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CHAPTER I 

INTRODUCTION 

1.1 Background and application 

Cylinders and cylindrical shell-like structures are broadly used in many real world 

applications and manufactured accordingly. For example, in the biology field, the 

structure of the micro-organisms are often pipes and cylinders. As shown in Figure 1.1, 

the blood vessel is a thick, multi-layered cylinder. For other applications, like in the 

automotive field, the exhaust pipes, the shaft systems (half shafts, drivelines, etc) and 

many other components and parts are also cylinders or cylindrical structures. Figure 1.2 

shows a series of hollow shafts encoders for motors. Another example is the rifle barrel 

shown in Figure 1.3; which is also a high precision manufacturing thick hollow cylinder. 

A common characteristic of these examples is that they are thick cylindrical components. 

The relative thick nature of the tubing system requires special treatment that considers the 

implications of such a thick tube. 
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Figure 1.1 Blood vessel 

Figure 1.2 Hollow shafts 
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 Figure 1.3 Rifle barrel 

 

For these thick shells, some theories become inaccurate due to the used 

assumptions. . These include thin shell theories. In addition, many cylindrical structures 

are made of complex material, like laminated composite or biomaterial, requiring 

discussion of the existing theories or even developing new ones to obtain a higher level 

of accuracy. This has been the subject of significant research. The book “VIBRATION 

OF LAMINATED SHELLS AND PLATES” focusing on research done between 1989 

and 2000 yielded approximately 400 papers on composite shell dynamics [1]. Additional 

surveys showed even more research since then. 

Besides mechanics and theoretical development, a method that is more directly 

used in the analysis of such structures in industrial applications is the finite element 

analysis (FEA). FEA benefits from the fast-developing computer technology since the 

1970s. An advantage to using FEA is its flexibility in treatment of complex structures. 

FEA can be applied on a vast number of different boundary conditions, external applied 

conditions, structural geometries and many other different design parameters.  

Many commercial packages are developed and broadly used, such as Nastran®, 

Abaqus®, ANSYS® and others. From all possible theoretical descriptions or mechanics, 
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FEA element developers usually select one suitable theory to develop the element they 

are interested in and solve real problems. The question is then raised about the accuracy 

of the theory chosen and the standards to which the accuracy can be measured. The 

benchmark to the accuracy of various finite element analyses and various shell theories is 

highly needed. This need not only come from strong necessity but also from 

comprehensive apprehension. An example is Kadi’s [146] work comparing thin shell 

theories in his thesis (1970),which was subsequently published in the book “THE 

VIBRATION OF SHELLS” by Leissa [3] in 1973. This kind of comparison is not only 

required for developing accurate theories for benchmarking, but is also required to deeply 

understand other theoretical and numerical methods like FEA. This dissertation could be 

a prelude to the important benchmarking research work needed on more complex 

materials and thick shell theories. 

1.2 Benchmark and accuracy study 

Three-dimensional elasticity is chosen as the benchmark in this study. For a 

clearer explanation, see Figure 1.4 below. 
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Figure 1.4 The accuracy flow for modeling a real problem in Elasticity 

In this figure, the color difference indicates the level of accuracy in the analysis of 

the real problem (dark green). In other words, the color gradually becoming lighter 

represents how the inaccuracy grows. To solve the real problem, the first step is 

theoretical (mathematical) modeling, which converts the physical problem to a 

mathematical model with controllable parameters. In linear solid mechanics, the 

fundamental mathematical model is the one developed based on three-dimensional (3D) 

elasticity theory. It is the classical and original, as well as the most accurate theory for 

representing the elastic deformation. It is, however, complex and often difficult to use for 

solving real problems. Subsequently, most solid mechanics theories are developed from 

this 3D elasticity theory with different approximating assumptions for simplifying it. For 

example, shell theories assume one of the three dimensions to be small. The necessity for 
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the simplification comes from the difficulty of obtaining exact solutions from the 3D 

elasticity equations. These equations are mostly composed of a system of partial 

differential equations (PDE). However, because of the intrinsic complexity of the PDE 

system, even with various physical assumptions and mathematical technologies under 

complex boundary conditions and structures, exact solutions could not be achieved. In 

this circumstance, numerical methods are used for obtaining numerical solutions for 

practical use. Examples of numerical methods include the finite difference method 

(FDM), the Ritz method, the finite element methods (FEM). Of course, numerical 

solutions are not exact. In solid mechanics, the most successful numerical method 

appears to be FEM. Different theoretical models are applied in different types of elements 

(e.g. shell elements). Several commercial FEA packages with solvers of the resulting 

algebraic equations exist. From the above description, the real physical problem, like 

NVH (noise, vibration and harshness) problems in automotive industries, could be better 

modeled by a more accurate mathematical modeling. The accuracy of these solutions will 

directly impact the quality of solving the industrial problems.  In order to benchmark the 

accuracy of various analyses, the exact solution of 3D elasticity is needed. Under some 

types of boundary conditions by using crafty mathematical technologies the exact 

solutioncould be obtained, a special model needs to be built here.  

1.3 The major contributions of this thesis 

The following contributions are made in this dissertation: 

i. A literature review for the 3D elasticity and thick shell theories which 

have been developed in recent years. 
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ii. The exact solution of 3D elasticity isotropic hollow cylinders is developed 

and tested for various parameters.  

iii. The exact solution of 3D elasticity isotropic hollow cylinders is used as a 

benchmark to compare exact results from various shell theories and the 

commercial FEA package Abaqus®. 

iv. The exact solution of 3D elasticity orthotropic hollow cylinders is 

developed and tested for various parameters.  

The content structure will follow the above points. Chapter 2 will present 

contribution I. Chapter 3 will discuss contributions II and III as for isotropic material. 

Chapter 4 will exhibit and analyses the contribution IV for the composite material cases. 

Chapter 5 will summarize these works and show how much progress has been made as a 

prelude to further research. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Background and structure of this chapter 

The increased usage of laminated composite shells in many engineering 

applications has generated much interest in composite shell behavior. While very little 

attention was given to composite shell vibration four decades ago [6], a recent article [2] 

listed about 400 papers on the subject. 

When compared to traditional metallic materials, laminated composites offer 

advantages such as higher strength-to-weight and stiffness-to-weight ratios, improved 

chemical and environmental resistance, and the ability to tailor properties. Additionally, 

the advances in composite manufacturing methods have also contributed to the increased 

usage of laminated composite materials in many modern applications.  Composite shells 

now constitute a large percentage of aerospace, marine and automotive structures. 

Literature on composite shell vibration research can be found in many of the national and 

international conferences and journals. Review articles such as those by Qatu [2,4], 

Kapania [7], Noor and Burton [8,9], and Noor et al. [10] covered much of the research 

done on the subject prior to the early 1990s. Liew et al. [11] reviewed the literature on 

shallow shell vibrations. Soldatos [12] reviewed the literature on non-circular cylindrical 

shells. Computational aspects of the research were covered by Noor et al. [13] and Noor 

and Venneri [14]. Recently, Carerra [15,16] presented a historical review of zig-zag 
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theories  for multilayered  plates  and shells and  reviewed the theories and finite 

elements for multilayered, anisotropic, composite plates and shells. 

It should be mentioned that several books appeared on the subject of laminated 

shells during the past decade. Qatu [1] treats the vibrations of laminated shells and plates 

and Soedel [17] deals with vibrations of composite shells and plates. Reddy [18] focuses 

on stress analysis and general mechanics of laminated composite plates and shells. Ye 

[19] and Lee [20] focus on the modeling of composite shells and Shen [21] discusses 

non-linear analysis of functionally graded materials. 

This article aims to present a broad perspective of the recent research (2000-2009) 

done on the dynamics of composite shells. Different types of dynamic analyses such as 

free vibrations, transient analysis, impact, shock and other dynamic analyses are 

included. Additionally, typically used shell theories (thin, or classical, and thick shell 

theories, including shear deformation and three-dimensional theories, shallow and deep 

theories, linear and non-linear theories, and others) are reviewed.  Most theories are 

classified based on the thickness ratio of the shell being treated  (defined as the ratio of 

the thickness  of the shell to the shortest  of the span lengths and/or radii of curvature), 

its shallowness  ratio  (defined as the ratio of the shortest span length to one of the radii 

of curvature) and the magnitude  of deformation  (compared  mainly to its thickness). 

The literature is collated and categorized based on various aspects of research. 

First, a general overview regarding shell theories is presented.  Discussion will then focus 

on shell geometries that are typically used, such as the classical cylindrical, conical and 

spherical shells of revolution as well as shallow shells. 

The second aspect will concentrate on types of analyses which are typically 

performed:  free vibration with various boundary conditions and shell geometries, 
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rotating shells, transient, impact and shock loading, dynamic stability  and general 

dynamic behavior. The third aspect of this review will focus on material-related 

complexities, which include piezoelectric materials, viscoelastic or viscoplastic materials 

with damping, braided materials and shape memory alloys, and thermoplastic or wood 

material.  The fourth  category of interest in this paper will focus on structural-related  

complexities which include stiffened shells, shells with cut-outs,  fluid filled or 

submerged  shells and shells with imperfections.  Attention will also be given to multi-

scale analysis, sensitivity and robustness, and optimization studies that may prove useful 

to design engineers. 

Many articles may be cited more than once in this survey. For example, a research 

article that uses a shear deformation shell theory to solve a conical shell dynamic problem 

can be cited under the thick shell theory title of shell theories section, as well as under the 

conical shells title of the shell geometries section. [147] 

2.2 Shell theories [147] 

Shells are three-dimensional bodies bounded by two, relatively close, curved 

surfaces. The three-dimensional equations of elasticity are complicated when written in 

curvilinear or shell coordinates. Typically, researchers make simplifying assumptions for 

particular applications.  Almost all shell theories (thin and thick, deep and shallow) 

reduce the three-dimensional (3D) elasticity equations to the two-dimensional (2D) 

representation. This is done usually by eliminating the coordinate normal to the shell 

surface in the development of the shell equations.  The accuracy of thin and thick shell 

theories can be established if these theories are compared to the 3D theory of elasticity. 

10 



 

 

 

             

A summary of equations for laminated composite shells is made in this section.  

In particular, the strain-displacement equations, the stress-strain equations and the 

equations of motion are described. These equations and the associated boundary 

conditions constitute a complete set of shell theory equations. 

2.2.1 Three-dimensional elasticity theory 

A shell is a three-dimensional body confined by two parallel (unless the thickness 

is varying) surfaces. In general, the distance between those surfaces is small compared 

with other shell parameters. In this section, the equations from the theory of 3D elasticity 

in curvilinear coordinates are presented. The literature regarding vibrations of laminated 

shells using 3D elasticity theory will then be reviewed. 

Consider a shell element of thickness h, radii of curvature Rα and Rβ(a radius of 

twist Rαβaxial not shown here) (Figure 2.1). Assume that the deformation of the shell is 

small compared to the shell dimensions. This assumption allows us to neglect non-linear 

terms in the subsequent derivation. It will also allow us to refer the analysis to the 

original configuration of the shell. The strain displacement relations can be written as [1]: 

1  1  u v  A w 
     

(1  z R/  )  A  AB  R   (2.1) 
1  1  v u  B w  

      
(1  z R/  ) 

 B  AB  R 


 (2.2) 
w z z  (2.3) 

1  1  v u  A w  1  1  u v  B w  
          (1 /  )  A  A  R  


 (1 z R )  B  AB  R  


z R  B  /

 (2.4) 

1 ∂ ∂  u  vw
Az   (1 z / R )    (2.5)

A(1 z / R ) ∂ ∂z  A(1 z / R )  R (1 z / R ) 
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1 ∂w ∂  v  u z   B(1 z / R )  
   (2.6)

B(1 z / R ) ∂ ∂z  B(1 z / R )  R (1 z / R ) 

Figure 2.1 Stress in shell coordinates (free outer surfaces). 

