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Table 3.1 Outline of parameters used in linear regression analysis, and a summary of the C-

CAP LULC attributes that were aggregated to create respective parameters within 

Gulf Coast Region HUC12 sub-basins. 

Parameter  LULC Group Name C-CAP Attribute 

X1 Developed 

2 High Intensity Developed 

3 Medium Intensity Developed 

4 Low Intensity Developed 

5 Developed Open Space 

X2 Agriculture 

6 Cultivated Land 

7 Pasture/Hay 

X3 Grassland 8 Grassland 

X5 Forest 

9 Deciduous Forest 

10 Evergreen Forest 

11 Mixed Forest 

        X6                  Scrub/Shrub 12 Scrub/Shrub 

X7  Wetland 

13 Palustrine Forested Wetland 

14 Palustrine Scrub/Shrub Wetland 

15 Palustrine Emergent Wetland 

16 Estuarine Forested Wetland  

17 Estuarine Scrub/Shrub Wetland 

18 Estuarine Emergent Wetland 

X8 Barren  20 Bare Land 
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Figure 3.1 Percent change in peak flow (Qp; cfs) by sub-basin from 1996-2016 for the Gulf of 

Mexico Coastal Region of the United States.  A positive change indicates an 

increase in Qp and a negative change indicates a decrease in Qp. 
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Figure 3.2 Percent change by LULC groups (Panel A: Developed, Panel B: Agriculture, Panel 

C: Wetland) between 1996 and 2016 scenarios for the Gulf of Mexico Coastal 

Region of the United States.  
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Figure 3.3 Percent change in peak flow (Qp; cfs) as a result of percent change by LULC 

group for each sub-basin within the Gulf Coast Region, with observed 

relationships as points and fitted relationships as lines.  Each plot has points 

removed where no change occurred for its respective LULC group.   
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CHAPTER IV 

DEVISING AN INDEX OF LAND-USE/LAND-COVER INFLUENCE ON ESTUARINE 

BIOTIC HEALTH IN THE GULF COAST REGION OF THE UNITED STATES 

 

4.1 Introduction 

 

Conservation planning and assessment has benefitted from the rise in availability of 

geospatial data by giving stakeholders more reliable information to help identify where 

conservation can best meet objectives (Kearns et al. 2003; Rissman et al. 2017).  However, lack 

of clarity regarding the benefits of conservation is among the most frequent of concerns from 

decision makers and their constituents (Merenlender et al. 2004; Wallace et al. 2008).  

Additionally, the limited availability of geospatial data that is relevant to conservation objectives 

often inhibits the ability of conservation tools to accurately account for the full suite of 

conservation priorities.  Making geospatial information more related to the efficacy of land 

conservation (e.g., acquisition, easement, stewardship) can improve the support of such actions 

from the public and improve the ability of conservation initiatives to identify lands that would 

achieve conservation objectives (Margules and Pressey 2000; Shamaskin et al. 2020).   

There is potential to use existing data to generate new geospatial information that 

identifies priority areas for conservation. Recent efforts to develop and modify geospatial data to 

indicate objective-specific conservation priority areas have shown promise, such as identifying 
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threats to biodiversity (Rouget et al. 2003; Jenkins et al. 2015), or marsh migration priority areas 

(Borchert et al. 2018).  The use of species distribution maps combined with a protected areas 

database by Jenkins et al. (2015) resulted in a map that indicated places of conservation priority 

within the United States based on the relative protections of the biodiversity.  Borchert et al. 

(2018) utilized sea-level rise projections and land-use/land cover (LULC) maps to identify 

priority areas to conserve wetland migration corridors along the Gulf Coast Region of the United 

States (GCR).  Other efforts have developed geospatial data to identify priority areas based on 

multiple conservation objectives, such as the Southeastern Conservation Blueprint developed by 

the Southeast Conservation Adaptation Strategy (SECAS).  The SECAS Conservation Blueprint 

collates multiple landscape attributes of broad concern to indicate which areas have conservation 

priority within the Southeast United States.  However, despite progress made incorporating 

geospatial information into conservation planning efforts, there remains limited availability of 

large-scale geospatially-explicit data representing biological features of coastal estuarine 

systems. As a result, the biotic integrity of estuarine zones remains an underrepresented target of 

protection for informing land conservation priorities.   

Informing land conservation decisions on the basis of benefiting estuarine priorities is 

often challenged by limited understanding of linkages between terrestrial and aquatic systems 

(Stoms et al. 2005; Álvarez-Romero et al. 2011), and how connectivity to estuaries varies among 

landscapes (Pringle 2003).  Past studies have investigated relationships among aspects of LULC 

composition and estuarine environmental quality, including relations to plankton diversity 

(Bilkovic et al. 2006), nekton species presence (Miller et al. 2018), and species richness (Chapter 

2).  Such studies provide quantifiable relationships between terrestrial and aquatic systems that 

can inform what types of landscapes are particularly valuable for maintaining estuarine 
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ecosystem function.  Yet, addressing conservation priority based solely on land composition 

ignores other geospatial attributes, mainly aspects of hydrologic connectivity, that are relevant to 

efficacy of conserving land to benefit estuarine life.   

When considering conservation value of lands for benefiting estuaries, consideration of 

what types of lands are important needs to be balanced with the connectivity of lands in relation 

to the estuary.  Hydrologic connectivity is defined as the water-mediated transportation of 

materials within the water cycle (Pringle 2001).  It is thus a critical component for comparing 

conservation value as hydrologic connectivity indicates what influence land cover may have on 

the estuary relative to other land covers.  There are many ways to quantify hydrologic 

connectivity (Pringle 2003; Jackson and Pringle 2010), with longitudinal (upstream-downstream 

interactions) connectivity being the most relevant type with respect to linking a watershed to an 

estuary (Ward 1989).  Regarding longitudinal connectivity, stream distance to the estuary is the 

simplest aspect to measure, with lands further away from the estuary inherently having weaker 

connectivity in accordance with Ernst Neef’s chorological axiom (Neef 1967) and Walter 

Tobler’s first law of geography (Tobler 1970).  Another aspect of longitudinal connectivity is the 

number of impoundments along the stream path between the landscape and estuary.  More 

impoundments along a stream path create a weaker connection to the estuary as they disrupt the 

natural flow of water (McCully 1996; Stanford and Ward 2001). This disruption to natural flow 

then increases residence time of water within the watershed and reduces sediment and nutrient 

transport downstream (Cahoon 1994; Humborg et al. 2000; Vörösmarty et al. 2003).   

To create geospatial data that indicates the value of land conservation to estuarine biotic 

health, relationships between landscapes and estuaries need to be established both in terms of 

LULC composition and hydrologic connectivity.  Thus, my objective was to develop an index of 
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conservation which incorporates relationships among LULC, hydrologic connectivity, and 

estuarine biotic health for lands within the Gulf of Mexico Coastal Region (GCR) of the United 

States.  I adapted the associations between LULC and estuarine biotic health developed in 

Chapter 1 to represent the linkage between land and estuary.  To represent hydrologic 

connectivity between landscapes and estuaries, I used a combination of stream distance and 

abundance of impoundments between landscapes and estuaries.  I then developed final indices of 

conservation value for each of three functional taxonomic groups (i.e., pelagic, forage finfish, 

and shrimp) categorized in Chapter 2. 

