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Previous experimental and numerical studies showed that two-dimensional 

roughness elements can stabilize disturbances inside a hypersonic boundary layer, and 

eventually delay the transition onset.  The objective of the thesis is to evaluate the 

response of disturbances propagating inside a hypersonic boundary layer to various two-

dimensional surface deformations of different shapes.  The proposed deformations 

consist of a backward step, forward step, a combination of backward and forward steps, 

two types of wavy surfaces, surface dips or surface humps.  Disturbances inside of a 

Mach 5.92 flat-plate boundary layer are excited by pulsed or periodic wall blowing and 

suction at an upstream location.  The numerical tools consist of the Navier-Stokes 

equations in curvilinear coordinates and a linear stability analysis tool.  Results show that 

all types of surface deformations are able to reduce the amplitude of boundary layer 

disturbances to a certain degree.  The amount of reduction in the disturbance energy is 

related to the type of pressure gradient created by the deformation, adverse or favorable. 
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CHAPTER I 

INTRODUCTION 

Surface imperfections play a vital role as disturbing factors in boundary layer 

transition, and it is noticed in experiments (Gregory et al.[1], Drake et al.[2], Duncan et 

al.[3]) and numerical simulations (Choudhari and Fischer[4], Yoon et al.[5], Muppidi and 

Mahesh[6], Iyer et al.[7], Brehm et al.[8], Duan and Choudhari[9], Subbareddy et al.[10], 

Rizzetta and Visbal[11], Sescu et al.[12,13], Chaudhry et al.[14]) that they can have a 

significant impact on the boundary layer receptivity and transition.  Direct numerical 

simulations showed that small steps may impact the transition onset, depending on the 

type and height of the step, as well as the flow conditions. 

The interest in analyzing the effects of surface imperfections on the transition in 

supersonic and hypersonic boundary layers has been revisited in recent years.  The 

transition at supersonic speeds is sensitive to the shape and height of the surface 

imperfections and the Reynolds number.  The transition is also dependent on the Mach 

number, freestream temperature, thermal boundary conditions at the wall and shock 

waves that may develop from the presence of surface imperfections.  The way shock 

waves impact the transition in high-speed boundary layer flow is still unclear.  Many of 

the studies involving surface imperfections looked into isolating roughness elements of 

different shapes and heights (Fong et al.[15-18], Duan et al.[19], Park and Park[20], Bountin et 



 

2 

al.[21], Mortensen and Zhong[22]).  A comprehensive review of the effect of different 

roughness elements on hypersonic boundary layers can be reviewed in Schneider[23]. 

Acoustic waves were found to be very effective in exciting high-speed boundary 

layers because the phase speed of the acoustic waves synchronize with the phase speed of 

the first modes that correspond to the lower branch of the neutral stability curve.  There 

are numerous studies involving the interaction of acoustic waves with supersonic 

boundary layers (Mack[24], Gaponov[25], Gaponov and Smorodsky[26], Fedorov and 

Khokhlov[27,28], Sakaue et al.[29], Fedorov[30]).  In some of the studies, it was found that 

the acoustic waves are very effective in exciting disturbances inside the boundary layer 

with amplitudes that become much larger than those in the freestream, but this happens 

only above some critical Reynolds number as in the incompressible regime.  Other 

studies (Fedorov and Khokhlov[27,28], Sakaue et al.[29], Fedorov[30]) were concerned about 

the generation of the first and second modes in the vicinity of the leading edge.  The 

effect of all types of waves, i.e. slow and fast acoustic waves, vorticity waves and entropy 

waves, on supersonic boundary layers were studied and reported in a suite of papers by 

Balakumar[31-33].  The generation and evolution of three-dimensional disturbanes induced 

by slow and fast acoustic disturbances and isolated roughness elements in a supersonic 

boundary layer over a flat plate and wedges were numerically investigated by solving the 

full three-dimensional Navier-Stokes equations.  It was discovered that the instability 

waves are generated within one wavelength of the acoustic wave from the leading edge 

(Sawaya et al.[43]). 

In previous experimental and numerical studies (Holloway and Sterret[34], Fong et 

al.[15-18], Duan et al.[19], Park and Park[20], Mortensen and Zhong[22]) showed evidence that 
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two-dimensional roughness elements can reduce the amplitude of disturbances inside 

high-speed boundary layers.  Holloway and Sterret[34] carried out early experiments on 

flat plate boundary layer being disturbed by roughness elements, with a freestream Mach 

number of 4.0 and 6.0.  They observed a delay in the transition for roughness elements 

with a height smaller than the local boundary layer thickness.  Duan et al.[19] and Fong et 

al.[15-18] investigated the effects of two-dimensional roughness on the instability of the 

second mode, or mode S, with direct numerical simulations (DNS).  Their numerical 

results proved that the roughness located downstream of the synchronization point could 

stabilize the second mode.  Park and Park[20] studied the effect of a two-dimensional 

smooth hump on linear instability of hypersonic boundary layer by using parabolized 

stability equations.  Their results confirmed the findings of the previous studies, that the 

mode S is stabilized by the hump when it is in the downstream of the synchronization 

point.  But, they also found that this mode is destabilized when the hump is located 

upstream of the synchronization point.  Experimental and computational work by Bountin 

et al.[21] showed that a wavy surface led to a considerable reduction in the spectral peak 

associated with the second mode instability inside a Mach 6 boundary layer. 

Previous studies have focused on localized disturbances propagating as wave 

packets inside of the boundary layer.  In this study, the effect of 2D surface deformations 

on pulsed and periodic disturbances propagating inside a high-speed boundary layer will 

be analyzed.  The wall deformations being studied here are:  backward or forward steps, 

combinations of backward and forward steps, surface dips, surface humps and wavy 

surfaces with the mean above or below the wall surface.  The numerical tool utilized is a 

high-accurate solver, discretizing the unsteady, compressible, conservative form of the 
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Navier-Stokes equations written in body-fitted curvilinear coordinates.  Velocity and 

temperature profiles corresponding to a compressible boundary layer are imposed at the 

inflow, thus avoiding the inclusion of the leading edge shock in the computation.  Due to 

the study being 2D, there are limitations on the types of modes being considered:  for 

example, in the 2D framework only the second mode is predominant, while the oblique 

first mode is not captured by the analysis.  From the results, it is noticed that all types of 

wall deformations can reduce the amplitude of the boundary layer disturbances to a 

certain degree.  It is suggested that the oblique Mach wave that is posed by the wall 

deformations is responsible for deviating a small portion of the kinetic energy of the 

disturbance to the external flow.  This may be a potential cause for disturbance energy 

reduction in the downstream of the roughness element.  The type of pressure gradient that 

is posed first by the surface deformation is also a factor in the reduction of the 

disturbance energy, among other factors, such as the location of the synchronization point 

with respect to the disturbance energy, and the location of the synchronization point with 

respect to the location of the roughness element. 