For the development of the constitutive relations, the laminated composite thin 

shells are assumed to be composed of plies of unidirectional long fibers embedded in a 

matrix material such as epoxy resin.  On a macroscopic level, each layer may be regarded 

as being homogeneous and orthotropic. However, the fibers of a typical layer may not be 

parallel to the coordinates in which the shell equations are expressed.  The stress-strain 

relationship for a typical nth lamina (typically called monoclinic) in a laminated 

composite shell made of N laminas, is shown in Figure2.2 and given by Equation (2.7) 

[1]. 
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  Q Q Q 0 0 Q   11 12 13 16
     
   Q12 Q22 Q23 0 0 Q26     
 z  Q Q Q 0 0 Q   z 13 23 33 36      z 0 0 0 Q Q 0  z   44 45    (2.7)
 z   0 0 0 Q Q 0  z  45 55     
  Q16 Q26 Q36 0 0 Q66         

The positive notations of the stresses are shown in Figure 2.1. 

Figure 2.2 Lamination parameters in shells 

In order to develop a consistent set of equations, the boundary conditions and the 

equations of motion will be derived using Hamilton’s principle [1]. Substituting the 

equations for potential energy (U), external work (W) and kinetic energy (T), performing 

the integration by parts, and setting the coefficients of the displacement variations equal 

to zero, in a normal manner, yields the equations of motion. 
2 B    A    AB  A A B  u  z    B   ABq    z   2  z  z  t (2.8) 
2 B    A    AB  B B A  v   z   A    ABq   z       2  z z   t  (2.9) 
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2 B   A   AB  B A  w z  z z   A  B  ABq    z 2  z z z t  (2.10) 

The above equations do not depend on the shell material. Hamilton's principle 

will also yield boundary terms that are consistent with the other equations (strain-

displacement and equilibrium relations). The boundary terms for z = constant are: 
00z  z  0 or w  0 (2.11) 
0   0 or u  0 (2.12)0z z 

0   0 or v  0 (2.13)0 z z 

where0z, 0z and 0z are surface tractions and u0, v0 and w0 are displacement functions 

at z = constant. Similar results are obtained for the boundaries  = constant and  = 

constant. A three dimensional shell element has six surfaces. With three equations at each 

surface, a total of 18 equations can be obtained for a single-layered shell. 

The above equations are valid for single-layered shells. To use 3D elasticity 

theory for multi-layered shells (the subject of this study), each layer must be treated as an 

individual shell.  Both displacements and stresses must be continuous between each layer 

(layer k to layer k+1) in an-ply laminate. These conditions must be met to insure that 

there are no free internal surfaces (i.e., delamination) between the layers.   

u( , , z  hk / 2) 
k i

 u( , , z  h / 2)    k k i 1 

v( , , z  hk / 2)  v( , , z  hk / 2) 
k i k i 1 

( ,  ,  z  hkw    /  2)   ( ,  ,  z   kw    h /  2)  
k i 1k i 

z ( , z hk / 2)    ,  z ( , , z  hk / 2) 
k i 

     
k i 1 

( , z h / 2)    ,  ( , , z  h / 2) 
k i

      z k  z k k i 1 

  ( , , z  h /  2)   ( ,  , z h /  2)  z k z k k i 1k i For k= 1, …, N-1 (2.14) 

The3D theory of elasticity has been used to perform a dynamic analysis of 

composite shells by  Santos et al. [22, 23] in which a finite element model for the free 
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vibration analysis of 3D axisymmetric laminated shells was developed. Also, Shakeri et 

al [24] performed dynamic analysis of thick laminated shell panel based on the 3D 

elasticity solution. Malekzadeh et al [25],conducted a 3D dynamic analysis on composite 

laminates under a moving load. Saviz et al [26], presented both 3D and 2D solutions of a 

layerwise theory in the investigation of thick laminated piezoelectric shells subjected to 

dynamic loading.   

2.2.2 Thick shell theory 

Thick shells are defined as shells with a thickness smaller by at least one order of 

magnitude when compared with other shell parameters such as wavelength and/or radii of 

curvature (thickness is at least 1/10thof the smallest of the wavelength and/or radii of 

curvature). The main differentiation between thick shell and thin shell theories is the 

inclusion of shear deformation and rotary inertia effects. Theories that include shear 

deformation are referred to as thick shell theories or shear deformation theories.   

Thick shell theories are typically based on either a displacement or stress 

approach. In the former, the midplane shell displacements are expanded in terms of shell 

thickness, which can be a first order expansion, referred to as first order shear 

deformation theories.  Accurate shell equations based on a first-order shear deformation 

theoryare now presented. 

The 3D elasticity theory is reduced to a 2D theory using the assumption that the 

normal strains acting upon the plane parallel to the middle surface are negligible 

compared with other strain components. This assumption is generally valid except within 

the vicinity of a highly concentrated force (St. Venant’s principle). In other words, no 

stretching is assumed in the z-direction (i.e., z=0). Assuming that normals to the 
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midsurface strains remain straight during deformation but not normal, the displacements 

can be written as [1] 

u(, , z)  u0(, )  z (,B) (2.15) 

v(, , z)  v0(, )  z (,B) (2.16) 

w( ,  , z)  w0( ,  )  (2.17) 

where u0, v0 and w0are midsurface displacements of the shell and  and  are 

midsurface rotations. An alternative derivation can be made with the assumption z = 0. 

The subscript (0) will refer to the middle surface in subsequent equations. The above 

equations describe a typical first-order shear deformation shell theory, and will constitute 

the only assumption made in this analysis when compared with the 3D theory of 

elasticity. As a result, strains are written as [1] 

1  (0  z ) (2.18)
(1  z R/  ) 

1  (  z ) (2.19) 0 (1 z R/  ) 

1  (0   z  )  (2.20)
(1  z R/  ) 

1  (  z )  (2.21) 0    (1 z R/  ) 

z  1  0z  z( / R )  (2.22)
(1  z / R ) 

  1   z( / R )  (2.23)z 0z  (1 z / R ) 

where the midsurface strains are: 

1  u v  A w0 0 00     (2.24)
A  AB  R 

1  v0 u0  B w0    (2.25)0 B  AB  R 

1  v u  A w0 0 00     (2.26)
A  AB  R 
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u0 

 



v0 

AB 
u0 

v 
R 

R 

0 

 B 



w0 

R 
(2.27)

1 0 B 
1 w0 

A  
w0

 v0 

R  

(2.28)     0 z 

1 u0 

R  

     (2.29) 0 z B  

and the curvature and twist changes are: 

 A 
 

1
  (2.30) AB    A 

 
 

  B1
  (2.31) AB    B 

 
 

  A1   (2.32) AB    A 
 B 

 
1   (2.33) AB    B 

The force and moment resultants (Figures 2.3 and 2.4) are obtained by integrating 

the stresses over the shell thickness considering the (1+z/R) term that appears in the 

denominator of the stress resultant equations [5]. The stress resultant equations are: 

0A12 A12 A16 A16 B11 B12 B16 B16N     

 
 
 
 
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 
 
 
 
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
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
 

 
 
 
 
 
 
 
 
 

 










 











 










 

A12 Â22 A26 A26 B12 B̂22 B26 B 
A16 A26 A66 A66 B16 B26 B66 B 
A16 Â26 A66 A66 B16 B̂26 B66 B 
B B B B D D D D 

26 

66 

66 

11 12 16 16 12 12 16 16 

N 0 

N 

N 

0 

0 


 

 

0 

(2.34)
M 

ˆ ˆB DM B12 B26 B26 D12 D26 D26 022 22 

M B16 B26 B66 B66 D16 D26 D66 D66 0 

ˆ ˆB DM 

Q 

B16 B66 B66 D16 D66 D66  026 26 

A55 A45 B55 B    045

 

z 



 




 




 




 

 
 
 

 

ˆ ˆA BA45 B 4544 44 0 (2.35)z
P

P 45 

where A୧୨, B୧୨, D୧୨, Aഥ୧୨, Bഥ୧୨, Dഥ୧୨are 
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 
 
 

 

Q 

   44 44 



 

 

(k )Aij  
N 

Qij (hk  hk 1) 

 

k 1  
N1 (k ) 2 2 

Bij  Qij (hk  hk 1 )  i, j  1,2,6  (2.36)
2 k 1  
1 (k ) 3 3Dij   

N 

Qij (hk  hk 1 )
 

3 k 1  
N 

(k) 
Aij  KiK jQij (hk  hk 1)  

k 1  
N1 (k) 2 2 Bij  KiK jQij (hk  hk 1 ) i, j  4,5  (2.37)

2 k 1  
(k) 3 3Dij  1  

N 

KiK jQij (hk  hk 1 )
 

3 k 1  
B B ij ijAij  Aij  
R 

, Âij  Aij  
R

, 
   

Dij ˆ Dij 
Bij  Bij  , Bij  Bij  ,  i, j  1,2,4,5,6  (2.38)

R R   
 

ij ijˆDij  Dij  
E 

, Dij  Dij  
E 

 
R R    

where Ki and Kj are shear correction coefficients, typically taken at 5/6,  and where 

Aijn 

N 
kh ( )k dz

  Q ij 
kh 1k 1 1  /z Rn 

 
N ( )k R  hn kR Q lnn ij  
k 1 R  h n k 1 

 
 
 

 
 
 

Bijn 

N 
kh ( )k zdz

 Q ij 
kh 1k 1 1  /z Rn 

 
N 

( )kR Qn  ij 
k 1 

 
(hk 
 

 h )  Rk 1 n 

 R  hn kln   
R  h n k 1 

 
 
 

 
 
 
 

Dijn 

N 2 
kh ( )k z dz  

 Q ij 
kh 1k 1 1  /z Rn 

 
 
 

Eijn 

N 
( )k 1 2 R Q  ( R  h )n  ij  n  k  

k 1 2 
N 3 

kh ( )k z dz  
 Q ij 

kh 1k 1 1  /z Rn 

 (Rn 
2 h )  2R (hk 1  n k 

2 h )  Rk 1 n 

 R  hn kln   
R  h n k 1 

 n 
 
 
 
 
 

 ,  

N 
( )k R Qn  ij  

k 1 

1 3 3 3(R  h )  (R  h )  R (R n k n k 1  n  n3 2 
   2 3 R hn k3 (R h   h )  R ln   n k k 1 n  

R  h  n k 1  

2 h )k  (Rn 
2  h )k 1  
 
 

 

 
 
 
 
 
 (2.39) 

The above equations can be simplified by truncating the 1/(1+z/R) in a Taylor 

series [1]. 
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  Figure 2.3 Force resultants in shell coordinates 

ˆ A  A  c B , A  A  c B ,ij ij 0 ij ij ij 0 ij  
Bij  Bij  c0Dij, B̂ 

ij  Bij  c0Dij 


 i, j  1,2,4,5,6  (2.40) 
ˆDij  Dij  c0Eij, Dij  Dij  c0Eij  

Where all terms are as defined in (2.36) to (2.38) and  

1 N 
( )k 4 4Eij  Qij (hk  hk 1 ) i, j  1, 2,6  (2.41)

4 k 1 

(2.42)
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Figure 2.4 Moment resultants in shell coordinates 