 

4.2 Methods 

 

To assess conservation value of lands with regards to their benefits to estuarine biotic 

health, I created indices of land conservation value based on two components: 1) the LULC 

composition of the landscape weighted by the expected species richness associated with each 

LULC group derived from model outputs in Chapter 2, and 2) the longitudinal hydrologic 

connectivity of the landscape to the estuary.  I utilized the same study area as Chapter 1, using 

the coastal and near-coastal portion of catchments for 33 estuaries along the GCR. As a proxy for 

longitudinal hydrologic connectivity I used stream distance from the landscape to the estuary, 

and number of impoundments from the landscape to the estuary.  I scored all landscapes within 

the GCR at the HUC12 resolution, hereafter referred to as sub-basins.  I created unique indices of 

land conservation value for each functional group because associations between LULC 

composition and species richness were different for each functional group (i.e., pelagic, forage 

finfish, shrimp).  
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For the first component I derived a land composition score for each sub-basin based on 

the LULC composition of the sub-basin using National Oceanic and Atmospheric 

Administration’s (NOAA) Coastal Change Analysis Program (C-CAP) 2016 Regional Land 

Cover (Office for Coastal Management 2020) and the modeled associations that each of the 

LULC groups have with species richness of each functional group.  I used the relationship of 

expected species richness values to each level of LULC group influence (m3/km2) according to 

the Bayesian hierarchical models developed in Chapter 1 to attribute conservation scores for 

each sub-basin. To derive a land composition score for the ith sub-basin, I first calculated the 

proportional composition L (0-1) of each LULC group j (Table 4.1). I then multiplied each 

LULC group composition by the expected species richness value R for the estuary (Data S3) to 

which each associated sub-basin drains to, and then summed the resulting values (Equation 4.1).  

For LULC groups that exhibited negative associations with species richness according to the 

Chapter 1 models, I used an inverse proportional composition (1-L). 

 

 𝐶𝑖 = ∑ 𝐿𝑖,𝑗 ∗ 𝑅𝑗  (4.1) 

 

After calculating a land composition score for each sub-basin, I then quantified the 

relative connectivity of each sub-basin to its downstream estuary using stream distance and 

number of impoundments between the sub-basin and the estuary.  I used the network of streams 

from the National Hydrography Dataset Plus Version 2 (NHDPlusV2, McKay et al. 2012), and 

calculated stream distance for each sub-basin as the shortest path to the estuary.  I then calculated 

the number of impoundments between the sub-basin and its downstream estuary using the 

Southeast Aquatic Barrier Inventory version 2.2.1 from the Southeast Aquatic Resources 
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Partnership (SARP 2019).  I calculated the number of impoundments from each sub-basin to its 

respective estuary by counting all of the impoundments identified within the sub-basin and the 

impoundments on 3rd order streams and higher within the downstream sub-basins.  The stream 

order attribute within the Southeast Aquatic Barrier Inventory uses the Strahler method (Strahler 

1957).   

After calculating stream distance and number of impoundments to the estuary as proxies 

for connectivity for each sub-basin, I normalized both values between 0 and 1 using proportional 

scaling (Equation 4.2) to convert the values to represent relative connectivity. 

 

 𝐷𝑖,𝑘 = (𝑋𝑚𝑎𝑥,𝑘 − 𝑋𝑖,𝑘)/(𝑋𝑚𝑎𝑥,𝑘 − 𝑋𝑚𝑖𝑛,𝑘) (4.2) 

 

In this equation, I calculated the relative value 𝐷𝑖,𝑘 for the ith sub-basin and kth connectivity 

metric by taking the difference between the maximum connectivity value and the sub-basin’s 

connectivity value (𝑋𝑚𝑎𝑥,𝑘 − 𝑋𝑖,𝑘) and dividing it by the total range of connectivity values 

(𝑋𝑚𝑎𝑥,𝑘 − 𝑋𝑚𝑖𝑛,𝑘).  For each relative connectivity metric, I set the lowest raw value 𝑋𝑖,𝑘 to 

obtain the highest relative connectivity value 𝐷𝑖,𝑘, such that sub-basins that are most downstream 

or have no impoundments separating them from their estuary received the highest relative values.   

 I then used the relative connectivity values 𝐷𝑖,𝑘 to qualify the land composition score 𝐶𝑖 

using the following equation 

  

 𝑉𝑖 = 𝐶𝑖 ∗ 𝐷𝑖,1 ∗ 𝐷𝑖,2, (4.3) 
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where 𝑉𝑖 represents the raw conservation value score.  I arrived at the final index of conservation 

value with regards to each functional group by using proportional scaling. I calculated the index 

of conservation value 𝐶𝐼𝑖 using an equation similar to equation 4.2,  

 

 𝐶𝐼𝑖 = (𝑉𝑖 − 𝑉𝑚𝑖𝑛)/(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)  (4.4) 

 

where the index value uses the difference between the raw conservation score for the ith sub-

basin and the minimum conservation score (𝑉𝑖 − 𝑉𝑚𝑖𝑛) to associate the highest index value with 

the highest raw conservation score.  I conducted all geospatial calculations using ArcMap 10.5 

(ESRI 2019).   

 

4.3 Results 

 

My final map of land conservation value includes 3,790 sub-basins across the GCR, with 

an average size of 120 km2 per sub-basin.  There was an average number of 7 impoundments 

from each sub-basin to its respective estuary, with a maximum of 234 impoundments found 

within and downstream of a sub-basin.  The average downstream distance from each sub-basin to 

its respective estuary was 65 km, with 408 km being the greatest downstream distance from any 

sub-basin to its respective estuary.  Regarding land composition scores, the mean scores for each 

functional group are 0.58 for pelagic, 1.96 for forage finfish, and 1.91 for shrimp.  These values 

indicate the expected species richness from a trawl sample given the land composition of a given 

sub-basin. 
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My analysis illustrates variations in value of land conservation for estuarine biotic health 

across the GCR (Figure 4.1), with coastal Louisiana demonstrating the highest potential value for 

land conservation regardless of functional group.  High conservation value for pelagic and forage 

finfish also exists along the Florida panhandle, especially the Big Bend region, and the Florida 

everglades (Figure 4.1; Panels A and B).  Besides the coastal zone of eastern Louisiana, 

conservation value for shrimp is also high along the Chenier plain of Louisiana and the coastal 

plains of Texas (Figure 4.1; Panel C).  For all functional groups, sub-basins closest to the coast 

typically exhibit higher conservation value, and lower conservation values in and near 

metropolitan areas such as Houston, Texas and Tampa Bay, Florida (Figure 4.1).   

 

4.4 Discussion 

 

The resulting indices for value of land conservation for estuarine biotic health represent a 

quantifiable approach for informing conservation planners on how to maximize land 

conservation benefits to aquatic life within estuaries.  A regional-scale approach to evaluating 

conservation value can enable conservation planners across multiple estuaries to identify priority 

areas that are most important for estuarine biota, which can be especially helpful considering the 

many ways that estuarine communities interact with each other (Ray 2005).  A study of a Pinfish 

(Lagodon rhomboids) metapopulation across four estuaries along the Gulf Coast of Florida 

indicated that the metapopulation exhibits resilience to diverse environmental conditions of the 

estuaries (Faletti et al. 2019).  A study in Queensland, Australia demonstrated that coastal and 

estuarine habitat connectivity and configuration contributes to inshore fishery production across 

the region (Meynecke et al. 2008).  The simplicity of the approach to evaluating land 
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conservation efficacy for estuarine biotic health demonstrated here is intended to be replicated 

across other coastal regions; however, alterations to the methodology are encouraged to best 

align with data availabilities and ecological profiles of other regions.   

Trends demonstrated with this value model are consistent with the paradigm that more 

natural landscapes, often mesic to hydric, with less barriers to hydrologic connectivity provide 

better support for ecosystem services that benefit estuarine biota (Short and Burdick 1996; 

Pringle 2003; Stoms et al. 2005; Bilkovic et al. 2006; Alvarez-Romero et al. 2011; Miller et al. 