In Chapter II, literary research is performed on previous studies focusing on the 

effects of roughness elements on high-speed boundary layer flow.  In Chapter III, the 

scaling, governing equations and numerical tool utilized for the study are introduced and 

described.  In Chapter IV, the linear stability analysis methodology is described.  In 

Chapter V, the results from the study are displayed in qualitative and quantitative plots 

and discussed, while Chapter VI is reserved for conclusions and future work. 
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CHAPTER II 

LITERATURE REVIEW 

 

In Fong et al.[16], the influence of a single roughness element on the stability of 

the flat plate hypersonic boundary layer is investigated.  The roughness element 

described in the paper resembles a semi-circle on the surface of the flat plate.  Four cases 

were simulated to obtain the results, with four different roughness element heights per 

test case.  The roughness element height was chosen to be a fraction of the boundary 

layer thickness (δ).  The four element heights used in the four test cases were 0.25δ, 

0.375δ, 0.5δ and 0.625δ.  The first test case (xr = 0.1101 m) involved locating the 

roughness element approximately 0.2209 m upstream of the synchronization point (the 

synchronization point is defined as the location where the phase speeds of the fast mode 

F and slow mode S become equal).  The roughness element in the second test case (xr = 

0.185 m) was approximately 0.146 m upstream of the synchronization point.  In the third 

test case (xr = 0.331 m), the roughness element is located at the synchronization point. 

For the fourth test case (xr = 0.410 m), the roughness element is approximately 0.079 m 

downstream of the synchronization point.   

In order to obtain the location of the synchronization point for the flat plate case, 

Fong utilized the multi-domain LST spectral method reported in Malik et al[35].  After 

performing the linearized stability analysis on the flat plate with no roughness element 
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present, the synchronization point was located a 0.331 m.  The effect of the roughness 

element on the Mode S perturbation was primarily analyzed and displayed.  For case 1 

and case 2, the roughness element was placed upstream of the synchronization point, 

which resulted in an amplification of the perturbations present in the simulation when 

there was no roughness element present.  As the height of the roughness element 

increased, the amplification factor of the perturbation increased drastically.  For case 3, 

the roughness element was placed at the location of the synchronization point.  During 

this test case, the height of the roughness element had a very distinct effect on the 

perturbations of the test case.  When the height of the roughness element was 0.25δ, the 

perturbations continue to grow in the downstream as if there was no roughness element 

present.  But, when the height of the roughness element was greater than 0.25δ, a 

damping of the perturbations downstream of the roughness element and right before the 

element became prevalent.  For test case 4, where the roughness element was located 

downstream of the synchronization point, the perturbations were dampened by each test 

height of the roughness element.  As the roughness element height was increased, the 

greater reduction in the perturbations was present.  Based on the results from the four test 

cases that Fong executed, placing a roughness element downstream of the 

synchronization point for the imposed mode can act as an efficient dampener and could 

potentially stabilize a flow. 

In Zhou et al.[36], simulations were conducted to analyze the influence of a wavy 

surface on the transition and stability of the hypersonic boundary layer.  The wavy 

surface was created with the following equations: 
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𝑦(𝑥) = {
√𝑅2 − (𝑥 − 𝑥𝑚 + 𝑙 2⁄ )2 ,   − 𝑅, 𝑥𝑠 < 𝑥 < 𝑥𝑚

√𝑅2 − (𝑥 − 𝑥𝑚 + 𝑙 2⁄ )2 ,   − 𝑅, 𝑥𝑚 < 𝑥 < 𝑥𝑒

 

where 𝑙 = 12𝑚𝑚, ℎ = 1.8𝑚𝑚, 𝑅 =
ℎ

2
+

𝑙2

8ℎ
, 𝑥𝑚 =

𝑥𝑠+𝑥𝑒

2
 (Zhou et al.[36]).  The free-stream 

conditions were defined as:  𝑀∞ = 6, 𝑅𝑒∞ = 10.5 × 106, 𝑇∞ = 43.18𝐾.  Zhou 

introduced a periodic disturbance into the simulated flow by periodic blowing and 

suction.  In the paper, Zhou performed three simulation cases with the wavy wall surface, 

where the wave number was altered, the wall depth was altered, then the streamwise 

location of the wavy wall surface was analyzed. 

 The first set of simulations involved testing five different wavy wall wave 

numbers.  The wave numbers utilized were 1, 3, 6, 9 and 12, with the depth of the wavy 

wall set to 1.8mm and the starting location of the wavy wall at 52mm.  The wave number 

reveals how many times the disturbance of the wavy wall is modulated, thus showing the 

effect of how various identical disturbances alter the stability of the hypersonic flow.  For 

the case when n=1, the disturbance from the wavy wall initially caused the amplitude of 

the second-mode to reduce as compared to the flat plate case, but then the pressure 

coefficient returned to the amplitude corresponding to the flat plate case, approximately 

90mm downstream of the beginning of the wavy wall.  Then, the amplitude of the 

pressure coefficient reaches a maximum value above the maximum value achieved in the 

flat plate case.  For the rest of the cases, where n=3,6,9,12, the maximum amplitude of 

the pressure coefficient does not reach the maximum amplitude of the flat plate case.  The 

n=12 case greatly reduced the pressure coefficient amplitude downstream of the wavy 

wall, by a reduction of almost half when compared to the flat plate case. 
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 For the second round of simulations, the starting location of the wavy wall is 

52mm, the number of disturbance modulations is 9, and the depth of the wavy wall is 

analyzed at three different depths: 1.8mm, 2.1mm, 2.4mm.  From the plots, one can 

notice that as the depth of the wavy wall disturbance increases, the amplitude of the 

pressure coefficient has a noticeable reduction downstream of the disturbance.  The 

reduction of the pressure coefficient from the wavy wall depth of 2.4mm is almost 

identical to the pressure coefficient reduction of the wavy wall when the disturbance is 

modulated by 12 with a depth of 1.8mm. 

 For the last set of simulations, the wavy wall disturbance modulations is set to 9, 

the wavy wall depth is equal to 1.8mm and three starting wavy wall locations are 

analyzed in this set of simulations: 32mm, 52mm, 72mm.  When the wavy wall begins at 

32mm, the pressure coefficient is slightly reduced, while the greatest reduction of the 

pressure coefficient was from the wavy wall beginning at 72mm.  The overall reduction 

of the pressure coefficient is close to the overall reduction from the wavy wall with the 

disturbance modulation equal to 12.  The reduction of the pressure coefficient when the 

wavy wall begins at 72mm could be from the wavy wall beginning downstream of the 

synchronization point of the fast and slow acoustic wave, while the wavy wall for the 

32mm case is upstream of the synchronization point. 

 Based on the results of the simulations performed by Zhou, pertaining to the 

influence of a wavy wall to a hypersonic boundary layer, changing the position of where 

the wavy wall disturbance begins has the greatest reduction on the pressure coefficient.  