It has been shown [1,5] that the above equations yield more accurate results when 

compared with those of plates and those traditionally used for shells [18].  Hamilton's 

principle can be used to derive the consistent equations of motion and boundary 

conditions. The equations of motion are [1]: 

  A B AB ABBN    AN   N  N  Q  Q  ABq  AB  I u  I         1 0  2      R R  

(2.43) 
  B A AB AB AN    AN   N  N  Q  Q  ABq  AB  I v  I    (2.44)       1 0  2      R R  

 N N N   N    
AB    BQ  AQ  ABq  AB I w (2.45)        n  1 0  R R R         

  A B  AB   BM    AM   M  M  ABQ  P  ABm  AB  I u  I    (2.46)       2 0  3      R 

  B A AB AB AN    AN   N  N  Q  Q  ABq  AB  I v  I    (2.47)       1 0  2      R R  
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where the two dots over the terms represent the second derivative of these terms with 

respect to time, and where: 

  
 1 1  Ii2 

 
Ii  Ii  Ii1    , i  1,2,3 (2.48)

 R R R R 
       

h 
( )k 2 3 4z z z d  (2.49)I I I I I, , , ,     

N 

 
k 

 1, z, , ,  z1 2 3 4 5 
k 1 hk 1 

The boundary terms for the boundaries with  =constant are 

N0  N  0 or u0  0  (2.50) 
N  N  0 or v  0 (2.51)0  0 

Q0  Q  0 or w0  0  (2.52) 

M 0  M  0 or   0  (2.53) 

M0  M  0 or   0  (2.54) 

Similar equations can be obtained for  = constant. 

Shear deformation theories have been used by many authors. Qatu [5] used it to 

solve the free vibration problem of simply supported shells. Toorani and Lakis [27] 

discussed shear deformation in dynamic analysis of laminated open cylindrical shells 

interacting with a flowing fluid. Dong and Wang [28] analyzed the effect of transverse 

shear and rotary inertia on wave propagation in laminated piezoelectric cylindrical shells. 

Ribeiro [29] investigated the influence of membrane inertia and shear deformation on 

nonlinear vibrations of open, cylindrical, laminated clamped shells. Qatu [30] used the 

shear deformation shell theory described here to study the free vibration of laminated 

cylindrical and barrel thick shells. Wang et al. [31] were interested in the wave 

propagation of stresses in orthotropic laminated thick-walled spherical shells. Ding [32] 

employed a shear deformation theory to study the thermoelastic dynamic response of 

thick closed laminated shells. Ganapathi and Haboussi [33] studied the free vibrations of 
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thick laminated anisotropic non-circular cylindrical shells. Other studies using thick shell 

theories will be reviewed in other sections. 

2.2.2.1 Higher order shell theories 

The equations derived earlier for thick shells are called first- order shear 

deformation theory because in Equation 2.15 to Equation 2.17, only the first-order 

expansion is performed across the thickness for in-plane displacements. If third-order 

terms are retained, the resulting theory will be a third-order deformation theory. The 

group of theories that are based on a cubic or higher expansion of the in-plane 

displacements in terms of the thickness is referred to as higher order theories. 

Ganapathi et al. [34] used a higher order theory to perform dynamic analysis of 

laminated cross-ply composite noncircular thick cylindrical shells. Khare and Rode [35] 

utilized a higher order theory to develop closed-form solutions for vibrations of thick 

shells. Balah and AI-Ghemady [36] employed a third-order theory to develop an energy 

momentum conserving algorithm for non- linear dynamics of laminated shells. Pinto 

Correia et al. [37] studied dynamics and statics of laminated  conical shell structures 

using higher order models. Qian et al. [38] studied active vibration control of laminated 

shells using higher order layer-wise theory. Lam et  al. [39] combined  displacements 

from  transverse shear forces and from thin-shell  theory to modify a higher order theory 

to study the vibration response of  thick laminated  cylindrical shells. 

2.2.2.2 Layer-wise shell theories 

Other thick shell theories, such as layer-wise theories have also been utilized. 

These theories typically reduce a 3D problem to a 2D problem by expanding the 3D 

displacement field in terms of a 2D displacement field and the through-the-shell 
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thickness. Braga and Rivas [40] used a layer-wise theory to study the high-frequency 

response of cylindrical shells made of isotropic and laminated materials. Basar and 

Omurtag [41] used a layer-wise model to investigate free vibrations of shell structures. 

Other research involving layer-wise shell theories include Lee et al. [42] who studied the 

dynamic behavior of cylindrical composite structures with viscoelastic layers, Moreira et 

al. [43] who used a layer-wise theory to formulate shell finite elements for dynamic 

modeling of composite laminates and Oh, who used layer-wise mechanics to investigate 

dynamic response [44], damping characteristics [45], and vibration characteristics [46] of 

cylindrical laminates.  Qian used a higher order theory for studying composite  laminated 

shells underactive  vibration  control [38], Saravanan et al. [47] studied  active damping  

in a laminated  shell  and  Saravanos  and  Christoforou [48] investigated impacts of 

composite  shells. Other works  utilizing layer based techniques include Shin et al. [49] 

who investigated aeroelastic analysis  using  zig-zag layer-wise  theory,  Varelis and 

Saravanos [50] who studied the non-linear  response of doubly curved composite  

shells using  a shear layer-wise  shell theory, and Wang et al. [51] who investigated 

the dynamic  response of laminated  shells. 

2.2.3 Thin-shell theory 

If the shell thickness is less than 1/20thof the wavelength of the deformation mode 

and/or radii of curvature, a thin shell theory, where shear deformation and rotary inertia 

are negligible, is generally acceptable. Depending on various assumptions made during 

the derivation of the strain-displacement relations, stress-strain relations, and the 

equilibrium equations, various thin shell theories can be derived. Among the most 

common of these are Love's, Reissner's, Naghdy's, Sander's and Flugge's shell theories. 
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Descriptions of these and other thin shell theories can be found [5]. All these theories 

were initially derived for isotropic shells and expanded later for laminated composite 

shells by applying the appropriate integration through laminas, and stress-strain relations. 

For very thin shells, the following additional assumptions simplify the shell equations 

and their order. 

i. The shell is thin such that the ratio of the thickness compared to any of the 

shell's radii or any other shell parameter, i.e., width or length, is negligible 

when compared to unity. 

ii. The normals to the middle surface remain straight and normal when the 

shell undergoes deformation. 

The first assumption assures that certain parameters in the shell equations 

(including the z/R) term mentioned earlier in the thick shell theory can be neglected. Due 

to the second assumption, the shear deformation can be neglected in the kinematic 

equations and this allows the in-plane displacement to vary linearly through the shell's 

thickness as given by 

    z (2.55) 0  

    z  (2.56) 0  

   0   z  (2.57) 

where the midsurface strains, curvature and twist changes are 

1 u v A w0 0 0    (2.58)0 A  AB   R 

1 v0 u0 B w00    (2.59)
B  AB  R 

1 v u A 1 u v B w0 0 0 0 0 0      2 (2.60)
A  AB  B  AB  R 

1   A    (2.61) A  AB   
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1   B   (2.62) B  AB   
1   A 1   B       (2.63)
A  AB   B  AB   

and where 

u v 1 w   0  (2.64) R R  A  
v u 1 w   0  (2.65)
R R  A  

Applying Kirchhoff hypothesis of neglecting shear deformation and the 

assumption that z is negligible, the stress-strain equations for an element of material in 

the kth lamina may be written as [1] 

  Q Q Q     11 12 16 
      (2.66)    Q12 Q22 Q26      
  Q Q Q      k  16 26 66  k    k 

where  and   are normal stress components,  is the in-plane shear stress 

component [1], and  are the normal strains, and is the in-plane engineering shear 

strain. The terms Qij are the elastic stiffness coefficients for the material. If the shell 

coordinates (,) are parallel or perpendicular to the fibers, then the terms Q16 and Q26 

are both zero. Stresses over the shell thickness (h) are integrated to get the force and 

moment resultants as given by 

 N   A11 A12 A16 B11 B12 B16    0  
     N A A A B B B     12 22 26 12 22 26   0  
   N  A16 A26 A66 B16 B26 B66   0 (2.67)     
M B B B D D D k    11 12 16 11 12 16     

 M   B B B D D D   k  
12 22 26 12 22 26       

M  B B D      16 B26 66 D16 26 D66     

where Aij , Bij , and Dij are the stiffness coefficients arising from the piecewise 

integration over the shell thickness (Equation2.41, 2.42). For shells which are laminated 
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where m and n are the longitudinal and circumferential mode numbers; respectively. The 

shear diaphragms boundary conditions at both ends (referred to as SD-SD) are satisfied 

by these solutions. 

Substituting the solutions equations(4.25 to 4.28) to equation (4.13 to 4.15), the 

right sides of equations goes to zero, and the differential operators of the left sides would 

change to:                  
ப ଵLଵଵ ൌ Cହହ 

பమ 
൅ Cହହ 

ଵ nଶ െ Cଷଷλଶ ൅ ρωଶ
ப୰ 
െ C଺଺ப୰మ ୰ ୰మ

Lଵଶ ൌ ሺCଶଷ ൅ C଺଺ሻ 
ଵ n ∙ λ
୰

Lଵଷ ൌ ሺCଵଷ ൅ Cହହሻ 
ப 
ப୰ 
λ ൅ ሺCହହ ൅ Cଶଷሻ 

ଵ λ
୰

Lଶଵ ൌ ሺCଶଷ ൅ C଺଺ሻ 
ଵ n ∙ λ
୰ 

பLଶଶ ൌ Cସସ 
பమ 
൅ Cସସ 

ଵ െ C଺଺λଶ ൅ ρωଶ
ப୰ 
െ Cଶଶ 

ଵ nଶ െ Cସସ 
ଵ

ப୰మ ୰ ୰మ ୰మ
பLଶଷ ൌ െሺCଵଶ ൅ Cସସሻ 

ଵ 
ப୰ 
n െ ሺCସସ ൅ Cଶଶሻ 

ଵ n
୰ ୰మ

Lଷଵ ൌ െሺCଵଷ ൅ Cହହሻ 
ப 
ப୰ 
λ െ ሺCଵଷ െ Cଶଷሻ 

ଵ λ
୰

பLଷଶ ൌ ሺCଵଶ ൅ Cସସሻ 
ଵ 
ப୰ 
n െ  ሺCସସ ൅ Cଶଶሻ 

ଵ n
୰ ୰మ

பLଷଷ ൌ Cଵଵ 
பమ 
൅ Cଵଵ 

ଵ െ Cହହλଶ ൅ ρωଶ
ப୰ 
െ Cସସ 

ଵ nଶ െ Cଶଶ 
ଵ

ப୰మ ୰ ୰మ ୰మ 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

Here, from the mathematical point of view, the previous partial differential 

system changes to a linear homogeneous ordinary differential system in radius direction, 

if the frequency ω is treated as constants. And because the studying subjective is the 

hollow cylinder where the interval Ro>r>Ri>0 avoids the singularity points r=0, then all 

coefficient functions are continuous in the interval. This continuity is an essential 

property for the existence of solutions. As been discussed in Chapter 2, Frobenius method 

(or Power series method) was suggested to solve this ordinary differential system.    