2018).  Therefore, it is no surprise that much of coastal Louisiana consistently demonstrated 

highest conservation value across functional groups, as Louisiana contains roughly half of all 

coastal wetlands in the conterminous United States (Barnes et al. 2017).  Additionally, estuaries 

within the Big Bend region of Florida’s coast exhibit remarkably high biodiversity and some of 

the largest beds of submerged aquatic vegetation (SAV) in the GCR (Geselbracht et al. 2009; 

Schrandt et al. 2018).  The high conservation value within catchments of the estuaries in the Big 

Bend of Florida is further evidenced by the relative lack of development within the subregion 

and abundance of palustrine wetland and forestland (Kautz et al. 1999).  High conservation value 

for shrimp across the coastal plains of Texas is likely a combination of nutrient loading from 

abundant agriculture (Chong and Sasekumar 1981) and the ability of shrimp to tolerate broad 

salinity and temperature gradients (Zein-Eldin and Renaud 1986) that are typical for estuaries in 

Texas (Herrera-Barquín et al. 2018). 

The value model creates a consistent approach for condensing the LULC associations 

with estuarine biotic health, which ensures that conservation values are comparable across the 

region of interest.  The consistency in which conservation values are modeled can lessen the 

likelihood that valuable conservation opportunities are overlooked.  However, the method of 
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scoring areas for conservation value inherently penalized places that have more anthropogenic 

disturbances.  This penalty means the value model only works for assessing conservation actions 

that protect the landscape as-is, such as acquisition or easement.  Other conservation actions that 

seek to restore landscapes should consider applying an inverse valuation that would give higher 

values to places that are more disturbed.  It is important to recognize, however, that many other 

aspects of land quality exist that could indicate conservation value, such as presence of artificial 

waterways, silviculture, and riparian integrity.  Therefore, it is important to incorporate other 

geospatial knowledge in conjunction with these value models when assessing conservation value 

of landscapes to more effectively achieve conservation objectives. 

The methods used here associate empirical observations to landscape composition and 

configuration using the best available data for the scale of study in the GCR, but metrics used to 

express the conservation value of landscape associations and connectivity to estuaries may differ 

elsewhere.  In general, having access to comprehensive LULC data as well as hydrographic data 

should be sufficient materials to construct such a value model.  However, depending on the scale 

of the region or the threats to estuarine biota, modifications should be considered.  For the GCR, 

I considered the C-CAP regional land cover dataset from NOAA (Office for Coastal 

Management 2020) to be the most appropriate representation of LULC data, but smaller areas of 

interest may allow for use of more detailed LULC data, such as the land classification map from 

Texas Ecological Mapping Service (TX-TPWD).  The primary threats to estuaries focused on in 

this study were anthropogenic conversion of landscapes, but future iterations of this work could 

incorporate other threats to estuaries such as wetland loss due to sea-level rise or coastal squeeze 

(Torio and Chmura 2015; Borchert et al. 2018).  
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This value model included assumptions in its quantification of connectivity that need 

addressing, such as equally considering all impoundments and assuming the lateral connectivity 

(stream-floodplain interactions) of the landscape was similar.  Because of the variation in 

purposes and sizes, impoundments can vary significantly in their impact on hydrologic 

connectivity.  By treating all impoundments equally, my model risks over- or underemphasizing 

their impact depending on their size or function.  Future improvements to this approach could 

consider the type of impoundment (e.g., lock and dam, flood control, etc.) and the drainage area 

the impoundment controls to more accurately compare disruptions to hydrologic connectivity.  

My assumption of all landscapes having equal lateral connectivity ignores the fact that areas with 

a closer proximity to riverways, especially where flow is not impeded by barriers such as levees, 

should have a greater influence on estuaries due to more direct transportation of substrates 

(Amoros and Bornette 2002).  Incorporating lateral distance of lands to riverways and locations 

of barriers to lateral connectivity could improve comparisons of landscape-estuary connectivity.  

However, consistency of data availability should be assessed when incorporating lateral flow or 

additional impoundment information across a region to minimize unintentional bias from 

incomplete data. 

 

4.5 Conclusion 

 

There is an ongoing need to expand the ways in which land conservation can be used as a 

tool for protecting the biotic health and resiliency of estuarine and coastal ecosystems.  Utilizing 

geospatial information demonstrates a promising approach to evaluating land conservation value 

as it pertains to a wide array of ecological and socioeconomic priorities.  In this study, I extended 
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Figure 4.1 Index of conservation value (unitless, 0-1) for estuarine biotic health for three 

functional groups of estuarine aquatic species in the U.S. Gulf of Mexico coastal 

region (Panel A: pelagic, Panel B: forage finfish, and Panel C: shrimp). 
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This appendix includes the codebase for all analysis in Chapter 2, as well as supplemental 

information on the partial residual plots from Figures 2.2-2.4.  The codebase includes the R 

script that runs the Bayesian hierarchical models and the posterior predictive checks, as well as 

the JAGS script of each functional group’s (i.e., pelagic, forage finfish, and shrimp) Bayesian 

hierarchical model.   

A.1 Code Descriptions 

R scripts were created with R 3.6.0 (R Core Team 2019) and JAGS scripts were created 

with JAGS 4.3.0 (Plummer 2017), and are listed in Table A.1.  For each of the 3 models within 

Bayesian_Hierarchical_models.R (i.e. Bayes_Pelagic, Bayes_Forage_Finfish, Bayes_Shrimp), a 

set of initial values was specified with the objects ‘initslist_Pelagic’, ‘initslist_ForageFinfish’, 

and ‘initslist_Shrimp’.  After the three models are run, the posterior predictive checks are called 

through the source() function. 

The Bayesian models were run with parallel processing in order to optimize runtimes, as 

specified within the autorun.jags() function using the arguments method=’parallel’ and n.sims=4.  

If the computer being used to run the models has a different number of processors than what the 

code in ‘Bayesian_Hierarchical_models.R’ specifies, the ‘method’ and ‘n.sims’ arguments will 

need to be adjusted to reflect the capabilities of the computer being used.  

A.2 Code Scripts 

A.2.1 Bayesian_Hierarchical_models.R Script 

###Bayesian Hierarchical Models### 

#The following code runs the Bayesian hierarchical models used in the manuscript.   

#This codebase was created and run using R version 3.6.0 (2019-04-26) -- "Planting of a Tree" 

#Please install the following packages and their respective dependencies if you have not done so: 

#install.packages("rjags") 

#install.packages("runjags") 
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#install.packages("coda") 

#install.packages("lme4") 

 

#Load libraries 

library(rjags) 

library(runjags) 

library(coda) 

library(lme4) 

 

#Load dataset  

trawl_estuary_data<-read.csv("./Data/trawl_estuary_data.csv",header=T)  

 

###PELAGIC 

#initial values 

numrows<-nrow(trawl_estuary_data) 

initslist_Pelagic<-list( 

  "Beta"=c(-1,1,1,-1,-.25,1,.5,.1,.75), 

  "betafix"=c(-1,1,1,-1,-.25,1,.5,.1,.75), 

  "beta"=c(.8,.44,.42), 

  "betta"=c(.63,.06,.24), 

  "Beta_precision"= structure(.Data=c(.1,0,0,0,0,0,0,0,0, 

                                      0,.1,0,0,0,0,0,0,0, 

                                      0,0,.1,0,0,0,0,0,0, 

                                      0,0,0,.1,0,0,0,0,0, 

                                      0,0,0,0,.1,0,0,0,0, 

                                      0,0,0,0,0,.1,0,0,0, 

                                      0,0,0,0,0,0,.1,0,0, 

                                      0,0,0,0,0,0,0,.1,0, 

                                      0,0,0,0,0,0,0,0,.1),.Dim=c(9,9)), 

  "ESTUARY_1_precision" = structure(.Data=c(.1,0,0,0,.1,0,0,0,.1),.Dim=c(3,3)), 

  "Program_precision" = structure(.Data=c(.1,0,0,0,.1,0,0,0,.1),.Dim=c(3,3))) 

 

