
Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

8-6-2021 

Development of a detect-and-avoid sensor solution for the Development of a detect-and-avoid sensor solution for the 

integration of a group 3 large unmanned aircraft system into the integration of a group 3 large unmanned aircraft system into the 

national airspace system national airspace system 

Kyle Bradley Ryker 
kylerockssmcs@gmail.com 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Ryker, Kyle Bradley, "Development of a detect-and-avoid sensor solution for the integration of a group 3 
large unmanned aircraft system into the national airspace system" (2021). Theses and Dissertations. 
5234. 
https://scholarsjunction.msstate.edu/td/5234 

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/5234?utm_source=scholarsjunction.msstate.edu%2Ftd%2F5234&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


Template C v4.3 (beta): Created by T. Robinson 01/2021 

Development of a detect-and-avoid sensor solution for the integration  

of a group 3 large unmanned aircraft system into the  

national airspace system 

By 

TITLE PAGE 

Kyle Bradley Ryker 

Approved by: 

Yang Cheng (Major Professor) 

Jichul Kim (Committee Member) 

Adrian Sescu (Committee Member/Graduate Coordinator) 

Jason M. Keith (Dean, Bagley College of Engineering) 

A Thesis 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

in Aerospace Engineering 

in the Department of Aerospace Engineering 

Mississippi State, Mississippi 

August 2021 



 

 

Copyright by 

COPYRIGHT PAGE 

Kyle Bradley Ryker 

2021 



 

 

Name: Kyle Bradley Ryker 

ABSTRACT 

Date of Degree: August 6, 2021 

Institution: Mississippi State University 

Major Field: Aerospace Engineering 

Committee Chair: Yang Cheng 

Title of Study: Development of a detect-and-avoid sensor solution for the integration of a group 

3 large unmanned aircraft system into the national airspace system 

Pages in Study: 72 

Candidate for Degree of Master of Science 

Unmanned Aircraft Systems (UAS) face one common challenge when integrating with 

the existing manned aircraft population in the National Airspace System (NAS). To unlock the 

full efficiency of UAS, the UAS integrator must comply with an onboard pilot’s requirement to 

see-and-avoid other aircraft while operating. Commercially available Detect-and-Avoid (DAA) 

sensor technologies have been developed to attempt to comply with this requirement. UAS 

integrators must use these sensors to meet or exceed the performance of a human pilot. This 

thesis covers research done to integrate an array of commercially made DAA sensors with a 

large Group 3 UAS both in hardware and software that was later flight tested and evaluated for 

usability. A fast-time simulation is presented using the principles of the National Aeronautics 

and Space Administration’s (NASA) Detect-and-AvoID Alerting Logic for Unmanned Systems 

(DAIDALUS). Last, open-source tools are presented to assist future integrators in validating 

their DAA solutions. 
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CHAPTER I 

INTRODUCTION 

The past several decades have seen an explosion in technological growth and in particular 

automation. The market incentive to reduce manpower costs while improving efficiency has 

increased the concentration on the development of systems that may replace a human operator. 

Industrial plants turned to robotic arms for car manufacturing, Computer Numeric Control 

(CNC) and 3d printing. These machines have given creative access to the average consumer. In a 

similar sense, aviation has turned to unmanning aircraft. The accessibility, affordability, and ease 

of use inherent in small Unmanned Aircraft Systems (sUAS) has led to a forecasted market 

growth of 30 billion dollars annually by 2035 (Wargo, Church and Glaneueski). This expansion 

and accessibility of the technology forced regulators to limit the use of sUAS in the National 

Airspace System (NAS). Part 107 is a rule in development to restrict the use of sUAS to certain 

airspace, altitudes, and operations. Remote pilots operating under this rule are responsible for the 

safety risks associated with flying an unmanned aircraft under 55 pounds, as misuse could lead to 

property damage or even fatal accidents. The primary responsibility of the UAS operator is to 

See-and-Avoid (SAA) intruder aircraft within the ownship’s airspace as stated in Call For 

Release (CFR) Part 91.113 which will be explained within this thesis. Unlike sUAS regulations, 

large UAS do not currently have a regulatory path forward for complying with the CFR Part 

91.113 requirement. These longer endurance, higher altitude-capable aircraft are more efficient 

for federal and commercial operators looking to cover long lines of infrastructure or loiter over 
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post-disaster areas. For large UAS operations to expand to Beyond-Visual-Line-of-Sight 