The reduction in the pressure coefficient helps proves that the transition of the hypersonic 

flow from laminar to turbulent is delayed to farther downstream.  
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In Park and Park[20], the study focused on the effect of a two-dimensional smooth 

hump on the instability of a hypersonic boundary layer with the assistance of parabolized 

stability equations.  The three main cases that were analyzed involved the smooth hump 

in a Mach 4.5 and 5.92 boundary layer flow over a flat plate and a Mach 7.1 flow in a 

sharp cone boundary layer.  The effect of the surface hump’s location with respect to the 

synchronization point was analyzed by plotting the N-factor curves of F=50 (frequency) 

when the hump was placed upstream of the synchronization point and then downstream 

of the synchronization point.  Based on Figure 11 in Park and Park[20], when the surface 

hump was located upstream of the synchronization point, the curves had a higher N-

factor than the flat wall case, but as the location of surface moves downstream of the 

synchronization point, the N-factor becomes lower than the flat wall case.  When the 

surface hump was located at L = 1.6m, approximately 0.15m downstream of the 

synchronization point, the hump had the greatest stabilization effect on the mode S in the 

hypersonic boundary layer.  The results for the 5.92 Mach speed boundary layer case, 

exhibited similar results as the previous described above.  Based on these results from 

Park and Park[20], when there is a roughness element present downstream of the 

synchronization point of the acoustic waves, then the transition to turbulent flow is able 

to be delayed within the high-speed boundary layer. 
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CHAPTER III 

SIMULATION FORMULATION AND NUMERICAL ALGORITHM 

Scalings 

The governing equations employed for the numerical simulations are the full 

Navier-Stokes equations written in generalized curvilinear coordinates, where the spatial 

coordinates in the computational space are expressed in terms of the spatial coordinates 

in the physical space as 𝜉 = 𝜉(𝑥, 𝑦) , 𝜂 = 𝜂(𝑥, 𝑦), where ξ and η are the spatial 

coordinates in the computational space, with x and y as the spatial coordinates in the 

physical space.  The transformation allows for seamless mapping of the solution of the 

computational to the physical space and vice versa.  All dimensional spatial coordinates 

are normalized by the boundary layer thickness at the inflow, 𝛿∗, 

 (𝑥, 𝑦) =
(𝑥∗,𝑦∗)

𝛿∗  (1) 

the velocity is scaled by the freestream velocity magnitude 𝑉∞
∗, 

 (𝑢, 𝑣) =
(𝑢∗,𝑣∗)

𝑉∞
∗   (2) 

The pressure is scaled by the dynamic pressure at infinity, 𝜌∞
∗ 𝑉∞

∗2
, and the temperature by 

the freestream temperature, 𝑇∞
∗ .  The Reynolds number based on the boundary layer 

thickness, Mach number and Prandtl number are defined as 

 𝑅𝑒𝜆 =
𝜌∞

∗ 𝑉∞
∗ 𝛿∗

𝜇∞
∗ ,    𝑀 =

𝑉∞
∗

𝑎∞
∗ ,    𝑃𝑟 =

𝜇∞
∗ 𝐶𝑝

𝑘∞
∗   (3) 
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where 𝜇∞
∗ , 𝑎∞

∗  and 𝑘∞
∗  are freestream dynamic viscosity, speed of sound and thermal 

conductivity, respectively; and Cp is the specific heat at constant pressure.  All 

simulations are performed for air as an ideal gas (Sawaya et al.[43]). 

Governing Equations 

A hypersonic flat-plate boundary layer is considered with small two-dimensional 

surface non-uniformity located at a certain distance from the leading edge.  In the 

conservative form, the Navier-Stokes equations are written as 

 𝑸𝑡 + 𝑭𝜉 + 𝑮𝜂 = 𝑺, (4) 

where the conservative variable vector is  

 𝑸 =
1

𝐽
{𝜌, 𝜌𝑢𝑖, 𝐸}𝑇 , 𝑖 = 1,2  (5) 

and ρ is density of the fluid, 𝑢𝑖 = (𝑢, 𝑣) is the physical space velocity vector, and E is the 

total energy.  The flux vectors F and G, are defined as, 

 𝑭 =
1

𝐽
{𝜌𝑈, 𝜌𝑢𝑖𝑈 + 𝜉𝑥𝑖

(𝑝 + 𝜏𝑖1
), 𝐸𝑈 + 𝑝�̃� + 𝜉𝑥𝑖

Θ𝑖}
𝑇
 (6) 

 𝑮 =
1

𝐽
{𝜌𝑉, 𝜌𝑢𝑖𝑉 + 𝜂𝑥𝑖

(𝑝 + 𝜏𝑖2
), 𝐸𝑉 + 𝑝�̃� + 𝜂𝑥𝑖

Θ𝑖}
𝑇
 (7) 

where the contravariant velocity components are given by 

 𝑈 = 𝜉𝑥𝑖
𝑢𝑖 , 𝑉 = 𝜂𝑥𝑖

𝑢𝑖 (8) 

with the Einstein summation convention applied over 𝑖, 𝑗.  The shear stress tensor and the 

heat flux are given as  

 𝜏𝑖𝑗 =
𝜇

𝑅𝑒
[(

𝜕𝜉𝑘

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝜉𝑘
+

𝜕𝜉𝑘

𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝜉𝑘
) −

2

3
𝛿𝑖𝑗

𝜕𝜉𝑙

𝜕𝑥𝑘

𝜕𝑢𝑘

𝜕𝜉𝑙
]  (9) 

 Θ𝑖 = 𝑢𝑗𝜏𝑖𝑗 +
𝜇

(𝛾−1)𝑀∞
2 𝑅𝑒𝑃𝑟

𝜕𝜉𝑙

𝜕𝑥𝑖

𝜕𝑇

𝜕𝜉𝑙
 (10) 
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and S is the source vector term.  The pressure p, the temperature T and the density of the 

fluid are combined in the equation of state, 𝑝 = 𝜌𝑇 𝛾𝑀∞
2⁄  when non-reacting flows are 

considered.  The Jacobian of the curvilinear transformation from the physical space to the 

computational space is denoted by J.  The derivatives ξx, ξy, ηx, ηy represent the grid 

metrics.  The variables are non-dimensionalized by their respective free-stream variables, 

except with pressure being non-dimensionalized by ρV∞.  The dynamic viscosity and the 

thermal conductivity are linked to the temperature by Sutherland’s equations in 

dimensionless form, 

 𝜇 = 𝑇3 2⁄ 1+𝐶1 𝑇∞⁄

𝑇+𝐶1 𝑇∞⁄
;    𝑘 = 𝑇3 2⁄ 1+𝐶2 𝑇∞⁄

𝑇+𝐶2 𝑇∞⁄
    (11) 

where air at sea level, 𝐶1 = 110.4𝐾, 𝐶2 = 194𝐾 and T∞ is a reference temperature.   

A high-order numerical algorithm is employed to solve the Navier-Stokes 

equations, where the time integration is performed using a third order TVD Runge-Kutta 

method (Liu et al.[37]) written in the form  

 

𝑸0 = 𝑸𝑛

𝑸1 = 𝑸0 + ∆𝑡𝐿(𝑢0)

 
𝑸2 =

3

4
𝑸0 +

1

4
𝑸1 +

1

4
∆𝑡𝐿(𝑸1)

𝑸𝑛+1 =
1

3
𝑸0 +

2

3
𝑸1 +

2

3
∆𝑡𝐿(𝑸2)

 (12) 

where L(Q) is the residual and ∆𝑡 is the time step; while the spatial derivatives are 

discretized using either a dispersion relation preserving scheme (Tam and Webb[38]) or a 

high resolution 9-point dispersion relation preserving optimized scheme (Bogey et al[39]).  

The spatial discretization scheme can be written as (𝜕𝑥𝑓)𝑙 ≃ 1 ∆𝑥 ∑ 𝑎𝑗𝑓𝑙+𝑗
𝑀
𝑗=−𝑁⁄  where 

the coefficients are given in Table 1. 
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Table 1.  Weights of the centered stencils 

Stencil 𝑎1 = −𝑎−1 𝑎2 = −𝑎−2 𝑎3 = −𝑎−3 𝑎4 = −𝑎−4 

DRP 0.77088238 -0.16670590 0.02084314 0 

FDo9p 0.84157012 -0.24467863 0.05946358 -0.00765090 

 

 

To damp out the unwanted high wavenumber waves from the solution, high order 

spatial filters, developed by Kennedy and Carpenter[40], are applied to all variables.  