#model run 

Bayes_Pelagic<-autorun.jags(model = './JAGS/Pelagic_Model.txt', 

                             data = list('Spp_Count_Pelagic' = trawl_estuary_data$Spp_Count_Pelagic, 

                                         'Salinity_Mean' = trawl_estuary_data$Salinity_Mean, 

                                         'Temperature_Mean'=trawl_estuary_data$Temperature_Mean, 

                                         'Developed'=trawl_estuary_data$Developed, 

                                         'Palustrine_Wetland'=trawl_estuary_data$Palustrine_Wetland, 

                                         'Estuarine_Wetland'=trawl_estuary_data$Estuarine_Wetland, 

                                         'Barren'=trawl_estuary_data$Barren, 

                                         'Cultivated_Cropland'=trawl_estuary_data$Cultivated_Cropland, 

                                         'Forest'=trawl_estuary_data$Forest, 

                                         'N'=numrows, 

                                         'Estuary'=trawl_estuary_data$Estuary, 
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                                         'Program'=trawl_estuary_data$Program), 

                             n.chains = 4, inits = initslist_Pelagic, max.time = '1hr', 

                             method='parallel',n.sims=4,psrf.target=1.10,crash.retry=5,adapt=10000) 

 

###FORAGE FINFISH 

#inital values 

numrows<-nrow(trawl_estuary_data) 

initslist_ForageFinfish<-list( 

  "Beta"=c(-1,-.1,-.1,-1,.19,.39,.47,-.05,0.5), 

  "betafix"=c(-1,-.1,-.1,-1,.19,.39,.47,-.05,0.5), 

  "beta"=c(.15,.03,.01), 

  "betta"=c(.1,.01,.01), 

  "Beta_precision"= structure(.Data=c(.1,0,0,0,0,0,0,0,0, 

                                      0,.1,0,0,0,0,0,0,0, 

                                      0,0,.1,0,0,0,0,0,0, 

                                      0,0,0,.1,0,0,0,0,0, 

                                      0,0,0,0,.1,0,0,0,0, 

                                      0,0,0,0,0,.1,0,0,0, 

                                      0,0,0,0,0,0,.1,0,0, 

                                      0,0,0,0,0,0,0,.1,0, 

                                      0,0,0,0,0,0,0,0,.1),.Dim=c(9,9)), 

  "ESTUARY_1_precision" = structure(.Data=c(.1,0,0, 

                                            0,.1,0, 

                                            0,0,.1),.Dim=c(3,3)), 

  "Program_precision" = structure(.Data=c(.1,0,0, 

                                          0,.1,0, 

                                          0,0,.1),.Dim=c(3,3))) 

 

#model run 

Bayes_Forage_Finfish<-autorun.jags(model = './JAGS/Forage_Finfish_Model.txt', 

                          data = list('Spp_Count_Forage_Finfish' = 

trawl_estuary_data$Spp_Count_Forage_Finfish, 

                                      'Salinity_Mean' = trawl_estuary_data$Salinity_Mean, 

                                      'Temperature_Mean'=trawl_estuary_data$Temperature_Mean, 

                                      'Developed'=trawl_estuary_data$Developed, 

                                      'Palustrine_Wetland'=trawl_estuary_data$Palustrine_Wetland, 

                                      'Estuarine_Wetland'=trawl_estuary_data$Estuarine_Wetland, 

                                      'Barren'=trawl_estuary_data$Barren, 

                                      'Cultivated_Cropland'=trawl_estuary_data$Cultivated_Cropland, 

                                      'Forest'=trawl_estuary_data$Forest, 

                                      'N'=numrows, 

                                      'Estuary'=trawl_estuary_data$Estuary, 

                                      'Program'=trawl_estuary_data$Program), 

                          n.chains = 4, inits = initslist_ForageFinfish, max.time = '1.5hr', 

                          method='parallel',n.sims=4,psrf.target=1.10, crash.retry=5,adapt=10000) 
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###SHRIMP 

#initial values 

numrows<-nrow(trawl_estuary_data) 

initslist_Shrimp<-list( 

  "Beta"=c(-1,1,1,.1,.1,-.3,.3,.5,.1), 

  "betafix"=c(-1,1,1,.1,.1,-.3,.3,.5,.1), 

  "beta"=c(.12,.05,.08), 

  "betta"=c(.45,.01,.02), 

  "Beta_precision"= structure(.Data=c(.1,0,0,0,0,0,0,0,0, 

                                      0,.1,0,0,0,0,0,0,0, 

                                      0,0,.1,0,0,0,0,0,0, 

                                      0,0,0,.1,0,0,0,0,0, 

                                      0,0,0,0,.1,0,0,0,0, 

                                      0,0,0,0,0,.1,0,0,0, 

                                      0,0,0,0,0,0,.1,0,0, 

                                      0,0,0,0,0,0,0,.1,0, 

                                      0,0,0,0,0,0,0,0,.1),.Dim=c(9,9)), 

  "ESTUARY_1_precision" = structure(.Data=c(.1,0,0, 

                                            0,.1,0, 

                                            0,0,.1),.Dim=c(3,3)), 

  "Program_precision" = structure(.Data=c(.1,0,0, 

                                          0,.1,0, 

                                          0,0,.1),.Dim=c(3,3))) 

 

#model run 

Bayes_Shrimp<-autorun.jags(model = './JAGS/Shrimp_Model.txt', 

                            data = list('Spp_Count_Shrimp' = trawl_estuary_data$Spp_Count_Shrimp, 

                                        'Salinity_Mean' = trawl_estuary_data$Salinity_Mean, 

                                        'Temperature_Mean'=trawl_estuary_data$Temperature_Mean, 

                                        'Developed'=trawl_estuary_data$Developed, 

                                        'Palustrine_Wetland'=trawl_estuary_data$Palustrine_Wetland, 

                                        'Estuarine_Wetland'=trawl_estuary_data$Estuarine_Wetland, 

                                        'Barren'=trawl_estuary_data$Barren, 

                                        'Cultivated_Cropland'=trawl_estuary_data$Cultivated_Cropland, 

                                        'Forest'=trawl_estuary_data$Forest, 

                                        'N'=numrows, 

                                        'Estuary'=trawl_estuary_data$Estuary, 

                                        'Program'=trawl_estuary_data$Program), 

                            n.chains = 4, inits = initslist_Shrimp, max.time = '1.5hr', 

                            method='parallel',n.sims=4,psrf.target=1.10, crash.retry=5,adapt=10000) 

 

#Run Posterior Predictive Checks 

source("./R/Posterior_Predictive_Checks.R") 
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A.2.2 Posterior_Predictive_Checks.R Script 

###Posterior Predictive Checks### 

#The following code was used to conduct posterior predictive checks for the Bayesian 

hierarchical models in the manuscript. 

#This codebase was created and run using R version 3.6.0 (2019-04-26) -- "Planting of a Tree" 

 

##PLEASE NOTE: The Bayesian hierarchical models from 'Bayesian_Hierarchical_models.R' 

must be completed first before running the posterior predictive checks in this R script. 