(BVLOS) operations like package delivery and linear inspection, Detect-and-Avoid (DAA) 

standards must be established and similarly met by operators. This responsibility to See-and-

Avoid while operating large UAS within the same airspace as manned aviation concerns the 

Federal Aviation Administration (FAA), leading to multiple funds for research related to this 

issue. The budget for the FAA to conduct research and development related to airspace safety 

including UAS integration into the NAS was 512 million dollars as of fiscal year 2020 (Sarget, 

Harris and Cowan). The FAA allocated money to different research facilities to progress the 

availability of data to support decisive regulatory activities pertaining mainly to sUAS, leaving 

larger UAS as a future goal post. This leaves integrating a larger UAS into the NAS to be a 

considerable challenge when the regulatory documentation has yet to be codified.  

The FAA continues to work with both industry and researchers to make informed, data-

driven, and safe rules for UAS operators and air traffic managers before allowing the integration 

of UAS into the NAS. Many standards and safe practices must be established before operators 

may begin to fly their UAS BVLOS. The current practices for establishing a safety case for 

receiving an authorization to operate large UAS BVLOS are not concrete and mostly diverse. In 

this thesis research, a large UAS integrated with three flat panel radars is simulated within 

scripted encounters produced by Massachusetts Institute of Technology’s Lincoln Laboratory’s 

(MIT LL’s) open-source Bayesian network models for generating encounter trajectories. The 

simulation utilizes the kinematics approach similar to the National Aeronautics and Space 

Administrations’s (NASA) Detect-and-AvoID Alerting Logic for Unmanned Systems 

(DAIDALUS) and simplistic models for radar performance. The work done to integrate the radar 

array with a large UAS, and the necessary software development, will be overviewed. Open-
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source tools and a suggested simulation framework for future UAS integrators to validate their 

DAA solutions will also be presented. 

1.1 Purpose 

This thesis research brings many of the developing aspects of regulation, simulation, and 

validation together to inform the public and interested parties about the research being done on 

UAS with regards to DAA capabilities. There are many commercially available DAA systems, 

autopilots, unmanned aircraft, Graphical User Interfaces (GUIs), and BVLOS products. 

However, there still is much research to be done before the FAA may move forward with fully 

integrating UAS into the NAS. The following thesis will serve as a benchmark in the future 

development of this sector of aviation research, recording the to-date progress. Tools for industry 

and safety cases for regulators are still being developed concurrently alongside this thesis work. 

That being stated, this thesis will cover the current development both regulatory and in research, 

survey the present availability of DAA systems and their strengths and weaknesses, evaluate a 

conceptual framework of a DAA system integrated with a large UAS in simulation, expand on 

some of the research that was done to integrate an airborne radar array with a large UAS as part 

of this thesis, provide references to open-source tools for future UAS integrators, suggest a 

simulation framework for system validation, and finally speculate on the future of UAS 

integration into the NAS encompassing multiple future decision-making steps and avenues of 

possible research. Although the result of this thesis research is not the finalized authorization of a 

BVLOS-ready Group 3 UAS, it hopes to be a major inspiration for future applicators of DAA 

technology for specifically large UAS and be an informative guide for new researchers seeking 

to join an area of aviation research with enormous future economic potential. 
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CHAPTER II 

BACKGROUND 

2.1 Unmanned Aircraft System Grouping 

Unmanned Aircraft are divided into five categories This research focuses on Group 3 

UAS which is defined as aircraft less than 1,320 pounds but greater than 55 pounds that fly lower 

than 18,000 feet mean sea level at airspeeds less than 250 knots. The United States Department 

of Defense is responsible for this classification of the different tiers of UAS. 

Table 2.1 UAS classification by size and speed by the United States Department of Defense. 

UAS 
Group 

Maximum 
weight 

(lb) 

Nominal 
operating 

altitude (ft) 

Speed (kn) Representative UAS 

Group 1 0–20 < 1,200 AGL 100 RQ-11 Raven, WASP, Puma, 

Group 2 21–55 < 3,500 AGL 

< 250 

ScanEagle, Flexrotor, SIC5 

Group 3 < 1,320 

< FL 180 

V-BAT, RQ-7B Shadow, RQ-21 
Blackjack, Navmar RQ-23 Tigershark, 
Arcturus-UAV Jump 20 

Group 4 

> 1,320 
Any airspeed 

 

 