Nonreflecting boundary conditions (Kim and Lee[41]) are used at the inflow boundary and 

extrapolation at the outflow boundary.  The mean inflow conditions, consisting of 

velocity, density and temperature profiles, are obtained separately from a precursor two-

dimensional simulation, where a Blasius type boundary condition is imposed in the 

upstream.  A ‘slice’ of data from the two-dimensional flow domain is imposed at the 

inflow boundary of the main domain. 

No slip boundary conditions for velocity and isothermal condition for temperature are 

imposed at the solid surface.  Sponge layers are imposed in the proximity of the far-field 

boundaries, and combined with grid stretching to damp out the unwanted spurious waves; 

these sponge layers are set outside the flow domain since they generate unphysical 

solutions (Sescu et al.[12]).  The shock capturing techniques are necessary to avoid 

unwanted oscillations that may propagate from potential discontinuities.  In this study, we 

apply a shock capturing methodology that was proven to work efficiently for high-order, 

nonlinear computations (Bogey et al.[42]).  In present work high-order, central-difference 

schemes are used to achieve increased resolution of the propagating disturbances, a 

straightforward approach is a model which introduces sufficient numerical viscosity in 
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the area of the discontinuities, and negligible artificial viscosity in the rest of the domain.  

A shock-capturing technique, suitable for simulations involving central difference in 

space is applied, based on the general explicit filtering framework.  The technique 

introduces selective filtering at each grid vertex to minimize numerical oscillations, and 

shock-capturing in the areas where discontinuities are present (refer to Bogey et al.[42] 

detailed information). (Sawaya et al.[43]) 
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CHAPTER IV 

LINEAR STABILITY EQUATIONS 

 

For the two-dimensional Cartesian coordinate system, x and y are defined as the 

streamwise and wall-normal direction respectively.  The velocity components are scaled 

by the reference velocity 𝑉∞, the spatial coordinates by the boundary layer thickness δ, 

density by 𝜌∞, pressure by 𝜌∞𝑉∞
2, time by 𝛿 𝑉∞⁄  and other variables are scaled by the 

corresponding boundary layer edge components (Malik et al.[35]).  Once the components 

have been properly scaled, the instantaneous values for velocity (u, v), pressure (p), 

temperature (τ), density (ρ), dynamic viscosity (μ) and thermal conductivity coefficient 

(k) are represented as a summation of the mean and the disturbance quantity, 

𝑢 = �̅� + �̃�, 𝑣 = �̅� + �̃�, 𝑝 = �̅� + 𝑝, 𝜏 = �̅� + �̃�, 𝜌 = �̅� + �̃�, 𝜇 = �̅� + 𝜇, 𝑘 = �̅� + �̃�. (13) 

For the local compressible boundary layer flow, the “locally parallel flow” assumption in 

the Orr-Sommerfield equation for incompressible flow is utilized.  With the locally 

parallel flow assumption, the mean quantities are a function of the wall-normal 

coordinate only,  

 𝑈 = 𝑈(𝑦), 𝑉 = 𝑉(𝑦), 𝑇 = 𝑇(𝑦), 𝜌 = 𝜌(𝑦) (14) 

with P assumed to be constant across the boundary layer and equal to 1 𝜌𝑀2⁄ , and 𝜌 =

1 𝑇⁄ .  As a result, the density disturbance (�̃�) becomes, 

 �̃� = 𝛾𝑀2 �̃�

𝑇
−

�̃�

𝑇2. (15) 
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With the newly defined equation for �̃� and the Sutherland equations, the equations for 𝜇 

and �̃� are derived to become,  

 𝜇 =
𝑑𝜇

𝑑𝑇
�̃�, �̃� =

𝑑𝑘

𝑑𝑇
�̃�. (16) 

To derive the stability equations, the fluctuations in velocity, pressure and 

temperature are assumed to resemble a harmonic wave defined as 

 [�̃�, �̃�] = [�̂�(𝑦), 𝑣(𝑦)]𝑒𝑖(𝛼𝑥−𝜔𝑡) (17) 

 𝑝 = �̂�(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡) (18) 

 �̃� = �̂�(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡) (19) 

where α is the wavenumber and ω is the frequency where the velocity, pressure and 

temperature are complex.  Based on the spatial stability theory, the frequency ω is 

considered real, while the wavenumber α is a complex number to be determined.  For the 

temporal stability theory, the wavenumber α is considered real, and the frequency ω is the 

complex unknown.  The Navier-Stokes equations are first linearized around the mean 

flow, resulting in a set of equations for disturbances.  Then, equations (17)-(19) are 

plugged into the disturbance equations to obtain the following system of ordinary 

differential equations, which form an eigenvalue problem, 

 (𝐴𝐷2 + 𝐵𝐷 + 𝐶)Φ = 0,  (20) 

where Φ is a four-element vector defined as 

 {�̂�, 𝑣, �̂�, �̂�}
𝑡𝑟

.  (21) 

A is a four by four matrix defined as  

 𝐴 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 1

]  (22) 
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The four by four matrices for B and C are given in Appendix I of Malik et al.[35], and 𝐷 ≡

𝑑

𝑑𝑦
.  The boundary conditions associated with homogeneous differential equation (20) are  

 𝑦 = 0; 𝜙1 = 𝜙2 = 𝜙4 = 0  (23) 

 𝑦 → ∞;  𝜙1, 𝜙2, 𝜙4 → 0. (24) 

The wall is treated as an insulated wall for the temperature variable of the mean 

flow, while the temperature perturbations are zero for the solid boundary wall.  When the 

disturbance frequency is high, this assumption becomes acceptable.  The temperature 

perturbations are unable to penetrate the solid wall, due to the thermal inertia of the solid 

wall.  When temporal stability analysis is assumed, equation (20) is discretized with the 

use of finite difference schemes normal to the wall normal direction, resulting with the 

eigenvalue problem 

 𝐸Φ = 𝜔𝐹Φ  (25) 

is obtained, where E and F are four by four matrices from A, B and C.  The boundary 

layer coordinate y, 0 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥, is mapped into the computational domain, 0 ≤ 𝜂 ≤ 1, 

with the use of algebraic mapping 

𝑦 =
𝑎𝜂

𝑏−𝜂
, 𝑤ℎ𝑒𝑟𝑒 𝑏 = 1 +

𝑎

𝑦𝑚𝑎𝑥
  . 

The term ymax is where the free-stream boundary conditions are satisfied and a is the 

chosen scaling parameter to optimize the accuracy of calculations.  The scaling parameter 

is set to 𝑎 = 𝑦𝑚𝑎𝑥 𝑦𝑖 (𝑦𝑚𝑎𝑥 − 2𝑦𝑖)⁄ , this results in half of the node points being located 

between y = 0 and y = yi for discretization.    The eigenvalue problem presented by 

equation (25) is then solved with LR or QR methods (Malik et al.[35]).
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CHAPTER V 

RESULTS AND DISCUSSIONS 

 

The flow domain of the simulations utilized for the results were a flat-plate 

boundary layer with the freestream flow traveling at M = 5.92.  The x-axis is lined up 

with the surface of the flat-plate, and the y-axis is set up normal to the surface of the flat-

plate.  The dimensions of the grid domain is 50 mm tall and 600 mm long.  The Reynolds 

number based on the boundary layer thickness, and the freestream velocity is 22,750.  