 

###PELAGIC 

Bayes_Pelagic$mcmc 

Bayes_Pelagic$mcmc[[1]][1:10,8] 

hist(Bayes_Pelagic$mcmc[[1]][,8]) 

hist(Bayes_Pelagic$mcmc[[1]][,9]) 

Pelagic_fit1<-Bayes_Pelagic$mcmc[[1]][,43] 

Pelagic_fit1_new<-Bayes_Pelagic$mcmc[[1]][,44] 

Pelagic_pp<-data.frame("fit"=Pelagic_fit1,"fit.new"=Pelagic_fit1_new) 

colnames(Pelagic_pp)<-c("fit","fit.new") 

Pelagic_pp$P<-ifelse(Pelagic_pp$fit<Pelagic_pp$fit.new,1,0) 

Pelagic_Bayes_P<-sum(Pelagic_pp$P)/nrow(Pelagic_pp) 

 

###FORAGE FINFISH 

Bayes_Forage_Finfish$mcmc 

Bayes_Forage_Finfish$mcmc[[1]][1:10,8] 

hist(Bayes_Forage_Finfish$mcmc[[1]][,8]) 

hist(Bayes_Forage_Finfish$mcmc[[1]][,9]) 

Forage_Finfish_fit1<-Bayes_Forage_Finfish$mcmc[[1]][,43] 

Forage_Finfish_fit1_new<-Bayes_Forage_Finfish$mcmc[[1]][,44] 

Forage_Finfish_pp<-data.frame("fit"=Forage_Finfish_fit1,"fit.new"=Forage_Finfish_fit1_new) 

colnames(Forage_Finfish_pp)<-c("fit","fit.new") 

Forage_Finfish_pp$P<-ifelse(Forage_Finfish_pp$fit<Forage_Finfish_pp$fit.new,1,0) 

Forage_Finfish_Bayes_P<-sum(Forage_Finfish_pp$P)/nrow(Forage_Finfish_pp) 

 

###SHRIMP 

Bayes_Shrimp$mcmc 

Bayes_Shrimp$mcmc[[1]][1:10,8] 

hist(Bayes_Shrimp$mcmc[[1]][,8]) 

hist(Bayes_Shrimp$mcmc[[1]][,9]) 

Shrimp_fit1<-Bayes_Shrimp$mcmc[[1]][,43] 

Shrimp_fit1_new<-Bayes_Shrimp$mcmc[[1]][,44] 

Shrimp_pp<-data.frame("fit"=Shrimp_fit1,"fit.new"=Shrimp_fit1_new) 

colnames(Shrimp_pp)<-c("fit","fit.new") 

Shrimp_pp$P<-ifelse(Shrimp_pp$fit<Shrimp_pp$fit.new,1,0) 

Shrimp_Bayes_P<-sum(Shrimp_pp$P)/nrow(Shrimp_pp) 
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A.2.3 Pelagic_Model.txt Script 

###Pelagic Model### 

#The following model uses JAGS 4.3.0 

 

model{ 

# In the BUGS/JAGS language we must use an explicit for loop: 

for(i in 1:N){ 

 # These lines describe the response distribution and linear model terms: 

 Spp_Count_Pelagic[i] ~ dpois(regression_fitted[i]) 

 regression_residual[i] <- Spp_Count_Pelagic[i] - regression_fitted[i] 

  log(regression_fitted[i]) <-Beta[1] + Beta[2] * Salinity_Mean[i] + Beta[3] * 

Temperature_Mean[i] + Beta[4] * Developed[i] + Beta[5] * Barren[i] + Beta[6] * 

Palustrine_Wetland[i] + Beta[7] * Estuarine_Wetland[i] + Beta[8] * Cultivated_Cropland[i] + 

Beta[9]*Forest[i]+ 

Estuary_randomeffect[Estuary[i],1]+Estuary_randomeffect[Estuary[i],2]*Salinity_Mean[i]+Estu

ary_randomeffect[Estuary[i],3]*Temperature_Mean[i]+Program_randomeffect[Program[i],1]+Pr

ogram_randomeffect[Program[i],2]*Salinity_Mean[i]+Program_randomeffect[Program[i],3]*Te

mperature_Mean[i]   

 

 

      Spp_Count_Pelagic.new[i]~dpois(regression_fitted[i]) 

      regression_residual.new[i]<- Spp_Count_Pelagic.new[i] - regression_fitted[i] 

} 

 

# These lines give the prior distributions for the parameters to be estimated: 

Beta[1:9] ~ dmnorm(betafix[], Beta_precision[,]) 

betafix[1]~dnorm(0,taufix1) 

betafix[2]~dnorm(0,taufix2) 

betafix[3]~dnorm(0,taufix3) 

betafix[4]~dnorm(0,taufix4) 

betafix[5]~dnorm(0,taufix5) 

betafix[6]~dnorm(0,taufix6) 

betafix[7]~dnorm(0,taufix7) 

betafix[8]~dnorm(0,taufix8) 

betafix[9]~dnorm(0,taufix9) 

taufix1<-1/varfix1 

varfix1~dt(0,pow(2,-4),1)T(0,) 

taufix2<-1/varfix2 

varfix2~dt(0,pow(2,-4),1)T(0,) 

taufix3<-1/varfix3 

varfix3~dt(0,pow(2,-4),1)T(0,) 

taufix4<-1/varfix4 

varfix4~dt(0,pow(2,-4),1)T(0,) 

taufix5<-1/varfix5 

varfix5~dt(0,pow(2,-4),1)T(0,) 
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taufix6<-1/varfix6 

varfix6~dt(0,pow(2,-4),1)T(0,) 

taufix7<-1/varfix7 

varfix7~dt(0,pow(2,-4),1)T(0,) 

taufix8<-1/varfix8 

varfix8~dt(0,pow(2,-4),1)T(0,) 

taufix9<-1/varfix9 

varfix9~dt(0,pow(2,-4),1)T(0,) 

 

Beta_precision[1:9,1:9]~dwish(Omegafix[,], 9) 

Beta_Sigma[1:9,1:9]<-inverse(Beta_precision[,]) 

Omegafix[1,1]<-1 

Omegafix[2,2]<-1 

Omegafix[3,3]<-1 

Omegafix[4,4]<-1 

Omegafix[5,5]<-1 

Omegafix[6,6]<-1 

Omegafix[7,7]<-1 

Omegafix[8,8]<-1 

Omegafix[9,9]<-1 

Omegafix[1,2]<--.176 

Omegafix[1,3]<--.473 

Omegafix[1,4]<-0.003 

Omegafix[1,5]<-0.013 

Omegafix[1,6]<--.184 

Omegafix[1,7]<-0.111 

Omegafix[1,8]<-0.159 

Omegafix[1,9]<-0.046 

Omegafix[2,1]<--.176 

Omegafix[2,3]<-.436 

Omegafix[2,4]<--.016 

Omegafix[2,5]<-0.041 

Omegafix[2,6]<--.092 

Omegafix[2,7]<-0.079 

Omegafix[2,8]<-0.044 

Omegafix[2,9]<--.053 

Omegafix[3,1]<--.473 

Omegafix[3,2]<-.436 

Omegafix[3,4]<-0.01 

Omegafix[3,5]<-0.012 

Omegafix[3,6]<--.052 

Omegafix[3,7]<-0.021 

Omegafix[3,8]<-0.021 

Omegafix[3,9]<--.047 

Omegafix[4,1]<-0.003 
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Omegafix[4,2]<--.016 

Omegafix[4,3]<-0.01 

Omegafix[4,5]<--.630 

Omegafix[4,6]<--.125 

Omegafix[4,7]<--.318 

Omegafix[4,8]<--.172 

Omegafix[4,9]<-0.059 

Omegafix[5,1]<-0.013 

Omegafix[5,2]<-0.041 

Omegafix[5,3]<-0.012 

Omegafix[5,4]<--.630 

Omegafix[5,6]<-0.192 

Omegafix[5,7]<-0.182 

Omegafix[5,8]<--.041 

Omegafix[5,9]<--.345 

Omegafix[6,1]<--.184 

Omegafix[6,2]<--.092 

Omegafix[6,3]<--.052 

Omegafix[6,4]<--.125 

Omegafix[6,5]<-0.192 

Omegafix[6,7]<--.489 

Omegafix[6,8]<--.389 

Omegafix[6,9]<--.433 

Omegafix[7,1]<-0.111 

Omegafix[7,2]<-0.079 

Omegafix[7,3]<-0.021 

Omegafix[7,4]<--0.318 

Omegafix[7,5]<-0.182 

Omegafix[7,6]<--.489 

Omegafix[7,8]<-0.377 

Omegafix[7,9]<-0.329 

Omegafix[8,1]<-0.159 

Omegafix[8,2]<-0.044 

Omegafix[8,3]<-0.021 

Omegafix[8,4]<--.172 

Omegafix[8,5]<--.041 

Omegafix[8,6]<--0.389 

Omegafix[8,7]<-0.377 

Omegafix[8,9]<-0.125 

Omegafix[9,1]<-0.046 

Omegafix[9,2]<--.053 

Omegafix[9,3]<--.047 

Omegafix[9,4]<-0.059 

Omegafix[9,5]<--.345 

Omegafix[9,6]<--.433 
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Omegafix[9,7]<-0.329 