MQ-8B Fire Scout, MQ-1A/B 
Predator, MQ-1C Gray Eagle 

Group 5 > FL 180 MQ-9 Reaper, RQ-4 Global Hawk, MQ-
4C Triton 

https://en.wikipedia.org/wiki/Pound_(mass)
https://en.wikipedia.org/wiki/Foot_(unit)
https://en.wikipedia.org/wiki/Knot_(unit)
https://en.wikipedia.org/wiki/Altitude_above_ground_level
https://en.wikipedia.org/wiki/AeroVironment_RQ-11_Raven
https://en.wikipedia.org/wiki/AeroVironment_Wasp_III
https://en.wikipedia.org/wiki/AeroVironment_RQ-20_Puma
https://en.wikipedia.org/wiki/Altitude_above_ground_level
https://en.wikipedia.org/wiki/Boeing_Insitu_ScanEagle
https://en.wikipedia.org/wiki/Aerovel_Corporation
https://en.wikipedia.org/w/index.php?title=SICDRONE_SIC5&action=edit&redlink=1
https://en.wikipedia.org/wiki/Flight_level
https://en.wikipedia.org/w/index.php?title=Martin_UAV_V-BAT&action=edit&redlink=1
https://en.wikipedia.org/wiki/AAI_RQ-7_Shadow
https://en.wikipedia.org/wiki/Boeing_Insitu_RQ-21_Blackjack
https://en.wikipedia.org/wiki/Boeing_Insitu_RQ-21_Blackjack
https://en.wikipedia.org/wiki/Navmar_Applied_Sciences_Corporation#Unmanned_Arial_Vehicles
https://en.wikipedia.org/wiki/Northrop_Grumman_MQ-8_Fire_Scout
https://en.wikipedia.org/wiki/General_Atomics_MQ-1_Predator
https://en.wikipedia.org/wiki/General_Atomics_MQ-1_Predator
https://en.wikipedia.org/wiki/General_Atomics_MQ-1C_Gray_Eagle
https://en.wikipedia.org/wiki/Flight_level
https://en.wikipedia.org/wiki/General_Atomics_MQ-9_Reaper
https://en.wikipedia.org/wiki/Northrop_Grumman_RQ-4_Global_Hawk
https://en.wikipedia.org/wiki/Northrop_Grumman_MQ-4C_Triton
https://en.wikipedia.org/wiki/Northrop_Grumman_MQ-4C_Triton
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2.2 Unmanned Aircraft System Use Cases 

The unmanned sector of aviation comprises recreational pilots, part 107 commercial 

pilots, and those flying for missions for the national agencies. Although UAS has its roots in 

military applications, the availability of UAS as well as the increase in technological capabilities 

of sensors has broadened to potential pool of use cases. Inspection of linear infrastructure like 

power lines and railways, as well as agricultural mapping and crop inspection are two of the 

many possible uses of UAS. Multispectral and hyperspectral cameras have been fitted and down-

sized to meet the UAS platform’s low cost, size, weight, and power (C-SWaP) requirements, 

allowing for operators to develop new business models around these use cases. 

2.3 Part 107 and CFR 91.113 

After a surge of sUAS entering the NAS from the early 2000s to recent, the FAA came 

out with a rule for certifying remote pilots and commercial operators. This rule, Part 107, applies 

to operators with a “small drone that is less than 55 pounds” (FAA) flying for work or business. 

Included in Part 107 is limitations for flying over people, in certain airspaces and nighttime 

operation. In order to fly BVLOS, a Part 107 waiver must be authorized by the FAA. To obtain 

this waiver, an operator may go through the Part 107 Waiver application process which 

encompasses explaining to the FAA how a waived part of the Part 107 rules will not seriously 

affect the safety-focused intent of the limitations on sUAS operations. Once a waiver is 

approved, a sUAS operator may fly without whichever limitation or part of the rule that was 

waived. This process has been in the works for several years, and a few Part 107 authorizations 

for BVLOS have been made by the FAA for certain operators. However, there is currently no 

process by which a large UAS may receive authorization to fly BVLOS. Currently, large UAS 

operators may operate under Part 91, which regulates general operating and flight rules used 
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most consistently in general aviation. To enable BVLOS operations for these larger craft would 

mean the authorization of an alternate means of meeting CFR Part 91.113(b) which states: 

General. When weather conditions permit, regardless of whether an operation is 

conducted under instrument flight rules or visual flight rules, vigilance shall be 

maintained by each person operating an aircraft so as to see and avoid other aircraft. 

When a rule of this section gives another aircraft the right-of-way, the pilot shall give 

way to that aircraft and may not pass over, under, or ahead of it unless well clear. 