Due to the physical frequency of the disturbances set to 132 kHz, the non-dimensional 

angular frequency is equal to 0.5 for the simulation disturbances.  The wall has a constant 

temperature equal to 𝑇𝑤 = 48.69 𝐾, which is equal to the ambient temperature. 

The grid mesh for the simulations has approximately 650,000 grid points, with the 

necessary grid resolution near the wall and proper locations close to the wall 

deformations described in section 3 of the results.  The spatial coordinates are 

nondimensionalized by the height of the wall deformation.  The velocity, density and 

temperature are nondimensionalized by the freestream velocity, density and temperature 

respectively, and the pressure is nondimensionalized by the dynamic pressure of the 

freestream flow. 

There are two types of disturbances that will be imposed from the wall with the 

wall normal velocity defined as  
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 𝑣𝑤(𝑥, 𝑡) = 𝐴 sin [𝜋
(𝑥−𝑥1)

(𝑥2−𝑥1)
]

2

sin(𝜔𝑡),  (26) 

where A is the amplitude of the wave, x1 and x2 are the start and end points along the 

streamwise direction for the wall disturbance, and ω is the angular frequency.  For the 

simulations presented in this thesis, x1 = 50 and x2 = 57, and the inflow boundary is 

located at the beginning of the flow domain, which is set at x = 0.  The disturbance for 

different time instances are plotted together in Figure 1.  The first type of disturbance that 

will be utilized in the simulations is a pulse disturbance at time interval [0, 2𝜋 𝜔⁄ ], which 

generates a localized pulse that travels downstream with the mean flow.  As a result, the 

wave will grow and/or decay as it propagates downstream in the flow domain, dependent 

on the boundary layer conditions and the amplitude of the pulse.  The second disturbance 

that will be utilized in the simulations is periodic oscillations that begin at x1 and will be 

analyzed within the boundary layer (for the periodic oscillations disturbance, the wall 

transpiration disturbance if imposed continuously in the time interval [0,∞)) (Sawaya et 

al). 

 

Figure 1 Wall disturbance imposed between x = 50 and x = 57. 
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Grid Convergence 

This section will analyze the influence of grid resolution on the computational 

accuracy of the results for the flat wall case.  The five different grid density cases are 

listed below in Table 2. 

Table 2.  Flat Wall Grid Density 

Case Horizontal Density Vertical Density 

g0 900 180 

g1 1080 240 

g2 1440 300 

g3 1800 360 

g4 2160 420 

 

 

The grid density case g0 has the coarsest grid of 900 x 180, while grid density 

case g4 has the finest grid of 2160 x 420.  Figure 2 displays the pressure contour plots of 

the five grid density cases for the smooth case when the wall disturbance is a periodic 

blowing-suction disturbance.   

 

Figure 2 Pressure disturbance contours 
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Figure 2b) 

 

Figure 2c) 

 

Figure 2d) 

 

Figure 2e) 

Pressure disturbance contours for a) g0, b) g1, c) g2, d) g3 and e) g4 grid cases of different grid densities. 

The root-mean square (rms) velocity normal to the wall for the five cases is 

plotted in Figure 3 on a semi-log scale.  The semi-log scale is utilized to analyze the 

convergence rates among the five grid density cases to determine which one provides the 

most accurate and computational efficient grid density for the upcoming computational 

simulations.  The root mean square was calculated as  
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 𝑣𝑟𝑚𝑠
′ (𝑥, 𝑦) = √

1

𝑇
∫ [𝑣′(𝑥, 𝑦, 𝑡)]2𝑑𝑡

𝑡+𝑇

𝑡
  (27) 

where the time span T was in order of the time it takes a disturbance to go from the inlet 

boundary to the outlet boundary. 

From Figure 3, it can be noted that case g3 and g4 has almost identical root mean 

square distribution, while the root mean square distribution of g0 and g1 are the least 

converged with each other.  Based on these results, the grid density for case g3 (1800 x 

360) is selected for the the other wall deformation cases. 

 

Figure 3 Root mean square of the wall-normal velocity distribution along the wall (y = 0.7) for 

different grid resolutions. 
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Linear Stability Analysis 

A linear stability analysis was performed on the flat wall case to locate the 

position of the synchronization point, and to determine the proper location of the wall 

deformations.  The synchronization point is the location where the phase velocities for 

the fast and slow modes are equal.  The wall disturbance examined in the linearized 

stability analysis is the periodic blowing and suction.  In Figure 4, the first and second 

modes are plotted based on the growth rates for various streamwise locations.  The 

wavenumber of the first and second modes travels upstream as the streamwise travels 

downstream.  When this occurs, the amplitude of the second mode increases, while the 

first mode amplitude does the opposite of the second mode amplitude. 

The results from LST can be validated by comparing the first mode absolute 

values of the rho, u and P with the root-mean square values of rho, u and P.  This 

comparison is displayed in Figure 5.  The absolute values for the first mode components 

have been scaled accordingly to match the root-mean square values of the corresponding 

components.  The curves for the rho, u and P components for the first mode match the 

curves for the root-mean square rho, u and P components very well; this comparison 

proves that the LSE method is quite accurate.   
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Figure 4 Growth rates for different streamwise locations. 

 

Figure 5 Comparison between the modes from linear stability analysis and the root mean square of u-

velocity, v-velocity and pressure. 

In order to identify the location of the synchronization point, the fast F and slow S 

modes are plotted to see where the two curves intersect.  The location of the intersection 

corresponds to the wavenumber that can be used to calculate the location of the 

synchronization point.  In Figure 6, the F and S modes are displayed, and based on the 

location of the intersection point, the synchronization point is found to be at x = 247.6. 



 

25 

 

Figure 6 Phase velocities for the slow and fast waves as a function of the wavenumber. 

 

Variation in Wall Deformation Shape 

With the synchronization point located at x = 247.6 mm, the starting location for 

the wall deformation is required to be located downstream from this location.  The 

location for the wall deformations to begin will be located at x = 300 mm in the flow 

domain, approximately half of the flow domain away from the leading edge.  The wall 

deformations will have a height or a depth of 0.5 mm.  Figure 7 displays the grids of the 

eight wall deformation cases that will be utilized to influence the boundary layer 

disturbances.  The eight wall deformation cases are a backward step, forward step, 

surface dip, surface hump, sinusoidal wave of surface dips (sine 1), sinusoidal wave of 

surface humps (sine 2), a combination of a backward and forward step, and a 

combination of a forward and backward step.  The grid mesh is compressed near the 

location of the wall deformation and then stretched to a uniform distribution outside of 

the wall deformation, so the Δx = 0.1 mm and Δy = 0.01 mm.   
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Figure 7 Computational grid meshes 

 

Figure 7b) 

 

Figure 7c) 
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Figure 7d) 

 

Figure 7e) 

 

Figure 7f) 

 

Figure 7g) 
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Figure 7h) 

Mesh in the proximity to the surface deformation:  a) backward step; b) forward step; c) combination of a 

backward and a forward step; d) combination of a forward and a backward step; e) surface dip; f) surface 

hump; g) wavy surface with the mean below the wall surface (successive dips); h) wavy surface with the 

mean above the wall surface (successive humps). 