The power series method is a “root” level method to solve the differential 

equations, (for example, Bessel functions are developed from the power series method). 

Although the primary property broadens the range of the equations to be possibly solved, 

the feasibility of the Frobenius method still should be discussed in order to understand the 
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least requirements. On the other hand, the barbaric method significantly increases the 

complexity of the solution procedures and the solution itself. For example, as the Bessel 

functions successfully solved the isotropic case in Chapter 3, it is very difficult to obtain 

the natural frequency solutions or even the displacement general solution functions for 

isotropic material (similar with transversely isotropic materials) by the power series 

method. The reasons for it, especially for obtaining the natural frequency, will be 

discussed in later sections. 

4.2 The general solutions of the Frobenius’ Theorem 

At first, some notation announcements will help read this section.  

i. The lower case u, v and w are used instead the u(r), v(r) and w(r). 

ii. Using the subscript instead of the derivates. For example the first and 

secondary derivates in w directions are expressed as wr and wrr. 

4.2.1 Feasibility 

In order to make the derivation easier to express, use Greek letter ߙ and Ω with 

subscripts to stand for the constant equations are defined as shown below: 

αଵ ൌ ିେలల∙୬
మ

 (4.38) 

αଶ ൌ ሺେ
େ
మయ
ఱఱ
ାେలలሻ∙୬∙஛  (4.39) 

αଷ ൌ ሺେభయାେ
େఱఱ
ఱఱሻ∙஛  (4.40) 

αସ ൌ ሺେమయ
େ
ାେ
ఱఱ
ఱఱሻ∙஛  (4.41)

େఱఱ

αହ ൌ ሺେమయାେలలሻ∙୬∙஛  (4.42) 

α଺ ൌ ିሺେమమ
େ
∙୬
రర
మାେరరሻ  (4.43)

େరర

α଻ ൌ ିሺେభమାେరరሻ∙୬  (4.44)
େరర

α଼ ൌ ିሺେమమାେరరሻ∙୬  (4.45)
େరర

ൌ ିሺେభయାେఱఱሻ∙஛αଽ  (4.46)
େభభ
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αଵ଴ ൌ ିሺେభయିେమయሻ∙஛  (4.47)
େభభ

αଵଵ ൌ ሺେభమାେరరሻ∙୬  (4.48) 

αଵଶ ൌ ିሺେమమ
େభభ
ାେరరሻ∙୬  (4.49) 

αଵଷ ൌ ିሺେరర
େ
∙୬
భభ
మାେమమሻ  (4.50)

େభభ

Ωଵ ൌ ஡∙ன
మିେయయ∙஛మ  (4.51) 

Ωଶ ൌ ஡∙ன
మ
େ
ିେ
ఱఱ

లల∙஛మ  (4.52) 

Ωଷ ൌ ஡∙ன
మ
େ
ିେ
రర

ఱఱ∙஛మ  (4.53)
େభభ

After these simplifying procedures, the ordinary differential equations system 

would be written as the following equations: 

u୰୰ ൅ ଵ u୰ ൅ αଷw୰ ൅ ቀ஑భ ൅ Ωଵቁ u ൅  ஑మ v ൅  ஑ర w ൌ 0  (4.54)
୰ ୰మ ୰ ୰

v୰୰ ൅ ଵ v୰ ൅ ஑ళ w୰ ൅ ஑ఱ u ൅ ቀ஑ల ൅ Ωଶቁ v ൅  ஑ఴ w ൌ 0  (4.55)
୰ ୰ ୰ ୰మ ୰మ 

w୰୰ ൅ αଽu୰ ൅ ஑భభ v୰ ൅ ଵw୰ ൅ ஑భబ u ൅  ஑భమ v ൅ ቀ஑భయ ൅ Ωଷቁw  ൌ  0  (4.56)
୰ ୰ ୰ ୰మ ୰మ 

and could be rewriten in the matrix form as followed: 

1 αଵ αଶ αସ0 ۍ αଷۍ ېrଶ
൅ Ωଵ

1 0 0 u୰୰ ێ r 1 α଻
ۑ u୰ αହ α଺

r 
α
r
଼ 

ې
u

ۑ ێ v୰ v൥0 1 0൩ ൥v୰୰ ൩ ൅
ێ
0 

r r ۑ
൥
w୰

൩ ൅

ێ
ێ
ێ
 ێ

r rଶ
൅ Ωଶ rଶ 

ۑ
ۑ
ۑ
ۑ
ቈ
w
቉ ൌ 0

0 0 1 w୰୰ 
αଵଵ 1 ێ  αଵ଴ αଵଶ αଵଷ ۑ

rۏαଽ r r rଶ rଶ ۏ ے
൅ Ωଷے 

(4.57) 

Simplifying the above equations: 
۷ ∙ ∙ ૚ۻ൅ ܚܚ۲ ∙ ૛ۻ൅ ܚ۲ ۲  ൌ  ૙  (4.58) 

Expanding u, v, and w at r = 0 which is a regular singular point. The regular 

singular point is the feasibility requirement for Frobenius’ Theorem, which are [133]: 

r ൐ 0  

For the matrixۻ૚ ∙ r, ૛ۻ  ∙ rଶ are analytic at r=0. 

When satisfying the feasibility requirements, at least one solution could be found 

for each of the three displacements. 

57 



 

 

 

 

4.2.2 Solution procedures 

First of all, we assume the solutions for respectively three directions as the 

following expanding power series with series constants ap, bp, and cp. z is a power 

constant which could be achieved later:  
u ൌ  ∑ஶ

୮ୀ଴ a୮r୮ା୸  (4.59)
v ൌ  ∑ஶ

୮ୀ଴ b୮r୮ା୸  (4.60)
	w ൌ ∑ஶ

୮ୀ଴ c୮r୮ା୸  (4.61) 

Then we calculate the first and second derivates of assumed solutions:      

u୰ ൌ ∑ஶ
୮ୀ଴ a୮ሺp ൅ zሻr୮ା୸ିଵ  (4.62)

v୰ ൌ ∑ஶ
୮ୀ଴ b୮ሺp ൅ zሻr୮ା୸ିଵ  (4.63)

w୰ ൌ ∑ஶ
୮ୀ଴ c୮ሺp ൅ zሻr୮ା୸ିଵ  (4.64)

u୰୰ ൌ ∑ஶ
୮ୀ଴ a୮ሺp ൅ zሻሺp ൅  z െ 1ሻr୮ା୸ିଶ  (4.65)

v୰୰ ൌ ∑ஶ
୮ୀ଴ b୮ሺp ൅ zሻሺp ൅ z െ 1ሻr୮ା୸ିଶ  (4.66)

w୰୰ ൌ ∑ஶ
୮ୀ଴ c୮ሺp ൅ zሻሺp ൅ z െ 1ሻr୮ା୸ିଶ  (4.67) 

We then substitute these expressions to ordinary differential equations (ODE). 

The ODE system convert to the power series express as below: 

∑ஶ
୮ୀ଴൛ൣa୮ሺp ൅ zሻሺp ൅ z െ 1ሻ ൅ a୮ሺp ൅ zሻ ൅ αଵa୮൧r୮ା୸ିଶ ൅ ൣαଷc୮ሺp ൅ zሻ ൅ αଶb୮ ൅

αସc୮൧r୮ା୸ିଵ ൅ Ωଵa୮r୮ା୸ൟ ൌ 0  (4.68)
∑ஶ
୮ୀ଴൛ൣb୮ሺp ൅ zሻሺp ൅ z െ 1ሻ ൅ b୮ሺp ൅ zሻ ൅ α଺b୮ ൅ α଻c୮ሺp ൅ zሻ ൅ α଼c୮൧r୮ା୸ିଶ ൅

αହa୮r୮ା୸ିଵ ൅ Ωଶb୮r୮ା୸ൟ ൌ 0  (4.69)
∑ஶ
୮ୀ଴൛ൣc୮ሺp ൅ zሻሺp ൅  z െ 1ሻ ൅ c୮ሺp ൅  zሻ ൅ αଵଷc୮ ൅ αଵଵb୮ሺp ൅  zሻ ൅ αଵଶb୮൧r୮ା୸ିଶ ൅

ሾαଽa୮ሺp ൅  zሻ ൅ αଵ଴a୮ሿr୮ା୸ିଵ ൅ Ωଷc୮r୮ା୸ൟ ൌ 0  (4.70) 

For combining the variable power series terms r୮ା୸ିଶ, r୮ା୸ିଵand r୮ା୸, we move 

the indices of coefficient functions and powers of r୮ା୸ିଶ, r୮ା୸ିଵ to r୮ା୸ as followed:  

∑ஶ
୮ୀିଶ a୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ αଵሿr୮ା୸ ൅ ∑ஶ

୮ୀିଵ൛c୮ାଵሾαଷሺp ൅ z  ൅  1ሻ ൅ αସሿ ൅
αଶb୮ାଵൟr୮ା୸ ൅ ∑ஶ

୮ୀ଴ Ωଵa୮r୮ା୸ ൌ 0  (4.71)
∑ஶ
୮ୀିଶ൛b୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ α଺ሿ ൅ c୮ାଶሾα଻ሺp ൅ z ൅ 2ሻ ൅ α଼ሿൟr୮ା୸ ൅

∑ஶ
୮ୀିଵ αହa୮ାଵr୮ା୸ ൅ ∑ஶ

୮ୀ଴ Ωଶb୮r୮ା୸ ൌ 0  (4.72)
∑ஶ
୮ୀିଶ൛c୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ αଵଷሿ ൅ b୮ାଶሾαଵଵሺp ൅ z ൅ 2ሻ ൅ αଵଶሿൟr୮ା୸ ൅

∑ஶ
୮ୀିଵ a୮ାଵሾαଽሺp ൅ z  ൅  1ሻ ൅ αଵ଴ሿr୮ା୸ ൅ ∑ஶ

୮ୀ଴ Ωଷc୮r୮ା୸ ൌ 0  (4.73) 

Then we combine the summation terms of r୮ା୸ from zero to infinity, in the same 

time, several terms with the indices p<0 will be rejected from the infinite summation. The 
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coefficient functions of these terms are called indices equations. After the combination, 

the above equations deduce to: 

a଴ሾzଶ ൅ αଵሿ ∙ r୸ିଶ ൅ ሼaଵሾሺz ൅ 1ሻଶ ൅ αଵሿ ൅ c଴ሾαଷz ൅ αସሿ ൅ αଶb଴ሽ ∙ r୸ିଵ ൅
∑ஶ
୮ୀ଴൛a୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ αଵሿ ൅ c୮ାଵሾαଷሺp ൅ z ൅ 1ሻ ൅ αସሿ ൅ αଶb୮ାଵ ൅ Ωଵa୮ൟr୮ା୸ ൌ 0  

(4.74)
ሼb଴ሾzଶ ൅ α଺ሿ ൅ c଴ሾα଻z ൅ α଼ሿሽr୸ିଶ ൅ ሼbଵሾሺz ൅ 1ሻଶ ൅ α଺ሿ ൅ cଵሾα଻ሺz ൅ 1ሻ ൅ α଼ሿ ൅

αହa଴ሽr୸ିଵ ൅ ∑୮ୀ଴
ஶ ൛b୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ α଺ሿ ൅ c୮ାଶሾα଻ሺp ൅ z ൅ 2ሻ ൅ α଼ሿ ൅ αହa୮ାଵ ൅

Ωଶb୮ൟr୮ା୸ ൌ 0 (4.75)
ሼc଴ሾzଶ ൅ αଵଷሿ ൅ b଴ሾαଵଵz ൅ αଵଶሿሽr୸ିଶ ൅ ሼcଵሾሺz ൅ 1ሻଶ ൅ αଵଷሿ ൅ bଵሾαଵଵሺz ൅ 1ሻ ൅ αଵଶሿ ൅ 
a଴ሾαଽz ൅ αଵ଴ሿሽr୸ିଵ ൅ ∑ஶ ൛c୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ αଵଷሿ ൅ b୮ାଶሾαଵଵሺp ൅ z ൅ 2ሻ ൅ αଵଶሿ ൅୮ୀ଴ 

a୮ାଵሾαଽሺp ൅ z ൅ 1ሻ ൅ αଵ଴ሿ ൅ Ωଷc୮ൟr୮ା୸ ൌ 0  (4.76) 

In this ODE systems, the indicial equations are the six coefficient equations 

before the r୸ିଶand r୸ିଵ. Note that 

i. r is not zero. 

ii. The different power indicial terms such as the r୸ିଶ andr୸ିଵ are linear 

independent. 