A pilot operating under Part 91 is responsible for seeing and avoiding other aircraft while 

maintaining a sufficient well clear self-separation from intruders within the pilot’s airspace. 

Since unmanned aircraft have no pilot onboard, the remote pilot is responsible for fulfilling this 

role. Although, once a UAS is out of the line-of-sight or at such a distance that the remote pilot 

can no longer effectively mitigate self-separation violations, then an onboard system or system of 

systems must step in. Commonly, DAA sensors try to fill this safety gap with complex solutions 

to replacing equivalently what can be referred to as the pilot in the cockpit. To receive BVLOS 

authorization for a large Group 3 UAS, the safety case of these sensors must be proven. 

2.4 Detect-and-Avoid 

An aspect of UAS that is of great interest to the unmanned sector of aviation is DAA and 

how it may enable the capabilities of operators to fly BVLOS. The premise of DAA is to replace 

the requirement of the pilot to See-and-Avoid other aircraft and make conscious maneuvers to 

avoid the intruder aircraft while flying. DAA systems range from radar to lidar and are intended 

to integrate with a UAS’ autopilot for the purpose of meeting or exceeding that requirement. 

Some studies have modelled the pilot visual acquisition model which intends to describe the 

capability of any pilot to see an aircraft as well as predict their performance at various distances 
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and angles. These models have influenced the regulators’ decisions resulting in the establishment 

of risk and mitigation metrics. 

The DAA system, integrated with the ownship aircraft, is responsible for maintaining a 

Well Clear Volume (WCV) around the aircraft. The current revision of the volume extends 

horizontally 2,000 ft and vertically 250 ft in both directions (Weinart, Campbell and Vela). The 

resulting “hockey puck” shape centered around the ownship intends to be a measure of adequate 

self-separation. Similarly, a Near Mid-Air Collision (NMAC) cylinder is defined as 500 ft 

horizontally and 100 ft vertically. For comparison between performance of pilots and DAA 

systems, a normalized statistic needs to be identified and accepted. A Risk Ratio (RR) serves to 

quantify safety of interaction between aircraft during the length of an encounter. The RR itself 

can be calculated as the number of times the WCV or NMAC is violated during several 

encounters divided by the total number of encounters within a set.  

 

𝑅𝑅𝐿𝑜𝑊𝐶 =
# 𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑊𝑒𝑙𝑙 𝐶𝑙𝑒𝑎𝑟

# 𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
 

(3.1) 

 

𝑅𝑅𝑁𝑀𝐴𝐶 =
# 𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 𝑁𝑒𝑎𝑟 𝑀𝑖𝑑 𝐴𝑖𝑟 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

# 𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
 

(3.2) 

 

Basically, a RR can be a ratio of safety mitigation given the addition of onboard sensing 

systems or procedural mitigations taken by the operator. RRs and their relevance to both flight 

testing and encounter simulation are explained later within this document. 
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2.5 Detect-and-Avoid Technologies 

Passive and active sensors have the capability of being multi-use, specifically in aiding 

the UAS in detecting an intruder in the airspace and giving the autopilot necessary information to 

calculate an avoidance maneuver that will deconflict the encounter. Although most sensors 

perform well at close ranges, the WCV with a horizontal range of 2,000 feet is a major obstacle 

for DAA sensor manufacturers. The necessity of the ownship to stay 2,000 feet from intruding 

aircraft is due to the short amount of time it takes a manned general aviation aircraft to travel 

2,000 feet and fly into the near mid-air collision (NMAC) volume, causing a potential accident. 

Sensors to be used for DAA must also meet the low C-SWaP requirements of the potentially 

used platform. Therefore, the DAA manufacturers have sought out low power solutions such as 

EO/IR optics. Radars are generally regarded as power-hungry devices, but companies like 

Echodyne and Fortem Technologies have found a way to decrease the sensor size and 

requirements in such a way to be a payload even for sUAS. Lidar provides highly accurate short 

range point cloud data but struggles with meeting the 2,000 feet range. Last, an acoustic system 

manufactured by SARA, Inc. has the potential of fulfilling DAA requirements for BVLOS. The 

below Figure 2.1 from a FAA report highlights the strengths and weaknesses of each sensor type 

(S.B. Hottman). The following section highlights some of these currently available DAA 

technologies. 

 

Figure 2.1 DAA Sensors Compared by Multiple Characteristics (S.B. Hottman). 