Before the two disturbances were applied to the wall deformation simulations, the 

mean flow of each deformation case was calculated using inflow profiles that were 

created for the compressible boundary layer defined as the beginning of the Results 

section.  The mean pressure contour plots of the eight wall deformations were plotted in 

Figure 8.  Every deformation created weak discontinuities that propagated to the external 

freestream flow field.  The cases that produced the highest value discontinuities were the 

cases that began with a forward step or a surface hump, which were the forward step, 

surface hump, sine 2 and the combination case of a forward and backward step.  The 

backward step, surface dip, sine 1 and the combination case of a backward step and 

forward step produced the weakest discontinuities.   



 

29 

 

Figure 8 Mean pressure contours 

 

Figure 8b) 

 

Figure 8c) 

 

Figure 8d) 



 

30 

 

Figure 8e) 

 

Figure 8f) 

 

Figure 8g) 
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Figure 8h) 

Mean pressure contours in the proximity to the surface deformation:  a) backward step; b) forward step; c) 

combination of a backward and a forward step; d) combination of a forward and a backward step; e) 

surface dip; f) surface hump; g) wavy surface with the mean below the wall surface (successive dips); h) 

wavy surface with the mean above the wall surface (successive humps). 

The mean pressure in the streamwise direction of the wall deformation cases are 

plotted in Figure 9 to quantitatively compare the cases to determine the extent of the 

discontinuity strengths.  In the left plot of Figure 9, the backward step, forward step and 

the two combination cases were quantitative compared and the combination of the 

backward and forward step has the weakest distortion of the mean flow, while the 

forward step case and the combination of the forward and backward step had the greatest 

upstream distortion that were equal to one another.  In the right plot, the surface dip, 

surface hump, sine 1 and sine 2 cases were plotted together to quantitatively compare to 

see which of the smooth curve deformation cases has the greatest distortion influence on 

the mean flow.  Based on the plot, the dip and sine 1 cases had the weakest distortion to 

the mean flow, while the hump and sine 2 cases had the strongest distortion on the mean 

flow, with equal max distortion upstream of the wall deformation.  The preliminary 

results from the mean flow distortions give a notable precursor to the potential results of 

how the wall deformations will affect the two wall disturbances, pulse and periodic 

oscillations.  The wall deformations that exhibit a surface extruding from the surface of 
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the solid surface wall, such as the forward step, surface hump, sine 2 and combination 

case of forward and backward step, cause an increase in pressure with an associated 

adverse pressure gradient followed by a decrease in pressure with an associated favorable 

pressure gradient, or a succession of adverse and favorable pressure gradients (Sawaya et 

al).  Based on this and the data in Figure 8, these cases will most likely dampen the 

disturbances that will be propagating within the boundary layer.  The wall deformations 

with a drop in the solid surface wall, such as the backward step, surface dip, sine 1 and 

the combination case of a backward and forward step, have a favorable pressure gradient 

followed by an adverse pressure gradient, or a succession of adverse and favorable 

pressure gradients (Sawaya et al.[43]).   

 

Figure 9 Mean pressure distribution 
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Figure 9 (continued) 

Mean pressure distribution along the wall (y = 3), in the proximity to the surface deformation. 

The periodic blowing and suction wall disturbance was applied to the eight wall 

deformation cases and the flat wall case.  The disturbance pressure contour plots of the 

flat wall case and the eight wall deformations displayed in Figure 7, are shown in Figure 

10 to notice the general influence of the wall deformation cases on the periodic 

oscillations occurring within the boundary layer.  The flat wall case was also plotted as 

the baseline case for the eight wall deformation cases.  From the figure, the discontinuity 

line that is caused by the forward step seems to divert the disturbances into the external 

flow and out of the boundary layer.  This deviation of energy may be the explanation on 

the reduction of energy in the boundary layer due to the periodic disturbance.  The 

contour plot for the combination case, Figure 10d, the diversion of the disturbance energy 

into the external flow is very minuscule compared to the forward step, due to the weak 

distortion and adverse pressure gradient displayed in Figures 8 and 9.  The other cases 
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follow suite with the forward step or the combination case of the backward and forward 

steps, depending on the if the cases create a favorable or adverse pressure gradient.  

 

Figure 10 Pressure disturbance contours 

 

Figure 10b) 

 

Figure 10c) 

 

Figure 10d) 
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Figure 10e) 

 

Figure 10f) 

 

Figure 10g) 

 

Figure 10h) 

 

Figure 10i) 

Pressure disturbance contours in the proximity to: a) flat wall; b) backward step; c) forward step; d) 

combination of a backward and a forward step; e) combination of a forward and a backward step; f) surface 
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dip; g) surface hump; h) wavy surface with the mean below the wall surface (successive dips); i) wavy 

surface with the mean above the wall surface (successive humps). 

To support the assumption that the energy is deviated into the external flow, 

Figure 11 contains the contours of the time-averaged kinetic energy in the proximity to 

the wall deformations is plotted for the most effective roughness elements: forward step, 

surface hump and the wavy surface consisting of successive humps.  The figure suggests 

that a portion of the kinetic energy is directed to the external flow, which does not occur 

in subsonic boundary layers since there are no discontinuities posed by the roughness 

element.  However, the deviated portion of the energy is small with respect to the 

upstream kinetic energy level, approximately 10%, so this may not be the main 

mechanism of the disturbance energy reduction, but a factor to be taken into account. 

 

Figure 11 Time-averaged kinetic energy contours 

 

 

Figure 11b) 
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Figure 11c) 

Time-averaged kinetic energy contours in the proximity to the surface deformations:  a) forward step; b) 

surface hump; c) wavy surface consisting of successive humps.  The ratio between ‘grey’ and ‘black’ 

patches is approximately 1/10. 

The disturbance energy reduction from each of the cases are quantitatively plotted 

in Figures 12 and 13, where the energy reduction in the stream wise direction is plotted.  

The root-mean square velocity normal to the wall is plotted for the pulse disturbance and 

the periodic blowing and suction disturbance, respectively, and the wall deformation 

cases are compared to the flat wall results.  For the pulse disturbance, the sine 2 and 

combination case of a forward and backward step had the greatest reduction in the 

disturbance amplitude, while the dip case had to smallest reduction in disturbance 

amplitude.  For the periodic blowing and suction disturbance, the sine 1, sine 2, forward 

step and combination case of the forward step and backward step had the greatest 

reduction in the disturbance amplitude, while the dip and combination case of the 

backward step and forward step seemed to have the lowest reduction overall of the 

periodic disturbance amplitude.  The hump case and the backward step case had moderate 

reduction in disturbance amplitude for the both sets of boundary layer disturbances.  This 

moderate reduction of the amplitude is from the change in the wall surface. 
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Figure 12 V-rms pulse disturbance in x-direction 

 

Figure 12b) 

Root mean square of the wall-normal velocity distribution along the wall (y = 0.7) for the pulse 

disturbance. 
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Figure 13 V-rms blowing and surction disturbance in x-direction 

 

Figure 13 (continued) 

Root mean square of the wall-normal velocity distribution along the wall (y = 0.7) for the periodic flowing 

and suction disturbance. 
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The wall-normal velocity of the simulation cases in the vertical direction are 

plotted in Figure 14 and 15 for the pulse and periodic blowing and suction wall 

disturbances respectively.  The analysis for these plots was chosen at x = 350 mm, which 

is downstream from the wall deformation.  Based on the plots, most of the disturbance 

kinetic energy resides within the boundary layer, which is approximately 3.5 mm thick.  