So these coefficient equations have to be zero as showing below: 

a଴ሾzଶ ൅ αଵሿ ൌ 0  (4.77)
b଴ሾzଶ ൅ α଺ሿ ൅ c଴ሾα଻z ൅ α଼ሿ ൌ 0  (4.78)

c଴ሾzଶ ൅ αଵଷሿ ൅ b଴ሾαଵଵz ൅ αଵଶሿ ൌ 0  (4.79)
aଵሾሺz ൅ 1ሻଶ ൅ αଵሿ ൅ c଴ሾαଷz ൅ αସሿ ൅ αଶb଴ ൌ 0  (4.80)

bଵሾሺz ൅ 1ሻଶ ൅ α଺ሿ ൅ cଵሾα଻ሺz ൅ 1ሻ ൅ α଼ሿ ൅ αହa଴ ൌ 0  (4.81)
cଵሾሺz ൅ 1ሻଶ ൅ αଵଷሿ ൅ bଵሾαଵଵሺz ൅ 1ሻ ൅ αଵଶሿ ൅ a଴ሾαଽz ൅ αଵ଴ሿ ൌ 0  (4.82) 

Rewriting the first three indices equations of (Equation 4.77 to 4.79) into matrix 

form yields: 

zଶ ൅ αଵ 0 0 a0
቎ 0 zଶ ൅ α଺ α଻z ൅ α଼቏ ൥b0൩ ൌ 0  (4.83)

0 αଵଵz ൅ αଵଶ zଶ ൅ αଵଷ 
c0 

The a଴, b଴ and	c଴ can not be all zero, otherwise a୮, b୮ and	c୮ will all become 

zero and u, v, w become zero as well yielding the  trivial solutions. So the determinant of 
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the left side 3X3 matrix has to be zero and the a଴, b଴ or	c଴ could be arbitrary. From the 

zero determinant, six roots of z could be achieved as: 

zሺ1ሻ ൌ √െαଵ
zሺ2ሻ ൌ െ√െαଵ

zሺ3ሻ ൌ ටି୆ା√୆మିସେ

ଶ

 (4.84) 
(4.85) 

(4.86) 

zሺ4ሻ ൌ െටି୆ା√୆మିସେ

ଶ
 (4.87) 

zሺ5ሻ ൌ ටି୆ି√୆మିସେ

ଶ
 (4.88) 

where 

zሺ6ሻ ൌ െටି୆ି√୆మିସେ

ଶ

B ൌ α଺ ൅ αଵଷ െ α଻αଵଵ
C ൌ α଺αଵଷ െ α଼αଵଶ 

(4.89) 

Six roots of z indicate six power series for each u, v and w, which are six 

solutions of u, v and w respectively. For the second order three variables ODE system is 

obtained. The general solutions for each of the variables are generated from six (2X3) 

linear independent solutions. For satisfying the linear independence, the simple situation 

is not repeated solutions. For the power series solutions here, no repeated solutions mean 

that the six roots of z are different and the differences with each one are not an integer. 

The special of the integer difference is because if the difference is integer the different 

power series are the same series for an infinitely long cylinder. In this case, we don’t 

need to build the new linear independent solutions from the repeated solutions. The 

simplest situation is the real (none repeated) solutions. And the simplest one is also best 

for the benchmark sought here because it is more stable, No new functions and potential 

singularities need to be introduced into the power series. 

So under this simplest situation, the coefficient series a୮, b୮ and	c୮ could be 

calculated according to the following steps.  
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First, obtain the a଴, b଴ and	c଴; aଵ, bଵ and	cଵ from the indices equations. Two 

routes of calculation by different roots of z are required and explained as below: 
i. Pick up the roots z(1) and z(2) to substitute into indices equations: 

a. a଴is arbitrary, for example setting as 1.  

b. b଴andc଴ have to be zero. The reason is: 

ฬ൤ z
ଶ ൅ α଺ α଻z ൅ α଼൨ฬ ് 0 

αଵଵz ൅ αଵଶ zଶ ൅ αଵଷ 

c. Substitute the a଴, b଴ and	c଴ into other three indicial equations so 

that aଵ, bଵ and	cଵ could be achieved, which are (as a଴ ൌ 1):

bଵaଵ ൌ 0 ൤ ൨ ൌcଵ 

ሺz ൅ 1ሻଶ ൅ α଺ α଻ሺz ൅ 1ሻ ൅ α଼ 
ିଵ െαହ

൤ ൨ ቂ ቃ
αଵଵሺz ൅ 1ሻ ൅ αଵଶ ሺz ൅ 1ሻଶ ൅ αଵଷ െሾαଽz ൅ αଵ଴ሿ 

ii. Pick up the other roots to apply in the indices equations: 

a. b଴orc଴ could be arbitrary, for example setting both as b଴ ൌ 1, then 

c଴ ൌ ି୸
మି஑ల

஑ళ୸ା஑ఴ
. 

b. a଴has to be zero. The reason is: zଶ ൅ αଵ ് 0  

c. Same as route I to achieve aଵ, bଵ and	cଵ from other indices 

equations while as b଴ ൌ 1  
ି஑మ ൅ ି୸

మି஑ల ି஑య୸ି஑రbଵ ൌ 0, cଵ ൌ 0aଵ ൌ ∙
ሺ୸ାଵሻమା஑భ ஑ళ୸ା஑ఴ ሺ୸ାଵሻమା஑భ

With the initial six constants achieved from above two routes, other constants of 

certain z could be obtained by the three recurrence equations below which come from the 

coefficient functions of power series in equation: 

a୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ αଵሿ ൅ c୮ାଵሾαଷሺp ൅ z ൅ 1ሻ ൅ αସሿ ൅ αଶb୮ାଵ ൅ Ωଵa୮ ൌ 0  
(4.90)

b୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ α଺ሿ ൅ c୮ାଶሾα଻ሺp ൅ z ൅ 2ሻ ൅ α଼ሿ ൅ αହa୮ାଵ ൅ Ωଶb୮ ൌ 0  
(4.91) 
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c୮ାଶሾሺp ൅ z ൅ 2ሻଶ ൅ αଵଷሿ ൅ b୮ାଶሾαଵଵሺp ൅ z  ൅  2ሻ ൅ αଵଶሿ ൅ a୮ାଵሾαଽሺp ൅ z ൅ 1ሻ ൅ αଵ଴ሿ

൅ Ωଷc୮ ൌ 0  
(4.92) 

Noticing here, for route I: The constants aଶ୮ାଵ, bଶ୮ and	cଶ୮ are always zero; for 

case II: The constants aଶ୮, bଶ୮ାଵ and	cଶ୮ାଵ are always zero. Rewrite the recurrence 

equations as the following equations for easily achieving new constants and subsequent 

programming: 
a୮ାଶ ← Kଵa୮ ൅ Kଶb୮ାଵ ൅ Kଷc୮ାଵ  (4.93)
b୮ାଶ ← Kସa୮ାଵ ൅ Kହb୮ ൅ K଺c୮  (4.94)
c୮ାଶ ← K଻a୮ାଵ ൅ K଼b୮ ൅ Kଽc୮  (4.95) 

where 

Kଵ ൌ ିஐభ (4.96)
ሺ୮ା୸ାଶሻమା஑భ

ି஑మKଶ ൌ  (4.97)
ሺ୮ା୸ାଶሻమା஑భ

Kଷ ൌ ିሾ஑యሺ୮ା୸ାଵሻା஑రሿ  (4.98)
ሺ୮ା୸ାଶሻమା஑భ

Kସ ൌ 
ିಉవ

ሺ౦శ౰శభሻశಉభబ ಉఱ
ሺ౦శ౰శమሻమశಉభయ 

ା
ಉళሺ౦శ౰శమሻశಉఴ  (4.99)

ಉభభሺ౦శ౰శమሻశಉభమ
ሺ౦శ౰శమሻమశಉభయ 

ି ሺ౦శ౰శమሻ
మశಉల

ಉళሺ౦శ౰శమሻశಉఴ 

ಉళሺ౦శ౰శమሻశಉఴKହ ൌ 
ಈమ

 (4.100)
ಉభభሺ౦శ౰శమሻశಉభమ
ሺ౦శ౰శమሻమశಉభయ 

ି ሺ౦శ౰శమሻ
మశಉల

ಉళሺ౦శ౰శమሻశಉఴ
ಈయ

ሺ౦శ౰శమሻమశಉభయK଺ ൌ 
ି

 (4.101)
ಉభభሺ౦శ౰శమሻశಉభమ
ሺ౦శ౰శమሻమశಉభయ 

ି ሺ౦శ౰శమሻ
మశಉల

ಉళሺ౦శ౰శమሻశಉఴ 

K଻ ൌ 
ି ಉవሺ౦శ౰శభሻశಉభబ ಉఱା
ಉభభሺ౦శ౰శమሻశಉభమ ሺ౦శ౰శమሻమశಉల  (4.102)ሺ౦శ౰శమሻమశಉభయ ିಉళ

ሺ౦శ౰శమሻశಉఴ
ಉభభሺ౦శ౰శమሻశಉభమ ሺ౦శ౰శమሻమశಉల 

ሺ౦శ౰శమሻమశಉలK଼ ൌ ሺ౦శ౰శమሻమశಉభయ

ಈమ

ିಉళ
ሺ౦శ౰శమሻశಉఴ

 (4.103)
ಉభభሺ౦శ౰శమሻశಉభమ ሺ౦శ౰శమሻమశಉల

ି
ಉభభሺ౦శ౰శమሻశಉభమKଽ ൌ ሺ౦శ౰శమሻమశಉభయ 

ಈ

ି

య

ಉళሺ౦శ౰శమሻశಉఴ
 (4.104)

ಉభభሺ౦శ౰శమሻశಉభమ ሺ౦శ౰శమሻమశಉల 

After this point, the general solutions of each three directions could be achieved 

as follows: 

u ൌ  ∑଺
୧ୀଵ A୧ ∑

ஶ
୮ୀ଴ a୮,୧r୮ା୸

ሺ୧ሻ  (4.105)

v ൌ  ∑଺
୧ୀଵ A୧ ∑

ஶ
୮ୀ଴ b୮,୧r୮ା୸

ሺ୧ሻ  (4.106)
w ൌ  ∑଺

୧ୀଵ A୧ ∑
ஶ
୮ୀ଴ c୮,୧r୮ା୸ሺ୧ሻ  (4.107) 
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In the general solutions, i indicate which root of z we have. Accordingly, the 

power series constants a, b and c have six different sets for different root of z(i). Ai is the 

arbitrary constant which has to be the same for all u, v and w, because the linear 

operations only validly work on the same group of solutions for the ODE system. In other 

words, as the matrix form of ODE system in equation 4.57, the u, v and w compose a 

vector. For keeping the same vector space (the solutions space), if linear operations add 

on one element of the vector, the same operations need to be added on other elements as 

well. 