EO Yes No No No ?? Yes Yes 4? Yes No No Yes Yes

Human Visual Yes No No No No No No 2 Yes No Yes Yes Yes

IR Search and Track Yes Yes No Yes Yes Yes Yes 22+ No Yes ?? Yes Yes

Passive IR Yes No No Yes Yes Yes Yes 22+ No Yes Yes Yes Yes

Radar Yes Yes Yes Yes Yes Yes Yes 22+ No No Yes Yes No

TCAS/ACAS No Yes Yes Yes Yes Yes Yes 22+ No No No Yes No

ADS-B No Yes Yes Yes Yes Yes Yes 22+ No No No Yes No
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2.5.2 Optical Systems 

Although optical sensors have been around in many forms for decades, the premise of 

using cameras as the basis of collision avoidance is relatively new. Some automated ground 

vehicles use camera systems to identify obstacles and make decisions about how to avoid them. 

However, this obstacle avoidance concept is relatively new to the unmanned aviation sector, and 

at the forefront of DAA for BVLOS operations is the company Iris Automation. This 

manufacturer has targeted sUAS and advertises a BVLOS product. This product includes 

multiple long-range cameras, approximately 4,000 ft in detection range, and a module capable of 

determining avoidance maneuvers and conversing them with the autopilot. The system provides 

an interface and display for clearly communicating to the operator the relative bearing and range 

of an intruder once the target is identified. The single-camera system can be seen in Figure 2.2 as 

well as the 360-degree solution utilizing five cameras with 80-degree azimuth and 50-degree 

elevation field-of-view (FOV). The manufacturer integrated artificial intelligence for classifying 

the intruding aircraft which may help with decision-making in the short time between detection 

and closest point of approach. Overall, the Casia optical solution for DAA appears to be a viable 

choice for operators seeking a BVLOS waiver or authorization for their Part 107 flights. The 

system does face challenges when trying to meet customer needs for all-weather operations as 

rain and haze are common challenges for optical systems. 
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Figure 2.2 Iris Long Range Camera (left) and 360-degree Multi-Camera Solution (right). 

Images taken from (Iris Automation Inc.) 

 

2.5.3 Radar Systems 

Ground-based radar is a proven and historically pivotal technology used for detecting and 

tracking airborne targets. Similarly, airborne radar dates to the mid-20th century. Therefore, it is 

no surprise that the technology has been downsized, optimized for low power, and available for 

integration with UAS. On the forefront of radar based DAA solutions are Echodyne and Fortem 

Technologies. Echodyne’s metamaterial electronically scanning array (MESA) radar is unique to 

their system although Fortem’s products use a similarly computer steered antenna array. There 

are no publicly released comparisons of the two systems, so only their core characteristics are 

discussed in this paper. Echodyne’s airborne flat panel EchoFlight is capable of 120-degrees of 

horizontal coverage and 80-degrees elevation.  Fortem Technology offers a family of radar 

solutions. One is the larger R30 while the other is the more compact R20 radar. The horizontal 

performance is identical to the previous flat panel radar, but the elevation range is exactly half. 

Radar solutions have advantages in their all-weather operation capabilities as the RF energy can 

travel the air and return to the receiver with little to no obstruction caused by light rain and haze. 

Therefore, as mentioned in the FAA report on DAA systems, radar will be a viable component 

for customers looking for uninterrupted, all-weather, day and night BVLOS operation. 
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Figure 2.3 EchoFlight Airborne Radar (left) and Fortem TrueView R20 (right). 

 

2.5.4 Acoustic Systems 

Passive sensors range in their concepts, such as optical and passive radar. There also 

exists a passive acoustic sensor, that can drown out the ownship noise and listen for nearby air 

traffic while airborne. SARA, Inc. has developed the Passive Acoustic Non-Cooperative 

Collision Avoidance System (PANCAS) that can detect the low frequencies emissions from 

general aviation aircraft and determine a bearing and distance to establish a track. The system 

was tested in the FAA Pathfinder report and found to be capable of tracking all types of aircraft 

as far out as 5 nautical miles (Ferguson). This sensor seems to be very promising in the future of 

enabling BVLOS for UAS as its low power and physical signature are attractive to potential 

customers. In the below Figure 2.4, the PANCAS system is installed on a small UAS. The 

microphone array can be seen attached to the top of each motor at the end of the arms of the 

aircraft frame. Like the optical DAA solutions, the PANCAS acoustic sensor may not perform 

viably during inclement weather but excels in quiet environments. 
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Figure 2.4 SARA Inc.’s PANCAS Airborne DAA System Installed on a sUAS 

