The reaction was 

monitored using proton NMR. After a total of 122 h, the reaction was quenched using 

ethyl vinyl ether (100 L). The polymer was dissolved in 1 mL DCM and precipitated 

thrice in excess cold pentane (10 mL). A honey colored viscous liquid precipitate and 

dried under vacuum (3-4 mm Hg) to provide polymer 90 at about 40 % (yield w/w).  

Polymer 91. 

Honey colored viscous precipitate. 

Yield (% w/w) = 40 % (90 mg). 

1H NMR (300 MHz, CDCl3) δ 6.31 – 5.90 (m, 2H), 5.02 – 4.81 (m, 1H), 4.80 – 

4.63 (m, 1H), 4.63 – 4.39 (m, 3H), 4.39 – 4.18 (m, 2H), 4.16 – 3.35 (m, 7H). 

GPC analysis (in THF): Mn = 1194, Mw = 2899, Mz = 6442, PDI = 2.4 and = 5.4 

at Mn; relative to polystyrene standards. Three peaks were observed by GPC, but only 

one peak was observed within the calibration range of the column. The remaining two 

low molecular weight peaks could be oligomers or the starting material.  
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