4.2.3 Acquiring the natural frequency 

For free vibration of hollow cylinders, the stress in the radial direction would be 

zero at the free edges where r= Ri and Ro. These stress constraint are the boundary 

conditions here, which are:
σ୰ ൌ τ୰୶ ൌ τ୰஘ ൌ 0  (4.108) 

Rewrite these stresses as the stress-displacement relationship:
பσ୰ ൌ Cଵଵ ப୰

ப W ൅ Cଵଶ
୛

୰ 
൅ Cଵଶ

ଵ

୰ ப஘
V ൅ Cଵଷ ப୶

ப U  (4.109)
பτ୰஘ ൌ Cସସሺப୰

ப V ൅ ଵ

୰ ப஘
W െ ୚

୰
ሻ  (4.110)

τ୰୶ ൌ Cହହ ቀப୶
ப W൅

ப୰

ப Uቁ  (4.111) 

Apply the separation variable procedure as suggested in equations 4.25 to 4.27: 
w 1

σ୰ ൌ ൬Cଵଵw୰ ൅ Cଵଶ v ∙ n െ Cଵଷu ∙ λ൰ ∙ cosሺn ∙ θሻ ∙ sinሺλ ∙ xሻ ∙ cosሺω ∙ tሻ  
r 
൅ Cଵଶ r 

(4.112)

τ୰஘ ൌ Cସସሺv୰ െ ଵw ∙ n െ  ୴ሻ ∙ sin	ሺn ∙ θሻ ∙ sin	ሺλ ∙ xሻ ∙ cosሺω ∙ tሻ  (4.113)
୰ ୰

τ୰୶ ൌ Cହହሺλ ∙ w ൅ u୰ሻ ∙ cosሺn ∙ θሻ ∙ cosሺλ ∙ xሻ ∙ cosሺ߱ ∙ ሻݐ  (4.114) 

Define the mሺr, ω, iሻ, nሺr, ω, iሻ and lሺr, ω, iሻ as below. 

mሺr, ω, iሻ ൌ Cଵଵwሺiሻ୰ ൅ Cଵଶ 
୵ሺ୧ሻ ൅ Cଵଶ 

ଵ vሺiሻ ∙ n െ Cଵଷuሺiሻ ∙ λ  (4.115)
୰ ୰

n െ ୴ሺ୧ሻnሺr, ω, iሻ ൌ vሺiሻ୰ െ ଵwሺiሻ ∙  (4.116)
୰ ୰

lሺr, ω, iሻ ൌ λ ∙ wሺiሻ ൅ uሺiሻ୰  (4.117) 
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where i is from 1 to 6 and indicates the six solution respectively with the indicial roots 

z(i). Substitute the achieved general solutions of u, v and w in last section: 
mሺr,ω, iሻ ൌ A୧Mሺr, ω, iሻ  (4.118)
nሺr, ω, iሻ ൌ A୧Nሺr, ω, iሻ  (4.119)
lሺr, ω, iሻ ൌ A୧Lሺr, ω, iሻ  (4.120) 

Apply the boundary conditions, when r = R୧or R୭, the m, n and l functions are 

zero:
MሺR୧, ω, 1ሻ MሺR୧, ω, 2ሻ MሺR୧, ω, 3ሻ MሺR୧, ω, 4ሻ MሺR୧, ω, 5ሻ MሺR୧,ω, 6ሻې ۍ ۍ ,NሺR୧ې ω, 1ሻ NሺR୧, ω, 2ሻ NሺR୧, ω, 3ሻ NሺR୧, ω, 4ሻ NሺR୧, ω, 5ሻ NሺR୧, ω, 6ሻێ ۑ ێ ۑ

,LሺR୧ ێ ω, 1ሻ LሺR୧, ω, 2ሻ LሺR୧, ω, 3ሻ LሺR୧, ω, 4ሻ LሺR୧, ω, 5ሻ LሺR୧, ω, 6ሻ ۑ ێ

A
A
A
A
A
A

ଵ

ଶ

ଷ

ସ

ହ

଺

ൌ ۑ ێ(4.121)0 ,MሺR୭,ωۑ 1ሻ MሺR୭,ω, 2ሻ MሺR୭,ω, 3ሻ MሺR୭,ω, 4ሻ MሺR୭,ω, 5ሻ MሺR୭,ω, 6ሻ ێۑ ێ  ۑ
,NሺR୭,ωێ 1ሻ NሺR୭,ω, 2ሻ NሺR୭,ω, 3ሻ NሺR୭,ω, 4ሻ NሺR୭,ω, 5ሻ NሺR୭,ω, 6ሻۑ ۑ ێ
ۏ LሺR୭,ω, 1ሻ LሺR୭,ω, 2ሻ LሺR୭,ω, 3ሻ LሺR୭,ω, 4ሻ LሺR୭,ω, 5ሻ LሺR୭,ω, 6ሻ ے  ے ۏ

For avoiding the trivial solutions, A୧ can’t be all zeros. So the determinant has to 

be zero. The roots that satisfy the resulting zero determinant equations are natural 

frequencies. 

4.3 Multiple layers orthogonal hollow cylinders 

For free vibrations, and to obtain the natural frequency of multiple layered 

cylinders, the boundary conditions on the interface need to be added. Without 

delaminating, the displacement and the stress in radius direction should be the same from 

both side materials on the interface. The mathematical equations of these boundary 

conditions are: 
uሺjሻ െ uሺj ൅ 1ሻ ൌ 0  (4.122)
vሺjሻ െ vሺj ൅ 1ሻ ൌ 0  (4.123)
wሺjሻ െ wሺj ൅ 1ሻ ൌ 0  (4.124)
σ୰ሺjሻ െ σ୰ሺj ൅ 1ሻ ൌ 0  (4.125)

τ୰஘ሺjሻ െ τ୰஘ሺj ൅ 1ሻ ൌ 0  (4.126)
τ୰୶ሺjሻ െ τ୰୶ሺj ൅ 1ሻ ൌ 0  (4.127) 

where the j is the number of the layers.  

The similar matrix could be built up from the below matrix to obtain the natural 

frequencies as the left matrix in the equation 4.128. The matrix needs to be filled with 
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zeros to make the correct dimension for matrix product. The j*represent only the first and 

last layers. We then substitute the general solutions into this matrix. The arbitrary 

constant A୧ needs to change to A୧ሺjሻ for representing the different layers’ general 

solutions. For avoiding trivial solutions, A୧ሺjሻ can’t be all zero. The determinant of the 

new matrix has to be zero. A function with only frequency variable is derived. We then 

solve the function for the roots. The roots are the natural frequencies. 

 ۍ
σ୰ሺj∗

∗
ሻ
ሻ ې 

 ۑ τ୰஘ሺj ێ
 ۑ τ୰୶ሺj∗ሻ ێ
uሺjሻ ێ െ uሺj ൅ 1ሻ  ۑ 
vሺjሻ ێ െ vሺj ൅ 1ሻ ۑ A୧ሺjሻ ൌ 0  (4.128)
wሺjሻ ێ െ wሺj ൅ 1ሻ ۑ 
ێ  ۑ
σ୰ሺjሻ െ ێ σ୰ሺj ൅ 1ሻ ۑ 
τ୰஘ሺjሻ െێ τ୰஘ሺj ൅ 1ሻۑ
τ୰୶ሺjሻ െۏ τ୰୶ሺj ൅ 1ሻے 

4.4 Finite element analyses for orthotropic hollow cylinder 

For the orthotropic hollow cylinders, the geometries, mesh sizes and element 

types are similar as the isotropic cylinders. The detail numbers of these similar 

parameters will be listed in the result discussion section. Besides them, some new 

parameters need to be considered: 

i. The material orientation.  

ii. Meshing method 

iii. Material stability requirement. As in Abaqus® help document request, “the 

linear elastic materials must satisfy the conditions of material or Drucker stability[145]”. 

Material stability requires for orthotropic material as in engineering constants: 
E୶, E஘, E୰, G୰஘, G୰୶, G஘୶, Υ ൐ 0  (4.129)

|ν୰஘|<ሺE୰/E஘ሻଵ/ଶ  (4.130) 

|ν୰୶|<ቀ୉
୉

౮

౨ቁ
భ
మ  (4.131) 
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|ν஘୶|<ቀ
୉ಐቁ

భ
మ  (4.132)

୉౮ 
in elasticity parameters: 

Cଵଵ, Cଶଶ, Cଷଷ, Cଵଶ, Cଵଷ, Cଶଷ ൐ 0  (4.134)

|Cସସ|<ሺCଵଵCଶଶሻమ
భ

(4.135)

|Cହହ|<ሺCଵଵCଷଷሻమ
భ

(4.136)
|C଺଺|<ሺCଶଶCଷଷሻଵ/ଶ  (4.137)

detሺC୫ୟ୲୰୧୶ሻ ൐ 0  (4.138) 

4.5 Results and discussion 

As been mentioned in Chapter II, although many publications discussed the 

theoretical foundation, the detailed results like the natural frequency of a certain mode 

shape are hard to find in the literature. We will address here the challenges that face 

researchers and how to solve it. 

4.5.1 The challenges from indicial roots 

The indicial root z is the core for solving the ODE system with the regular 

singular point by power series method. The properties of the indicial roots will directly 

impact the final detailed solution. Some challenges are faced from the repeated indicial 

roots z (here “repeated” means same number or multiple numbers with integer 

difference), which are listed as below: 

i. Under some special modes, the natural frequency results couldn’t be 

directly achieved. Examples are the first longitudinal, breathing, torsion, 

and elongation modes.  

ii. Under some material properties including isotropic properties, the 

frequency results couldn’t directly be obtained using the power series 

method. 

iii. Material and mode shape mixed cases, as ݊ ∗  ඥܩ௥௫/ܩఏ௫is integer. 
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Under all of the above three conditions, one or more repeated roots (solutions) 

could be found. The case of isotropic material will produce 6 (maximum) solutions. 

Some mathematical techniques could be used to solve these problems in the power series 

method, such as adding logarithmic functions to build a new linear independent 

solution[133]: 
If one solution is 

A୮r୮ା୸ሺଵሻ Yଵ ൌ ∑ஶ
୮ୀ଴  (4.139) 

Another linear independent solution that can be used then becomes : 

B୮r୮ା୸ሺଵሻYଶ ൌ C  Yଵ lnሺrሻ ൅ ∑ஶ
୮ୀ଴  (4.140) 

where z(1) ≥ z(2); A଴ ് 0; C=1 when z(1)=z(2); B଴ ് 0 when z(1)-z(2)  is integer. 

However; the complexity of the solution series will dramatically increase, which 

will create much more difficulties to obtain the natural frequencies. An easier way to 

solve these problems is to use other methods. For example, creating potential functions 

can be used to convert the ODE to a Bessel functions pattern similar to the isotropic 

problem in Chapter III. The simplified two dimensional theories like shell theories and 

FEA are much easier to cater to the requirements like material properties and geometries.  