 

2.5.5 Lidar 

Lidar is an active sensor, sending pulses of light outward and collecting information on 

the reflection of the sensor’s environment to determine range. The output data from this sensor is 

commonly referred to a point cloud. The point cloud is a multidimensional matrix that represents 

the returns of the sensor, generally in a three-dimensional form. Other sensors can similarly 

create point clouds, but because of lidar’s 360-degree field-of-view and large elevation 

capabilities, the amount of data returned is significantly higher. Therefore, it is common to see 

lidar output be organized into such a form. Inherent to the shear amount of data is the necessity 

for onboard processing to be substantial. Not all UAS can support this data transfer rate so 

usually an additional processing system is needed. Unfortunately, the high accuracy and airspace 

awareness capabilities of lidar are bogged down by the lack of range. For DAA systems, range is 

of highest importance. Lidar sensors could potentially complement close ranges for applications 

like urban commerce, but currently are incapable of fulfilling the range requirements of DAA. 

Therefore, lidar systems will not be represented in this research, but if future lidar systems can 

span past the 2,000 ft WCV horizontal range, then application of these active sensors may be 
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revisited. For now, lidar serves as a highly accurate and viable sensor solution for short-range 

obstacle avoidance. 

2.5.6 Summary of Sensors 

The aforementioned sensors inherently have advantages and disadvantages. Radar can 

see through most inclement weather with great accuracy, optical sensors can use artificial 

intelligence to characterize the intruder and make assumptions about future behavior, and passive 

sensors like acoustic have low physical footprints and power consumption. Small UAS do not 

generally have the power budget to support a multi-sensor suite for DAA, especially when their 

primary payload may be a high-powered multispectral payload. On the other hand, most large 

UAS have generators and the capability to support multiple payloads. The trade space for DAA 

solutions for BVLOS operations also includes flight times, structural strength, and software 

compatibility. In this thesis research, a large fixed-wing UAS will be considered, thus 

eliminating any potential power consumption obstacles in integration. The large UAS will also 

be assumed to be physically capable of supporting multiple low C-SWaP DAA payloads and 

software compatibility will be addressed with an additional onboard mission computer that can 

communicate synchronously with the DAA systems with adequate data transfer speed. The DAA 

solution will be a heterogenous culmination of some of the previously mentioned sensors. This 

multi-sensor suite will benefit from the advantages of each system, and in some instances, the 

FOV of each sensor may overlap thus providing beneficial double coverage of that area. Overall, 

this multi-sensor suite will theoretically provide adequate coverage beyond the WCV and will 

provide the large UAS with ample time to determine the safest maneuver to deconflict the 

potential loss of well clear.
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CHAPTER III 

DETECT-AND-AVOID SIMULATION 

3.1 Simulation Background 

Monte Carlo or ‘fast-time’ simulation provides a statistical representation of both worst- 

and best-case scenarios for a given application. The Monte Carlo method uses an iterative 

approach for statistical analysis, spanning thousands and millions of repeated simulations. A 

DAA integrator can present a strong safety case by developing a framework for simulating the 

encounter between a UAS and a manned aircraft, and then repeatedly analyzing the performance 

of each DAA sensor, the aircraft, and the environment to prove the efficacy of the DAA solution. 

An example of such a simulation framework can be seen in Figure 3.1, which was provided to 

industry and regulators by MIT LL’s team. 

 

Figure 3.1 Example Monte Carlo Framework Provided by MIT LL. Figure credit to 

(Massachusetts Institute of Technology). 
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MIT LL’s framework consists of taking raw track data from airspace across the 

Continental United States (CONUS) and drawing statistical inferences about the behavior of 

manned aircraft within each altitude layer, airspace class, and geographical location (Andrew 

Weinart). The result of the track processing is the encounter models that have been made mostly 

open source to the UAS community. The intent is to use the encounter models as well as the 

dynamic model of the aircraft and its respective sensor models within a fast-time simulation. 

These fast-time simulations take the pairs of ownship and intruder trajectories, referred to as 

encounters with a larger set of pairs deemed an encounter set, and iteratively analyze the ability 

of the ownship to maintain well clear of the intruding aircraft. As previously mentioned, the RR 

is one of the results of these fast-time simulations. MIT LL also provides an open-source 

simulation environment specific to DAA applications called DAA Evaluation of Guidance, 

Alerting, and Surveillance (DEGAS). This simulator is also a Monte-Carlo simulation but also 

includes pilot models and an interface with the National Aeronautics and Space Administration’s 

(NASA) open source Detect-and-AvoID Alerting Logic for Unmanned Aircraft Systems 

(DAIDALUS).  