Omegafix[9,8]<-0.125 

 

for(Estuary_iterator in 1:33){ 

 Estuary_randomeffect[Estuary_iterator,1:3] ~ dmnorm(beta[], Estuary_precision[,]) 

} 

beta[1]~dnorm(0,tau11) 

beta[2]~dnorm(0,tau22) 

beta[3]~dnorm(0,tau33) 

tau11<-1/var11 

var11~dt(0,pow(2,-4),1)T(0,) 

tau22<-1/var22 

var22~dt(0,pow(2,-4),1)T(0,) 

tau33<-1/var33 

var33~dt(0,pow(2,-4),1)T(0,) 

 

Estuary_precision[1:3,1:3] ~ dwish(Omega[,], 3) 

Estuary.Sigma[1:3,1:3]<-inverse(Estuary_precision[,]) 

for(Program_iterator in 1:7){ 

 Program_randomeffect[Program_iterator,1:3] ~ dmnorm(betta[], Program_precision[,]) 

} 

betta[1]~dnorm(0,tau1) 

betta[2]~dnorm(0,tau2) 

betta[3]~dnorm(0,tau3) 

tau1<-1/var1 

var1~dt(0,pow(2,-4),1)T(0,) 

tau2<-1/var2 

var2~dt(0,pow(2,-4),1)T(0,) 

tau3<-1/var3 

var3~dt(0,pow(2,-4),1)T(0,) 

Program_precision ~ dwish(Ommega[,], 3) 

Program.Sigma[1:3,1:3]<-inverse(Program_precision[,]) 

resid.sum.sq <- sum(regression_residual^2) 

fit<-sum(regression_residual) 

fit.new<-sum(regression_residual.new) 

 

Omega[1,1]<-1 

Omega[2,2]<-1 

Omega[3,3]<-1 

Omega[1,2]<-0 

Omega[1,3]<-0 

Omega[2,1]<-0 

Omega[2,3]<-0 

Omega[3,1]<-0 

Omega[3,2]<-0 
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Ommega[1,1]<-1 

Ommega[2,2]<-1 

Ommega[3,3]<-1 

Ommega[1,2]<-0 

Ommega[1,3]<-0 

Ommega[2,1]<-0 

Ommega[2,3]<-0 

Ommega[3,1]<-0 

Ommega[3,2]<-0 

} 

 

# These lines are hooks to be read by runjags (they are ignored by JAGS): 

#monitor# Beta[1:9],betafix[1:9],beta[1],beta[2],beta[3],betta[1],betta[2],betta[3], 

Estuary_precision, Program_precision, fit, fit.new 

#modules# glm on 

#response# Spp_Count_Pelagic 

#residual# regression_residual 

#fitted# regression_fitted 

A.2.4 Forage_Finfish_Model.txt Script 

###Forage Finfish Model### 

#The following model uses JAGS 4.3.0 

 

model{ 

# In the BUGS/JAGS language we must use an explicit for loop: 

for(i in 1:N){ 

 # These lines describe the response distribution and linear model terms: 

 Spp_Count_Forage_Finfish[i] ~ dpois(regression_fitted[i]) 

 regression_residual[i] <- Spp_Count_Forage_Finfish[i] - regression_fitted[i] 

  log(regression_fitted[i]) <-Beta[1] + Beta[2] * Salinity_Mean[i] + Beta[3] * 

Temperature_Mean[i] + Beta[4] * Developed[i] + Beta[5] * Barren[i] + Beta[6] * 

Palustrine_Wetland[i] + Beta[7] * Estuarine_Wetland[i]+ Beta[8] * Cultivated_Cropland[i] + 

Beta[9]*Forest[i]+ 

Estuary_randomeffect[Estuary[i],1]+Estuary_randomeffect[Estuary[i],2]*Salinity_Mean[i]+Estu

ary_randomeffect[Estuary[i],3]*Temperature_Mean[i]+Program_randomeffect[Program[i],1]+Pr

ogram_randomeffect[Program[i],2]*Salinity_Mean[i]+Program_randomeffect[Program[i],3]*Te

mperature_Mean[i]   

 

 

      Spp_Count_Forage_Finfish.new[i]~dpois(regression_fitted[i]) 

      regression_residual.new[i]<- Spp_Count_Forage_Finfish.new[i] - regression_fitted[i] 

} 

 

# These lines give the prior distributions for the parameters to be estimated: 
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Beta[1:9] ~ dmnorm(betafix[], Beta_precision[,]) 

betafix[1]~dnorm(0,taufix1) 

betafix[2]~dnorm(0,taufix2) 

betafix[3]~dnorm(0,taufix3) 

betafix[4]~dnorm(0,taufix4) 

betafix[5]~dnorm(0,taufix5) 

betafix[6]~dnorm(0,taufix6) 

betafix[7]~dnorm(0,taufix7) 

betafix[8]~dnorm(0,taufix8) 

betafix[9]~dnorm(0,taufix9) 

taufix1<-1/varfix1 

varfix1~dt(0,pow(2,-4),1)T(0,) 

taufix2<-1/varfix2 

varfix2~dt(0,pow(2,-4),1)T(0,) 

taufix3<-1/varfix3 

varfix3~dt(0,pow(2,-4),1)T(0,) 

taufix4<-1/varfix4 

varfix4~dt(0,pow(2,-4),1)T(0,) 

taufix5<-1/varfix5 

varfix5~dt(0,pow(2,-4),1)T(0,) 

taufix6<-1/varfix6 

varfix6~dt(0,pow(2,-4),1)T(0,) 

taufix7<-1/varfix7 

varfix7~dt(0,pow(2,-4),1)T(0,) 

taufix8<-1/varfix8 

varfix8~dt(0,pow(2,-4),1)T(0,) 

taufix9<-1/varfix9 

varfix9~dt(0,pow(2,-4),1)T(0,) 

 

Beta_precision[1:9,1:9]~dwish(Omegafix[,], 9) 

Beta_Sigma[1:9,1:9]<-inverse(Beta_precision[,]) 

Omegafix[1,1]<-1 

Omegafix[2,2]<-1 

Omegafix[3,3]<-1 

Omegafix[4,4]<-1 

Omegafix[5,5]<-1 

Omegafix[6,6]<-1 

Omegafix[7,7]<-1 

Omegafix[8,8]<-1 

Omegafix[9,9]<-1 

Omegafix[1,2]<-.134 

Omegafix[1,3]<--.336 

Omegafix[1,4]<--.004 

Omegafix[1,5]<-.035 

Omegafix[1,6]<--.181 



 