Another challenge will be the complex solution of indicial roots z. Although no 

previous publication appeared on this problem, this situation is quite possible to be 

generated by the use of composite materials and their properties. Because even for one 

layer of composite material, the fiber angles could be oriented in any direction, which 

means different constitutive parameters that are not zero. For example, A graphite/epoxy 

material can have the following properties: E1=138*10^9 Pa; E2=8.96*10^9 Pa; 

E3=5*10^9 Pa; G12=7.1*10^9 Pa; G13=3.44*10^9 Pa; G23=3.64*10^9 Pa; v12=0.49; 

v13=0.33; v23=0.33. 
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If 1 indicates the x direction, 3 for the r direction, the indicial root of z will be a 

real number. If one turns the fibers 90 degree with the θ axial (1-r; 3-x), the indicial root 

of z will change to complex number. To solve this problem, a small lemma is developed 

here: 

i. z(1) and z(2) can’t be complex number. Because the െαଵ is always larger 

than zero. This insures the route 1 of the recurrence staying the same. 

ii. The other four indicial roots will be c േ ݀݅ , e േ ݂݅. Four real number 

power series solutions could be written as: 
c ൌ  ∑ஶ

୮ୀ଴ A୮r୮ାୡ cosሺd lnሺrሻሻ  (4.141)
݀ ൌ  ∑ஶ

୮ୀ଴ A୮r୮ାୡ sinሺd lnሺrሻሻ  (4.142)
e ൌ  ∑ஶ

୮ୀ଴ B୮r୮ାୣ cosሺf lnሺrሻሻ  (4.143)
݂ ൌ  ∑ஶ

୮ୀ଴ B୮r୮ାୣcosሺf	ln	ሺrሻሻ  (4.144) 

The proof of the second part can be to done first. We rewrite the solution Y in the 

form Y1+i*Y2, or
ஶ ஶ ஶ

෍A୮r୮ାୡାୢ୧ ൌ෍  A୮r୮ାୡeୢሺ୪୬ሺ୰ሻሻ୧ ൌ෍  A୮r୮ାୡ൫cosሺd lnሺrሻሻ െ i  sinሺd lnሺrሻሻ൯ 
୮ୀ଴ ୮ୀ଴ ୮ୀ଴ 

ൌ ∑ஶ
୮ୀ଴ A୮r୮ାୡ cosሺd lnሺrሻሻ െ i  ∑ஶ

୮ୀ଴ A୮r୮ାୡ sinሺd lnሺrሻሻ  (4.145) 

Then one can prove that the Y1 and Y2 are also two solutions for the second order 

homogeneous ODE, 
PሺrሻYᇱᇱ ൅ QሺrሻYᇱ ൅ RሺrሻY ൌ 0  (4.146)

PሺrሻሺYଵ ൅ i  Yଶሻᇱᇱ ൅ QሺrሻሺYଵ ൅ i  Yଶሻᇱ ൅ RሺrሻሺYଵ ൅ i  Yଶሻ ൌ 0  (4.147)
PሺrሻYଵ

ᇱᇱ ൅ QሺrሻYଵ
ᇱ ൅ RሺrሻYଵ ൅ i  ሺPሺrሻYଶᇱᇱ ൅ QሺrሻYଶ

ᇱ ൅ RሺrሻYଶሻ ൌ 0  (4.148) 

Both real and imaginary parts have to be zero. Our proof ends here.   

With this lemma, the complex indicial roots solutions could be converted to real 

indicial roots solutions, and then the problem could be solved by previous discussions. 
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4.5.2 The normal condition (no repeated roots) 

After the above discussion of the special cases of the indicial roots, one needs to 

address the most normal condition where we get real and no repeated indicial roots. Let’s 

study the only detailed solution the author found in reference [148]. The model is a three 

layer hollow cylinder with two orthotropic materials. The material properties 

areC11=0.08*C33; C22=0.19*C33; C12=0.05*C33; C13=0.07*C33;C23=0.32*C33; 

C44=0.03*C33; C55=0.04*C33; C66=0.34*C33. 

With this ratio of material properties, the indicial roots are under the most normal 

condition. For the top and bottom layers, C33=20, and for the middle layer C33 = 1. The 

reference suggested a non-dimensional natural frequency expression as: 
଴.ହ

ω∗ ൌ ωR୭ ൤ 
∑యౠసభ஡൫ୖౠశభ

మିୖౠ
మ൯ 
൨  (4.149)

∑యౠసభେଷଷౠ൫ୖౠశభ
మିୖౠ

మ൯ 

where j is the number of the layer which counts from inside to outside; R4 is Ro; R1 is 

Ri. The dimensional natural frequency could be calculated from the above equation. 

For the thick shell, where R1=0.8, R2=0.82, R3=0.98, R4=1, the length is 16, and 

the density is 1. The dimensional natural angle frequency results (ω) are shown in Table 

4.1, for studying the results, the determinant of the final matrix which should be zero 

listed on the right side column.   

Table 4.1 is split as three big grid m=16, m=8 and m=2. The determinant 

calculated by the author from the natural frequency reported in the reference by Srinivas 

are the bold numbers in Table 4.1, which are interestingly not zero especially for the first 

grid (m=16).  

Firstly, we study the procedures for numerical evaluation from the reference by 

Srinivas (Page 38): 

i. Set a starting value of the natural frequency. 
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ii. Calculate the final determinant. 

iii. Adjust the starting value (example, take the original value + 0.01 or – 

0.01) to find two values making two final determinants one positive, one 

negative. 

iv. Using linear interpolation and Regula Falsi technique to achieve the 

natural frequency with the desired accuracy.    

Table 4.1 The study of Srinvas’ results 

n m Srinivas 
(natural freq.) 

Operations Determinant (found here) 

2 16 1.01865441 -1.468559403030325e+011 
+0.01 -8.995010968534168e+010 
-0.01 2.589411075785058e+011 

3 1.11525076 2.550241380807452e+020 
+0.01 9.129009909419222e+020 
-0.0099999 -3.883934278667399e+020 

4 1.15308744 -1.476669469674072e+017 
+0.0100003 -7.966297113533057e+017 
-0.01 4.279223259220539e+016 

2 8 0.74374151 -2.230800350258182e+004 
3 0.61561825 -2.169382484916956e+006 
4 0.7245274 -1.360129170409474e+008 
2 2 0.1922068 -9.056072517608495e+002 

0.169500253379415 -5.903480550019523e-010 
3 0.40441643 -1.349479041302209e+005 

0.394589434345435 -5.824026022845884e-008 
4 0.62694515 -9.155489624979297e+006 

0.620826316101041 -1.943306650805638e-006 

. 

So for checking the linear interpolation operation in step iv, the author added two 

small value steps (one positive, one negative) to the frequency values in the first grid. 

One positive determinant and one negative determinant are found. This means that for 

linear interpolation there should be one zero point for the determinant between them. 
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Figure 4.1 The oscillation behavior of results in the first grid table 4.1 

  

However, between them, at the frequency value, there is another big number (in absolute 

sense) for the determinant, where the linear interpolation failed. It is showing that in this 

small range more than one solution for the determinant can be found (equal to zero). In 

another word, there exists large oscillation. The figure below is showing the oscillation 

for the first grid (m=16) as n=3. 

In Figure 4.1, even in the big span from 0.1 to 0.2 and only 1000 sampling points, 

the oscillation is showing as random noise. It indicates any achieved frequency can’t be 

trusted even if the determinant is exactly zero. And if the large oscillation permanently 

exists, the power series method to solve this problem is a failed method from a practical 

point of view. Fortunately it is not.  For other two grids of the table 4.1, the “oscillation” 

figures for the determinant as a result of eigen-value variation are shown below. 
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For the grid: m=8 and n=3Span from 0.45 to 0.55, sampling points 1000. 
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Figure 4.2 The oscillation behavior of results in the second grid table 4.1 
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Figure 4.3 The magnified picture of figure 4.2 

For the grid: m=2 and n=3, Span from 0.35 to 0.45, sampling points 1000. 
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The oscillation behavior of results in the third grid table 4.1 

0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 
-8 

-6 

-4 

-2 

0 

2 

4 

6 

The angular frequency 

T
he

 v
al

ue
 o

f t
he

 d
et

er
m

in
an

t 

Figure 4.4 
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Figure 4.5 The magnified picture of figure 4.4 

From the above figures, the “oscillation” is weakening with the increase in m. 

When m=8, the “oscillation” is acceptable for predicting the curve trend. But when 

magnifying it with higher sampling rate and a smaller sampling span range, the 

oscillation is still obvious. When m=2, the curve is almost perfectly smooth even within 
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higher sampling rates and smaller sampling span range. The obtained natural frequency 

(Table 4.1) results from m=2 in the figure match well with the reference by Sirnivas. 

From these figures, it is concluded that the “oscillation” could be controlled or avoided. 

And for further using it as benchmarking, the study of the “oscillation” is required.  

4.5.3 The study of the oscillation 

For simplifying the situation, the study of the oscillation will only focus on one 

layer problem with the same material ratio as described in the last section as C33=1. 

4.5.3.1 Convergence study 

Before the oscillation study is made, if the power series solution was not 

convergent, the whole study would be meaningless. And even it is convergent, how large 

the least number of loops is needed for the desirable convergence to occur will be also 

important to know.  

Take the example of a thin cylinder with a thickness ratio of 25. Testing with so 

thin of a thickness makes it harder to converge as was found by the reference [Srinvas; 

page 38].However, the author here doesn’t agree. Because the convergence of the power-

series method solution only depends on if the absolute value of the coefficients of the 

power series solutions, like an, bn and cn in the equation 4.93 to 4.95, will become zero 

with n going to infinity. These coefficients are independent of the radius.  The radius will 

influence only the convergence speed of the final matrix determinant. This is important 

for obtaining the natural frequency. The thickness could influence the accuracy of 

obtaining the natural frequency because if the thickness is too small the linear 

independency of the final matrix would become vague for any frequency number. 
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Figure 4.11 The oscillation behaviors when m=9 
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Figure 4.12 The oscillation behaviors when m=8 
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Figure 4.14 The oscillation behaviors when m=6 
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Figure 4.13 The oscillation behaviors when m=7 
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Figure 4.16 The oscillation behaviors when n=2 
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Figure 4.15 The oscillation behaviors when m=5 

The oscillation behaviors by changing the longitudinal mode number m 

 

 

 

 

Similar as section 4.5.2, the oscillation is gradually eliminating with m 

decreasing. Then test the parameter n. 

When m=4 test n from 2 to 4, and 15 

80 



 

 

 

 
 

  

-1.6 

-1.5 

-1.4 

-1.3 

-1.2 

-1.1 

-1 

-0.9 

-0.8 x 1019 

T
he

 v
al

ue
 o

f t
he

 d
et

er
m

in
an

t 

The oscillation  study  

0 0.2 0.4 0.6 0.8 1 
The radius  frequency  

Figure 4.19 The oscillation behaviors when n=15 

 

From the figures, the circumferential mode n will not impact the oscillation.  
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Figure 4.18 The oscillation behaviors when n=4 
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Figure 4.17 The oscillation behaviors when n=3 
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We will then discuss the reasons for the oscillations. From the computational 

point of view, the largest and most terrible noise indicates some singular points exist. In 

other words, the final determinant is not a continuous function with the variable ߱. If the 

theory has a built in singularity and this singularity can’t be eliminated, the theory is 

determined to have failed to obtain the computational results. And even if we are to be 

avoiding the singularity, many methods that involve numerical approximations can be 

used. However, fortunately, this oscillation is not the computational singularity noise. If 

expanding the final determinant as a function of ߱, it will be an extremely high degree 

polynomial of ω, which looks like: 
fሺωሻ ൌ Cଵω୬భ ൅ Cଶω୬మ ൅ Cଷω୬య …൅ C଴  (4.150) 

where the n1 > n2 > n3… >0 as integers, Ci are real constants.  n1 will be more than ten 

thousands when the computational loops are larger than 100. Subsequently, when 

fሺωሻ ൌ 0 for calculating the natural frequencies, the oscillating area is the range with too 

many solutions for this high order polynomial. The smooth area is in the range between 

two solutions which should be a perfect continuous function. It was proven by the figure 

4.5 the smooth curve is still very smooth in the very small range with 10k points testing. 