3.1.2 Terminal Airspace Encounter Data Set 

MIT LL developed a statistical representation of manned aircraft trajectories in terminal, 

near airports, airspace. The resulting data set has been made available to those in the UAS world 

on their GitHub page. The two million sampled trajectories encompass one million total 

encounters between unmanned aircraft and manned aircraft in near-airport terminal airspace. The 

model focuses on UAS on a straight-in approach to a Class D airport. The data set includes 

encounters during takeoff and landing with a general aviation manned aircraft. Generally, the 

MIT LL Bayesian networks create individual trajectories and then pair them down the pipeline 
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for generating encounters. This data set, however, explicitly models two aircraft for each 

encounter. After downloading and transferring the data set to a MATLAB environment, the 

following figures were made to represent the starting locations of both the ownship UAS and 

manned intruder. The effect of generating UAS trajectories based on straight-in approaches can 

be seen in Figure 3.4, where the starting point of the UAS is commonly in line with the airport 

approach. Below, the terminal area where this data set was generated can be seen. 

 

Figure 3.2 Airport used in the Generation of Terminal Data Set Encounters. Satellite Image of 

the Airfield (left) and SkyVector Sectional (right) 

Laurence G Hanscom Field, FAA airport designation KBED, has two runways. One 

runway allows aircraft to takeoff and land from either 290 degrees heading with respect to north, 

or 110 degrees heading depending on the active direction. The other runway allows for 230 

degrees and 50 degrees. These directions explain why the UAS trajectories are heavily skewed to 

those directions with respect to the airport and why there is inconsistency in the density of the 

UAS starting points in Figure 3.4. 
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Figure 3.3 Scatter Plot of Intruder Aircraft Starting Positions 

The consistency of the intruder starting point density across the terminal airspace with a 

roughly five-mile radius can be seen in Figure 3.3. This consistency differs from the UAS 

ownship starting positions because of the difference in how MIT LL generated these trajectories. 

Since, the UAS was intent-driven in landing or taking off from the airport located within this 

bubble of airspace, the starting positions naturally tend to align with the airport shown previously 

in the satellite and sectional images. 
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Figure 3.4 Starting position of UAS ownship in encounter set 

Overall, the data set represents a statistically significant representation of what UAS 

approaches to a Class D Terminal airspace may look like, and the data set pairs these trajectories 

with manned aircraft meant to come within a reasonable range of the UAS ownship over the 

length of the encounter. 

3.1.2.2 Example File 

An example intruder file taken from this terminal data set is shown below in Table 3.1. 

An example ownship file taken from this data set is shown in Table 3.2. 

Table 3.1 Intruder Encounter File Data. 

 

time_s  speed_ftps relhdg_rad roll_rad  pitch_rad  accel_ftpss x_ft  y_ft  alt_ft  vx_ftps  vy_ftps  vz_ftps  turnrate_radps lat_deg  lon_deg

0 216.9709 1.040896 0 0 0 -2433.78 -31620.8 2030.543 109.6673 187.215 0 0 42.46319 -71.4046

1 216.9709 1.031238 -0.16463 0 0 -2323.69 -31433.8 2030.543 111.0632 186.3903 -9.7E-05 -0.02186 42.46349 -71.4039



 

19 

Table 3.2 Ownship Encounter File Data. 

 
 

The data available for either aircraft, from left to right with respect to the above tables, is 

time in seconds, speed in feet per second, relative heading in radians, roll of the aircraft in 

radians, pitch in radians, acceleration in feet per second per second. The positional information is 

available in either normalized x-y-z coordinates in feet, or latitude and longitude in degrees. The 

velocity x, y, and z components are also available in feet per second. Last, in the third from the 

right column, the turn rate in radians per second is provided. All of this information about the 

trajectories can be used to represent an encounter between a UAS ownship and manned aircraft 

intruder in a terminal area. The latitude and longitude provided could potentially provide a 

relative range from the airport since the airport location is known. These two files are the inputs 

into the simulation described by this thesis. 