97 

Omegafix[1,7]<-.112 

Omegafix[1,8]<-.118 

Omegafix[1,9]<--.043 

Omegafix[2,1]<-.134 

Omegafix[2,3]<--.212 

Omegafix[2,4]<-.189 

Omegafix[2,5]<--.207 

Omegafix[2,6]<-.09 

Omegafix[2,7]<--.161 

Omegafix[2,8]<-.08 

Omegafix[2,9]<-0.22 

Omegafix[3,1]<--.336 

Omegafix[3,2]<--.212 

Omegafix[3,4]<-.049 

Omegafix[3,5]<--.115 

Omegafix[3,6]<-.189 

Omegafix[3,7]<--.126 

Omegafix[3,8]<--.105 

Omegafix[3,9]<-0.12 

Omegafix[4,1]<--.004 

Omegafix[4,2]<-.189 

Omegafix[4,3]<-.049 

Omegafix[4,5]<--.755 

Omegafix[4,6]<--.036 

Omegafix[4,7]<--.481 

Omegafix[4,8]<-.19 

Omegafix[4,9]<-0.432 

Omegafix[5,1]<-.035 

Omegafix[5,2]<--.207 

Omegafix[5,3]<--.115 

Omegafix[5,4]<--.755 

Omegafix[5,6]<-.077 

Omegafix[5,7]<-.425 

Omegafix[5,8]<--.366 

Omegafix[5,9]<--.642 

Omegafix[6,1]<--.181 

Omegafix[6,2]<-.09 

Omegafix[6,3]<-.189 

Omegafix[6,4]<--.036 

Omegafix[6,5]<-.077 

Omegafix[6,7]<--.462 

Omegafix[6,8]<--.326 

Omegafix[6,9]<--.144 

Omegafix[7,1]<-.112 

Omegafix[7,2]<--.161 
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Omegafix[7,3]<--.126 

Omegafix[7,4]<--.481 

Omegafix[7,5]<-.425 

Omegafix[7,6]<--.462 

Omegafix[7,8]<-.153 

Omegafix[7,9]<--.071 

Omegafix[8,1]<-.118 

Omegafix[8,2]<-.08 

Omegafix[8,3]<--.105 

Omegafix[8,4]<-.19 

Omegafix[8,5]<--.366 

Omegafix[8,6]<--.326 

Omegafix[8,7]<-.153 

Omegafix[8,9]<-0.291 

Omegafix[9,1]<--.043 

Omegafix[9,2]<-0.22 

Omegafix[9,3]<-0.12 

Omegafix[9,4]<-0.432 

Omegafix[9,5]<--.642 

Omegafix[9,6]<--.144 

Omegafix[9,7]<--.071 

Omegafix[9,8]<-0.291 

 

for(Estuary_iterator in 1:33){ 

 Estuary_randomeffect[Estuary_iterator,1:3] ~ dmnorm(beta[], Estuary_precision[,]) 

} 

beta[1]~dnorm(0,tau11) 

beta[2]~dnorm(0,tau22) 

beta[3]~dnorm(0,tau33) 

tau11<-1/var11 

var11~dt(0,pow(2,-4),1)T(0,) 

tau22<-1/var22 

var22~dt(0,pow(2,-4),1)T(0,) 

tau33<-1/var33 

var33~dt(0,pow(2,-4),1)T(0,) 

 

Estuary_precision[1:3,1:3] ~ dwish(Omega[,], 3) 

Estuary.Sigma[1:3,1:3]<-inverse(Estuary_precision[,]) 

for(Program_iterator in 1:7){ 

 Program_randomeffect[Program_iterator,1:3] ~ dmnorm(betta[], Program_precision[,]) 

} 

betta[1]~dnorm(0,tau1) 

betta[2]~dnorm(0,tau2) 

betta[3]~dnorm(0,tau3) 

tau1<-1/var1 
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var1~dt(0,pow(2,-4),1)T(0,) 

tau2<-1/var2 

var2~dt(0,pow(2,-4),1)T(0,) 

tau3<-1/var3 

var3~dt(0,pow(2,-4),1)T(0,) 

Program_precision ~ dwish(Ommega[,], 3) 

Program.Sigma[1:3,1:3]<-inverse(Program_precision[,]) 

resid.sum.sq <- sum(regression_residual^2) 

resid.sum.sq.new <- sum(regression_residual.new^2) 

fit<-sum(regression_residual) 

fit.new<-sum(regression_residual.new) 

 

Omega[1,1]<-1 

Omega[2,2]<-1 

Omega[3,3]<-1 

Omega[1,2]<-0 

Omega[1,3]<-0 

Omega[2,1]<-0 

Omega[2,3]<-0 

Omega[3,1]<-0 

Omega[3,2]<-0 

 

Ommega[1,1]<-1 

Ommega[2,2]<-1 

Ommega[3,3]<-1 

Ommega[1,2]<-0 

Ommega[1,3]<-0 

Ommega[2,1]<-0 

Ommega[2,3]<-0 

Ommega[3,1]<-0 

Ommega[3,2]<-0 

} 

 

# These lines are hooks to be read by runjags (they are ignored by JAGS): 

#monitor# Beta[1:9],betafix[1:9],beta[1],beta[2],beta[3],betta[1],betta[2],betta[3], 

Estuary_precision, Program_precision, fit, fit.new 

#modules# glm on 

#response# Spp_Count_Forage_Finfish 

#residual# regression_residual 

#fitted# regression_fitted 

A.2.5 Shrimp_Model.txt Script 

###Shrimp Model### 

#The following model uses JAGS 4.3.0 
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model{ 

# In the BUGS/JAGS language we must use an explicit for loop: 

for(i in 1:N){ 

 # These lines describe the response distribution and linear model terms: 

 Spp_Count_Shrimp[i] ~ dpois(regression_fitted[i]) 

 regression_residual[i] <- Spp_Count_Shrimp[i] - regression_fitted[i] 

 log(regression_fitted[i]) <-Beta[1] + Beta[2] * Salinity_Mean[i] + Beta[3] * 

Temperature_Mean[i] + Beta[4] * Developed[i] + Beta[5] * Barren[i] + Beta[6] * 

Palustrine_Wetland[i] + Beta[7] * Estuarine_Wetland[i] + Beta[8] * Cultivated_Cropland[i] + 

Beta[9] * Forest[i]+ 

Estuary_randomeffect[Estuary[i],1]+Estuary_randomeffect[Estuary[i],2]*Salinity_Mean[i]+Estu

ary_randomeffect[Estuary[i],3]*Temperature_Mean[i]+Program_randomeffect[Program[i],1]+Pr

ogram_randomeffect[Program[i],2]*Salinity_Mean[i]+Program_randomeffect[Program[i],3]*Te

mperature_Mean[i]   

 

      Spp_Count_Shrimp.new[i]~dpois(regression_fitted[i]) 

      regression_residual.new[i]<- Spp_Count_Shrimp.new[i] - regression_fitted[i] 

} 

 

# These lines give the prior distributions for the parameters to be estimated: 

Beta[1:9] ~ dmnorm(betafix[], Beta_precision[,]) 

betafix[1]~dnorm(0,taufix1) 

betafix[2]~dnorm(0,taufix2) 

betafix[3]~dnorm(0,taufix3) 

betafix[4]~dnorm(0,taufix4) 

betafix[5]~dnorm(0,taufix5) 

betafix[6]~dnorm(0,taufix6) 

betafix[7]~dnorm(0,taufix7) 

betafix[8]~dnorm(0,taufix8) 

betafix[9]~dnorm(0,taufix9) 

taufix1<-1/varfix1 

varfix1~dt(0,pow(2,-4),1)T(0,) 

taufix2<-1/varfix2 

varfix2~dt(0,pow(2,-4),1)T(0,) 

taufix3<-1/varfix3 

varfix3~dt(0,pow(2,-4),1)T(0,) 

taufix4<-1/varfix4 

varfix4~dt(0,pow(2,-4),1)T(0,) 

taufix5<-1/varfix5 

varfix5~dt(0,pow(2,-4),1)T(0,) 

taufix6<-1/varfix6 

varfix6~dt(0,pow(2,-4),1)T(0,) 

taufix7<-1/varfix7 

varfix7~dt(0,pow(2,-4),1)T(0,) 

taufix8<-1/varfix8 
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varfix8~dt(0,pow(2,-4),1)T(0,) 

taufix9<-1/varfix9 

varfix9~dt(0,pow(2,-4),1)T(0,) 

 

Beta_precision[1:9,1:9]~dwish(Omegafix[,], 9) 

Beta_Sigma[1:9,1:9]<-inverse(Beta_precision[,]) 