It is a very important observation for assuring the accuracy of the final results. Because it 

is showing the power series method is not introducing “noises” or new singularities and it 

provides a theoretical foundation for controlling the oscillation.  

 Secondly we will discuss how the longitudinal mode number m influences the 

oscillation. As has been shown in section 4.2.1, the ω is always coming out with the Ωଵ, 

Ωଶ and Ωଷ in the equation 4.51 to 4.53.If the final determinant expands with Ωଵ, Ωଶ and 

Ωଷ: 

fሺωሻ ൌ CଵΩଵ
୬భΩଶ

୫భΩଷ
୪భ ൅ CଶΩଵ

୬మΩଶ
୫మΩଷ

୪మ ൅ CଷΩଵ
୬యΩଶ

୫యΩଷ
୪య …൅ C଴  (4.151) 
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where the n1 + m1 +l1 > n2 + m2 +l2 > n3 + m3 +l3 … >0, ni ,mi  and li are positive integers. 

And all three Ω௜ are in the pattern:   

Ω௜ ൌ ଶߣܦ ൅ ଶ߱ߩܧ  (4.152) 

where D and E are the constants decided by the material elasticity properties.  

From the above two equations, the ߣ will directly impact the position of solutions 

߱ from the second degrees of ߱ଶ . 

This influence from bundled pattern Ω௜ for ߱ could also be seen from the 

variation of the density ߩ as shown in the figures below: 
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Figure 4.20 The oscillation behaviors when the density 0.5=ߩ 
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Figure 4.21 The oscillation behaviors when the density 1=ߩ 
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Figure 4.22 The oscillation behaviors when the density 2=ߩ 
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Figure 4.23 The oscillation behaviors when the density 4=ߩ 
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Figure 4.24 The oscillation behaviors when the density 9=ߩ 
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Figure 4.25 The oscillation behaviors when the density 15=ߩ 

 

Figure 4.20 to Figure 4.25 are generated when m=8, n=3, l=10, Ri =0.6, Ro =1, 

loop=500, 1000 points between 0 and 1. The curve is compressed with the density 

increasing in the same frequency range (0~1), which follows the mathematical coefficient 

behavior for the simple polynomial as in the equation 4.150. This study for density gives 

another proof of the observation of the influence for the final polynomials from the 

bundled simple polynomialΩ௜. 

From a mathematical point of view, the study of the solution behaviors of a high 

degree polynomial and how the coefficients in the polynomial will influence the 

oscillation could be interesting. And in the field of applied mathematics, with the 

practical meaning for finding the material and structure range in order to avoid the 

oscillations, it also could be a good topic for a new development of the Abel theorem, 

eigenvalue or stability study of ODE system.   

However; as an engineering topic, because the material and structural properties  

are known parameters, the objective is more meaningful to find the procedures as a 

standard for achieving credible solutions. For example, so far for the hollow cylinder 

with the studied material properties and geometry, when λ<2 (m<7), the natural 

frequency could be accurately obtained. As summary and conclusions of the above 
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studies, the procedures for obtaining the exact solution of the natural frequency for the 

orthotropic hollow cylinders by using power series method are suggested as below: 

i. Checking the material properties and mode shape numbers for making 

sure the calculation under real-no repeated indicial situation. 

ii. Set a starting value of the natural frequency from the theories targeted for 

the benchamrking study. 

iii. Study the convergence to decide the least loops for the series. 

iv. Study the oscillation of the final determinant around the starting point. 

v. Find the range of longitudinal mode m to insure no oscillation. 

vi. Adjust the starting value to find two value making two final determinants 

one positive, and the other negative. 

vii. Use bisection method to achieve the natural frequency with desired 

accuracy 

4.5.4 The comparison with FEA 

The accuracy study for quadratic solid and shell composite element in the 

Abaqus® is delivered by comparing the exact solutions from 3D elasticity theory 

discussed above. All analytical results are tested in the area with no oscillation. The 

material properties are the same as described in section 4.5.3. The other parameters are 

provided in the tables: 
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Table 4.2 The natural frequecy comparison with the hollow cylinder structure: outside 
radius 1m, inside 0.8m, length 2m 

m n Shell quadratic 
Mesh:0.05m^3 

Solid quadratic 
Mesh:0.05m^3 

Frequency 
(Analytical) 

1 3 0.33269 0.35327 0.3304015 
1 2 0.35831 0.36685 0.3395532 
1 4 0.43643 0.46035 0.4485577 
1 5 0.5839 0.60692 0.6020427 

Table 4.3 The natural frequecy comparison with the hollow cylinder structure: outside 
radius 1m, inside 0.7m, length 2m 

m n Shell quadratic 
Mesh:0.05m^3 

Solid quadratic 
Mesh:0.08m^3 

Frequency 
(Analytical) 

1 2 0.37923 0.393101 0.375504 
1 3 0.39382 0.422478 0.410374 
1 4 0.54283 0.575323 0.57093 

Table 4.4 The natural frequecy comparison with the hollow cylinder structure: outside 
radius 1m, inside 0.6m, length 2m 

m n Shell quadratic 
Mesh:0.05m^3 

Solid quadratic 
Mesh:0.1m^3 

Frequency 
(Analytical) 

1 2 0.38772 0.405602 0.392585 
1 3 0.44196 0.479939 0.471856 
1 4 0.62492 0.671233 0.668397 
2 2 0.722 0.743301 0.735489 

Table 4.5 The natural frequecy comparison with the hollow cylinder structure: outside 
radius 1m, inside 0.6m, length 4m 

m n Shell quadratic 
Mesh:0.05m^3 

Solid quadratic 
Mesh:0.1m^3 

Frequency 
(Analytical) 

1 2 0.18943 0.206715 0.197188 
1 3 0.37002 0.401324 0.399211 
2 2 0.38959 0.405602 0.392585 
2 3 0.44422 0.479939 0.471856 
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From the above tables, the quadratic shell element provides promising results. 

Solid quadratic elements are still very accurate. Generally, the solid elements are not 

suggested to be used for the composite or orthotropic materials, except for bulk 

structures. The shell elements are strongly recommended. And in the manual of Abaqus®, 

an accuracy study is delivered for the stresses of a statically loaded cylinder. The error for 

stress analyses could be 3%~15% for quadratic solid element with fine meshes by 

comparing with analytical results.  

The difference from the 3D analyses and 2D analyses could be observed in the 

Table 4.4 and 4.5. As in the two dark grids, the results should be same for the same mode 

shape n and λ. The analytical results and 3D elements results are perfectly matched, 

giving the more credibility, but the 2D shell element results are showing slight 

differences.  

4.5.5 The limitation for material properties of powerseries method 

As been motioned, there are some restrictions for using the powerseries methods, 

for example, when G୰୶ ൌ G஘୶ the method could not be used due to the integer difference 

indicial roots. The other limitations are mainly depended on the indicial roots. And 

because of the complexities of indicial roots, except “when ݊ ∗  ඥܩ௥௫/ܩఏ௫is integer” 

which been motioned in section 4.5.1 could be easily found as a rule to show the range of 

material properties, the general range will be many individually ranges and dependent on 

the mode shapes. In another word, the “traps” of material properties will not show any 

general properties, such as the material being more orthogonal or less orthogonal the 

method will be easier to success. And because of it the calculation procedures which are 

concluded in the end of section 4.5.3 becomes essential. 
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By following the calculation procedures, the real orthogonal materials could be 

used and calculated, such as ASTT(b)-C2-O glass-reinforced plastic and PN-3 polyester 

resin. The mechanical parameters: Er=0.42*104 MPa, Eθ=1.31*104 MPa, Ex=1.79*104 

MPa, vrθ= 0.31, vzθ= 0.15, vrz= 0.08, Grθ= Grz =0.24*104 MPa, Gθz=0.28*104 MPa. The 

density takes as unit 1. The geometry is Ri=3m and Ro =5m, length =10m. The results are 

showing as table 4.6. The result shows good agreement with quadratic solid element. 

Table 4.6 The natural frequecy comparison with the hollow cylinder structure for the 
real orthogonal material 

m n Solid quadratic 
Mesh:0.5m^3 

Frequency 
(Analytical) 

1 2 13.739 13.735 
1 3 24.053 24.035 
1 4 36.444 36.405 
2 2 26.309 26.301 
2 3 32.921 32.901 
3 2 40.938 40.917 
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CHAPTER V 

CONCLUSION 

The contributions of this research work could be classified into practical 

observations and theoretical improvements discussed as below.  

5.1 Engineering contributions 

The first contribution of this work in Chapter 2 is to investigate the engineering 

need to perform a comprehensive comparison study of the analytical and numerical 

vibrations of cylinders and cylindrical shells using various theories. This dissertation only 

focused on some of the possible benchmarks for this work. The second contribution made 

here is by using and developing exact 3D elasticity theory solutions, an investigation is 

carried out to find the capability of the commercial FEA packages for obtaining natural 

frequencies of certain structures: The accurate results using finite elements can be 

obtained with quadratic solid elements. These results are important for benchmarking 

purposes but require significant computational time. Thus, they may not be practical for 

industrial applications. 

Another conclusion is that the use of an advanced shell theory may enhance the 

accuracy of these elements. This is verified by using such a theory with an exact solution. 
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Figure 5.1 The illustration for the demanding of advanced shell theories to apply in 
the FEA 

The point made here is illustrated in Figure 5.1.  Although 3D elements can 

provide accurate results, they are not practical in industrial applications of thin- and 

thick-walled structures. Instead, shell elements are needed for such applications. 

However, further improvements to the shell theory used in the finite element formulation 

are needed to improve the accuracy of these shell elements. And the selection of the 

advanced shell theories should depends on benchmarking their results against those 

obtained using the 3D elasticity theory.  

5.2 Theoretical contribution 

Another finding observed in the literature review is the absence of the results of 

the exact solution for the free vibration analyses of orthotropic hollow cylinders. This 

dissertation developed the route from the foundation theory to the detailed results. The 

observations and developments include: 
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i. Derivation using the power series method solution for free vibration 

analyses of the orthotropic hollow cylinders with improved expressions 

for modern programming.   

ii. Discussion of all special cases of the solutions and giving the 

corresponding solution methods.  

iii. Providing the solution for the special case of the complex indicial roots.  

iv. Detailed description and discussion of the oscillation behavior of the 

power series solution of this topic. In addition, giving the theoretical 

foundation for proving that this oscillation behavior is not ill-conditioning 

or singularities defects from the theory. 

v. Finding the method to avoid the oscillation area and giving the procedures 

to obtain the credible results. In addition, verifying results against those 

found in previous literature and FEA. 
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