The forward step, sine 2 case and the combination of the forward step and the backward 

step case had the overall smoothest wall-normal velocity profiles for the two 

disturbances.  For the pulse disturbance, the sine 2 case had the smoothest velocity 

profile.  The combination of the forward step and backward step case had the smoothest 

velocity profile for the periodic blowing and suction disturbance.  All the cases that 

create an extrusion of the wall surface, as compared to the flat wall case, and the sine 1 

and backward step cases have a noticeable influence on the reduction in the wall 

disturbance amplitude.  While the dip and combination of the backward step and forward 

step cases seem to have minor influence on the reduction on the wall disturbance 

amplitude. 
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Figure 14 V-rms pulse disturbance in y-direction 

 

Figure 14 (continued) 

Profiles of root mean square of wall-normal velocity (x = 350) for the pulse disturbance. 
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Figure 15 V-rms blowing and suction disturbance in y-direction 

 

Figure 15 (continued) 

Profiles of root mean square of the wall-normal velocity (x = 350) for the periodic blowing and suction 

disturbance. 
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In Figures 16, the root mean square of the pressure is plotted for the periodic 

blowing and suction disturbance, respectively.  The trends in the figures agree with the 

trends seen in Figure 15 for the wall deformation cases, where the forward step, 

combination of forward and backward step and sine 2 have the greatest reduction in 

disturbance energy of the periodic blowing and suction disturbance within the boundary 

layer.  While the combination of a backward and forward step, and dip cases have the 

least amount of reduction in the disturbance energy within the boundary layer. 

 

Figure 16 P-rms of blowing and suction disturbance in y-direction 
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Figure 16b) 

Profiles of root mean square of the pressure (x = 350) for the periodic blowing and suction disturbance. 

 

Variation in Wall Deformation’s Streamwise Extent 

In this section, the dependency of the energy reduction on the streamwise width of 

the deformation is investigated for the backward-forward step combination, forward-

backward combination, surface hump, surface dip, sine 1 consisting of successive dips 

and sine 2 consisting of successive humps.  Figure 17 shows the two backward-forward 

step configurations that are considered:  one has the streamwise length of 20 and the 

other length of 40 step heights.  In figure 18a, the mean pressure distribution along the 

wall reveals that the extension of the width between the backward and the forward steps 

poses a greater distortion in the mean flow, compared to its smaller width.  This is 

because the boundary layer flow in the second case (greater width) has enough room for 

the flow to adjust itself to the original upstream condition, so the interaction with the 
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forward step becomes stronger; in other words, the two flows near the wall deformations 

are less affected by each other as the width is increased.  However, in figure 18b, one can 

notice that the two deformations have almost the same effect on the propagating 

disturbance. 

 

Figure 17 Backward-forward streamwise meshes 

 

Figure 17 (continued) 

Combination of a backward and forward step shapes with different streamwise width. 

 

 

Figure 18 backward-forward streamwise width distribution plots 



 

46 

 

Figure 18b) 

a) Mean pressure distribution along the wall (y = 1); b) Root mean square of the wall-normal velocity 

distribution along the wall (y = 0.7). 

The same analysis is performed for the forward-backward combination, as shown 

in figure 19, where the first figure corresponds to a streamwise width of 12 step heights, 

while the second figure corresponds to a width of 20 step heights.  The upstream adverse 

pressure gradient in figure 20a does not reveal a difference between the two cases, while 

there is some difference in the favorable pressure gradient portion in the downstream.  

Anyway, the effect on the disturbance propagation is almost the same, as displayed by 

distributions of root mean square of the wall-normal velocity distribution in figure 20b. 

 

Figure 19 Forward-backward streamwise meshes 

 



 

47 

 

Figure 19 (continued) 

Combination of a forward and backward step shapes with different streamwise width. 

 

Figure 20 Forward-backward streamwise distribution plots 

 

Figure 20b) 

a) Mean pressure distribution along the wall (y = 1); b) Root mean square of the wall-normal velocity 

distribution along the wall (y = 0.7). 



 

48 

Increasing the streamwise width of the surface hump, shown in figure 21, has an 

effect in the mean pressure distribution as shown in figure 22a, but not very significant.  

When concerning the root mean square of the wall-normal velocity, shown in figure 22b, 

the increase in the streamwise width of the surface hump deformation results in a less 

significant reduction of the disturbance amplitudes.  Thus, leading to the conclusion that 

a shorter, more localized surface hump should be utilized to reduce the disturbance 

energy.  In Fong et al.[17], the opposing results were obtained pertaining to a surface hump 

deformation, but the surface roughness considered in that study was not smooth, where 

the wall and the roughness element meet; and the disturbance utilized in the Fong et al. 

study was a pulse propagating as a wave packet, while the disturbance in this study is 

periodic. 

 

Figure 21 Surface hump streamwise meshes 

 

 

Figure 21 (continued) 

 

Figure 21 (continued) 

Surface hump shapes with different streamwise width. 
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Figure 22 Surface hump streamwise distribution plots 

 

Figure 22b) 

a) Mean pressure distribution along the wall (y = 1); b) Root mean square of the wall-normal velocity 

distribution along the wall (y = 0.7). 

In contrast to the surface hump deformation, increasing the streamwise width of 

the surface dip, shown in figure 23, proportionately affects the mean flow shown in figure 
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24a.  An interesting result is observed in figure 24b, where the root mean square of the 

wall-normal velocity is greatly reduced for the shortest and longest streamwise dip, while 

the root mean square for the intermediate surface dip has a smaller reduction. 

 

Figure 23 Surface dip streamwise meshes 

 

 

Figure 23 (continued) 

 

 

Figure 23 (continued) 

Surface dip shapes with different streamwise width. 
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Figure 24 Surface dip streamwise distribution plots 

 

Figure 24b) 

a) Mean pressure distribution along the wall (y = 1); b) Root mean square of the wall-normal velocity 

distribution along the wall (y = 0.7). 

The next set of results refer to the wavy surface consisting of successive surface 

dips (sine 1) and the wavy surface consisting of successive humps, to determine the effect 

of the varying wavenumber associated with the sine function utilized to generate the 

deformations.  The shape of the deformation in figure 25 correspond to sine 1 
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deformation, with the middle shape as the original sine 1 deformation used in the 

previous results section.  The distributions of the mean pressure near the wall (y = 1) are 

plotted in figure 26a.  The mean pressure is shown to increase as the wavenumber of the 

wavy surface deformation is decreased.  This result is prominent when comparing the 

first sine 1 shape with the third sine 1 shape.  There is no significant impact of the wavy 

surface wavenumber on the disturbance amplitude, as shown in figure 26b where the root 

mean square of the wall-normal velocity distribution for the three sine 1 shapes. 

 

Figure 25 Wavy surface (sine 1) streamwise meshes 

 

Figure 25 (continued) 

 

Figure 25 (continued) 

Wavy surface consisting of successive surface dip (sine 1) shapes with different streamwise width. 
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Figure 26 Wavy surface (sine1) streamwise distribution plots 

 

Figure 26b) 

a) Mean pressure distribution along the wall (y = 1); b) Root mean square of the wall-normal velocity 

distribution along the wall (y = 0.7). 