Omegafix[1,1]<-1 

Omegafix[2,2]<-1 

Omegafix[3,3]<-1 

Omegafix[4,4]<-1 

Omegafix[5,5]<-1 

Omegafix[6,6]<-1 

Omegafix[7,7]<-1 

Omegafix[8,8]<-1 

Omegafix[9,9]<-1 

Omegafix[1,2]<--.243 

Omegafix[1,3]<-.632 

Omegafix[1,4]<-.002 

Omegafix[1,5]<-.044 

Omegafix[1,6]<--.132 

Omegafix[1,7]<-.097 

Omegafix[1,8]<-.114 

Omegafix[1,9]<-0.014 

Omegafix[2,1]<--.243 

Omegafix[2,3]<--.131 

Omegafix[2,4]<-.012 

Omegafix[2,5]<--.018 

Omegafix[2,6]<-.011 

Omegafix[2,7]<--.01 

Omegafix[2,8]<--.018 

Omegafix[2,9]<-0.01 

Omegafix[3,1]<-.632 

Omegafix[3,2]<--.131 

Omegafix[3,4]<--.021 

Omegafix[3,5]<-.054 

Omegafix[3,6]<--.148 

Omegafix[3,7]<-.105 

Omegafix[3,8]<-.140 

Omegafix[3,9]<-0.027 

Omegafix[4,1]<-.002 

Omegafix[4,2]<-.012 

Omegafix[4,3]<--.021 

Omegafix[4,5]<--.680 

Omegafix[4,6]<--.207 

Omegafix[4,7]<--.319 
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Omegafix[4,8]<-.043 

Omegafix[4,9]<-0.167 

Omegafix[5,1]<-.044 

Omegafix[5,2]<--.018 

Omegafix[5,3]<-.054 

Omegafix[5,4]<--.680 

Omegafix[5,6]<-.121 

Omegafix[5,7]<-.352 

Omegafix[5,8]<--.068 

Omegafix[5,9]<--.340 

Omegafix[6,1]<--.132 

Omegafix[6,2]<-.011 

Omegafix[6,3]<--.148 

Omegafix[6,4]<--.207 

Omegafix[6,5]<-.121 

Omegafix[6,7]<--.437 

Omegafix[6,8]<--.5 

Omegafix[6,9]<--.417 

Omegafix[7,1]<-.097 

Omegafix[7,2]<--.01 

Omegafix[7,3]<-.105 

Omegafix[7,4]<--.319 

Omegafix[7,5]<-.352 

Omegafix[7,6]<--.437 

Omegafix[7,8]<-.417 

Omegafix[7,9]<-0.207 

Omegafix[8,1]<-.114 

Omegafix[8,2]<--.018 

Omegafix[8,3]<-.14 

Omegafix[8,4]<-.043 

Omegafix[8,5]<--.068 

Omegafix[8,6]<--.5 

Omegafix[8,7]<-.417 

Omegafix[8,9]<-0.07 

Omegafix[9,1]<-.014 

Omegafix[9,2]<-.01 

Omegafix[9,3]<-.027 

Omegafix[9,4]<-.167 

Omegafix[9,5]<--.34 

Omegafix[9,6]<--.417 

Omegafix[9,7]<-.207 

Omegafix[9,8]<-0.07 

 

for(Estuary_iterator in 1:33){ 

 Estuary_randomeffect[Estuary_iterator,1:3] ~ dmnorm(beta[], Estuary_precision[,]) 
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} 

beta[1]~dnorm(0,tau11) 

beta[2]~dnorm(0,tau22) 

beta[3]~dnorm(0,tau33) 

tau11<-1/var11 

var11~dt(0,pow(2,-4),1)T(0,) 

tau22<-1/var22 

var22~dt(0,pow(2,-4),1)T(0,) 

tau33<-1/var33 

var33~dt(0,pow(2,-4),1)T(0,) 

 

Estuary_precision[1:3,1:3] ~ dwish(Omega[,], 3) 

Estuary.Sigma[1:3,1:3]<-inverse(Estuary_precision[,]) 

for(Program_iterator in 1:7){ 

 Program_randomeffect[Program_iterator,1:3] ~ dmnorm(betta[], Program_precision[,]) 

} 

betta[1]~dnorm(0,tau1) 

betta[2]~dnorm(0,tau2) 

betta[3]~dnorm(0,tau3) 

tau1<-1/var1 

var1~dt(0,pow(2,-4),1)T(0,) 

tau2<-1/var2 

var2~dt(0,pow(2,-4),1)T(0,) 

tau3<-1/var3 

var3~dt(0,pow(2,-4),1)T(0,) 

Program_precision ~ dwish(Ommega[,], 3) 

Program.Sigma[1:3,1:3]<-inverse(Program_precision[,]) 

resid.sum.sq <- sum(regression_residual^2) 

resid.sum.sq.new <- sum(regression_residual.new^2) 

fit<-sum(regression_residual) 

fit.new<-sum(regression_residual.new) 

 

Omega[1,1]<-1 

Omega[2,2]<-1 

Omega[3,3]<-1 

Omega[1,2]<-0 

Omega[1,3]<-0 

Omega[2,1]<-0 

Omega[2,3]<-0 

Omega[3,1]<-0 

Omega[3,2]<-0 

 

Ommega[1,1]<-1 

Ommega[2,2]<-1 

Ommega[3,3]<-1 
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Ommega[1,2]<-0 

Ommega[1,3]<-0 

Ommega[2,1]<-0 

Ommega[2,3]<-0 

Ommega[3,1]<-0 

Ommega[3,2]<-0 

} 

 

# These lines are hooks to be read by runjags (they are ignored by JAGS): 

#monitor# Beta[1:9],betafix[1:9],beta[1],beta[2],beta[3],betta[1],betta[2],betta[3], 

Estuary_precision, Program_precision, fit, fit.new 

#modules# glm on 

#response# Spp_Count_Shrimp 

#residual# regression_residual 

#fitted# regression_fitted 

 

A.3 Using Partial Residual Plots 

Figures 2.2, 2.3, and 2.4 produced from the output of the Bayesian hierarchical models in 

Chapter 2 are partial residual plots.  A partial residual plot graphs the relationship between a 

single independent variable and the response variable given that multiple independent variables 

exist within the model.  Therefore, they are useful for demonstrating parts of a multivariate result 

as bivariate scatterplots in order to show how well an independent variable may be explaining 

the response variable after taking into account the other independent variables.  The 

incorporation of all independent variables’ residuals within the full model explains why some of 

the points fall outside of the Bayesian credible intervals for a single independent variable.  This 

approach is helpful for distinguishing the associations that species richness of the three 

functional groups (i.e. pelagic, forage finfish, and shrimp) have with each LULC group.  These 

plots inform the relationship between each individual LULC group and species richness after 

accounting for the totality of all other LULC groups, as it is necessary to recognize that no 

relationship in this model exists in isolation in reality.  To calculate partial residuals for each 
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LULC group i, the y-axis is expressed as 𝑅 + 𝛽𝑖𝑋𝑖 and the x-axis is 𝑋𝑖.  R represents residuals 

from the full model, 𝛽𝑖 is the regression coefficient of the ith LULC group in the full model, and 

𝑋𝑖 is the ith LULC group.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

106 

Table A.1 All R and JAGS scripts used to conduct Bayesian hierarchical models and 

posterior predictive checks for Chapter 2 

Script Name Code Language Description 

Bayesian_Hierarchical_models.R R Runs hierarchical models for 

the three functional groups. 

Posterior_Predictive_Checks.R R Runs posterior predictive 

checks on each of the three 

hierarchical models. 

Pelagic_Model.txt JAGS Contains the hierarchical 

model performed for the 

pelagic functional group. 

Forage_Finfish_Model.txt JAGS Contains the hierarchical 

model performed for the 

forage finfish functional 

group. 

Shrimp_Model.txt JAGS Contains the hierarchical 

model performed for the 

shrimp functional group. 
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