The shape of the deformation in figure 27 correspond to sine 2 deformation, with the 

middle shape being utilized in the previous results section.  The distributions of the mean 

pressure near the wall (y = 1) are plotted in figure 28a.  The mean pressure is shown to 

increase as the wavenumber of the wavy surface deformation is decreased, but not as 
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significantly as the sine 1 deformation.  There is no significant impact of the wavy 

surface wavenumber on the disturbance amplitude, as shown in figure 28b where the root 

mean square of the wall-normal velocity distribution for the three sine 2 shapes. 

 

Figure 27 Wavy surface (sine 2) streamwise meshes 

 

Figure 27 (continued) 

 

 

Figure 27 (continued) 

Wavy surface consisting of successive surface hump (sine 2) shapes with different streamwise width. 
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Figure 28 Wavy surface (sine 2) distribution plots 

 

Figure 28b) 

a) Mean pressure distribution along the wall (y = 1); b) Root mean square of the wall-normal velocity 

distribution along the wall (y = 0.7). 

Variation of wall deformation height 

In Fong et al.[15-17], the roughness element location and height was extensively 

studied.  In this section, the deformation heights are varied for three different cases: 

0.25mm, 0.5mm (original), 0.75mm.  Figure 29 represents the deformation cases 



 

56 

involving a sudden change in the surface, such as the backward or forward step.  The 

forward step, backward step and combination of the forward and backward step cases 

follow a similar trend that when the deformation height was increased from 0.5mm to 

0.75mm, the periodic disturbance amplitude was reduced as compared to the original 

height.  When the deformation height was reduced to 0.25mm, the periodic disturbance 

amplitude is not reduced as much as the original height of the deformation tested in the 

previous sections of the Results.  These results are conclusive with the results presented 

in the Fong et al.[15-17].  The combination of the backward and forward step case, the data 

is not very conclusive.  When the step height is reduced to 0.25mm and then increased to 

0.75mm, both seem to reduce the periodic disturbance amplitude as compared to the 

original deformation height.  Future work will allow for some clarification for this result 

displayed in Figure 29c. 

 

Figure 29 Variation in discontinuous deformation heights 
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Figure 29b) 

 

Figure 29c) 
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Figure 29d) 

Root mean square of the wall-normal velocity distribution along the wall (y = 0.7): a) backward step; b) 

forward step; c) combination of backward and forward steps; d) combination of forward and backward 

steps. 

Figure 30 represents the deformation cases involving a continuous change in the 

surface, such as the surface dip or surface hump cases.  The surface hump and sine 2 

cases are conclusive with the forward step case above and the results presented in the 

Fong et al.[15-17].  The surface dip and sine 1 cases, the data is not very conclusive.  When 

the step height is reduced to 0.25mm and then increased to 0.75mm, both seem to reduce 

the periodic disturbance amplitude as compared to the original deformation height.  

Future work will allow for some clarification for this result displayed in Figure 30b and 

Figure 30c. 



 

59 

 

Figure 30 Variation in continuous deformation heights 

 

Figure 30b) 
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Figure 30c) 

 

Figure 30d) 

Root mean square of the wall-normal velocity distribution along the wall (y = 0.7): a) hump; b) dip; c) sine 

1; d) sine 2. 
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CHAPTER VI 

CONCLUSIONS 

The effect of various two-dimensional surface deformations on disturbance 

propagating inside a high-speed boundary layer was analyzed in this thesis with the 

assistance of direct numerical simulations.  The two types of disturbances analyzed were:  

a localized wall pulse in the wall-normal velocity direction and a periodic wall blowing 

and suction.  Both disturbances were imposed within the wall boundary condition.  The 

2-D wall deformations that were examined were:  backward step, forward steps, 

combinations of a forward and backward steps, surface dip, surface hump, and two types 

of wavy surfaces consisting of successive dips or successive humps.  A study in terms of 

varying the streamwise width of the deformations and varying the height of the 

deformations was conducted.  A grid study for the flat wall case was conducted to decide 

on the proper grid density, that would allow for accurate results and not waste 

computational resources.  Based on the data from the linearized stability analysis of the 

flat wall case, the location of the synchronization point was calculated and the wall 

deformations were placed downstream of the synchronization point. 

The results show that the wall deformations had a stabilizing effect on the 

imposed disturbances, especially the deformations that feature an adverse pressure 

gradient in the upstream followed by a favorable pressure gradient or a succession of 

adverse and favorable pressure gradients.  The effectiveness of reducing the disturbance 
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amplitude varied with each of the wall deformations analyzed in this study.  The various 

pressure disturbance contour plots and line plots of root mean square of the wall-normal 

velocity and root mean square density disturbances displayed that the combination of the 

forward-backward steps, sine 2 and the forward step cases were the most effective in 

reducing the amplitudes of the two types of disturbances utilized in this study.  The 

combination of the backward-forward steps and the surface dip cases were the least 

effective in reducing the amplitudes of both types of disturbances, when compared to the 

flat wall case.  A possible explanation for the mechanism of energy reduction was 

proposed:  part of the energy from the disturbance is deviated outside of the boundary 

layer by the mean flow discontinuity that is generated by the presence of the wall 

deformation; this becomes more significant when there is an adverse pressure gradient 

present in the upstream of the deformation.  However, because the portion of the deviated 

energy was found to be small, it was concluded that this mechanism does not have a 

significant effect. 

It was observed that the variation of the streamwise width of the wall 

deformation, with the height remaining constant, plays an important role in the reduction 

of the disturbance energy.  In Fong et al.[16,17] the variation of the roughness height and 

the location of the roughness with respect to the synchronization point was analyzed.  

When the streamwise width of the hump and dip cases was increased, the reduction of the 

disturbance amplitude was not as significant, especially for the periodic disturbance.  

This result contrasts the results presented in Fong et al.[17], but it is necessary to mention 

that this reduction is only valid for a continuous roughness element, while the non-

continuous roughness elements, such as the combination of a forward and backward 
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steps, there is no significant difference in reduction when varying the streamwise width.  

For the combination of a backward and forward steps, as the length of separation between 

the two steps is increased, the reduction of the disturbance energy is increased.  For the 

combination of a forward and then backward step case, as the separation length is varied, 

it does not alter the reduction in the disturbance energy because the forward step is 

located upstream of the backward step had the most significant impact on the 

disturbances. 

When varying the height of the wall deformations, some of the results coincided 

with the results presented in Fong et al.[15-17], while a few cases had non-conclusive 

results.  The wall deformation cases that have a protuberance above the flat wall and the 

backward step case had conclusive results, in that the reduction in disturbance energy 

increased as the deformation height was increased and vice versa.  For the combination of 

a backward and forward step, dip and sine 1 cases, the results are not conclusive, since 

altering the deformation height from the original height of 0.5mm caused a reduction in 

the disturbance energy greater than the original height. 

 

FUTURE WORK 

Some future work to consider after reviewing the study performed in this paper, is 

to further analyze the variation in step height for the wall deformation cases that have a 

deformation located below the wall line.  Perform parabolic stability analysis on the wall 

deformation cases present in this study to locate the synchronization point of the first and 

second modes downstream of the wall deformations, to further analyze the effectiveness 

of the deformations on the stability of the high-speed boundary layer flow. 
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