3.1.3 Monte Carlo Methods 

Physical experimentation inherently has limits including time and possibility. Not all 

scenarios in a non-deterministic problem can physically be tested. Mathematicians developed 

numerical solutions to make up for this limitation and produced several viable methods. One 

type of these methods is the Monte Carlo method. The intent of using the Monte Carlo method is 

to cover all possibilities of a non-deterministic problem within numerical simulations using the 

probability distribution functions for each variable likely to add a degree of freedom to the 

output. This method can input several variables with respective probabilities and output an 

approximate solution for the problem. 

time_s  speed_ftps relhdg_rad roll_rad  pitch_rad  accel_ftpss x_ft  y_ft  alt_ft  vx_ftps  vy_ftps  vz_ftps  turnrate_radps lat_deg  lon_deg

0 162.5273 -0.08458 0 0 0 -18873.8 1520.564 743.9129 161.9463 -13.7308 0 0 42.41814 -71.2818

1 162.5273 -0.08458 0 -0.00473 0 -18711.8 1506.834 743.303 161.9445 -13.7306 -0.75089 0 42.41858 -71.2818
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Figure 3.5 Monte Carlo Method passing three diverse probability distributions through a 

model to output a solution with standard deviation and a reliability curve. 

(Wittwer, 2004) 

In this thesis, a simplistic approach to applying Monte Carlo methods to the fast-time 

simulations mentioned in Figure 3.5 is implemented. Other than the trajectories, speeds, and 

altitudes, the basic sensor model representing the radar array is made variable through applying a 

normal distribution to the probabilities of detection and error when tracking an intruder. This 

approach is made simply for demonstrating how others may utilize the large encounter set for 

validating their systems and is not to be an accurate representation of hardware modelling within 

simulation. 

3.1.4 DAIDALUS 

DAIDALUS takes a novel approach at providing the autopilot with safe maneuvers to 

escape a potential loss of well clear. The algorithm generates multiple outputs including levels of 

alerting guidance and trajectories, called bands, meant to provide safe maneuvering of the 

ownship to avoid intruder aircraft. This thesis research will utilize the core concepts of 

DAIDALUS’ kinematic approach to alerting guidance and maneuver suggestion, without fully 
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interfacing the actual source code. In Figure 3.6, the core concept of the DAIDALUS algorithm 

is displayed. The possible trajectories the ownship could take are represented by paths and 

arrows. The region where the well-clear volume is predicted to be violated is shaded. The 

maximum turn angles for either direction are represented by α and β. A more detailed overview 

of NASA’s DAIDALUS algorithm is presented in (NASA). 

 

Figure 3.6 NASA’s DAIDALUS algorithm visualizing possible safe trajectories in an 

encounter with an intruder aircraft. 

For this research, an initial and singular kinematic projection of an intruder’s future path 

is utilized. Important to note is the effect of wind on the intruder aircraft is neglected. This means 

the initial speed and heading are initial conditions to the simple kinematic equations below, 

where 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 are the initial positions in Cartesian coordinates, 𝑥𝑓, 𝑦𝑓, and 𝑧𝑓 are the final 

positions, and 𝑣𝑥, 𝑣𝑦, and 𝑣𝑧 are the current measured velocities of both the ownship and 

intruder. Time is represented by the variable 𝑡 and spans 35 seconds in one-second intervals. 

 

𝑥𝑓 = 𝑣𝑥𝑡 + 𝑥𝑖 
(3.1) 
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𝑦𝑓 = 𝑣𝑦𝑡 + 𝑦𝑖 
(3.2) 

𝑧𝑓 = 𝑣𝑧𝑡 + 𝑧𝑖 
(3.3) 

 

During the simulation, after the sensors have established a track for the intruder, the 

closest point of approach is estimated using the future state information output from the above 

kinematic equations. If the estimated future distance between the ownship and intruder is 

expected to reach less than 2,000 ft, then a maneuver is calculated for the ownship. This 

maneuver is calculated using the ownship’s current heading and assumes a constant rate of 

change in heading. Similar to the DAIDALUS algorithm, the possible avoidance maneuvers span 

from left to right in one-degree increments with respect to the current direction of the ownship’s 

nose. When no avoidance maneuver is deemed safe, the simulation chooses a random avoidance 

band to follow. Future work should include the interfacing of the NASA C++ source code for 

DAIDALUS with MATLAB. 

3.1.5 Encounter Set Metadata 

Considering that any encounter set can be generated by anyone who runs MIT LL’s open-

source encounter generator, there must be a standard for metadata describing each encounter set. 

Hypothetically, any DAA integrator could randomly generate one million encounters that do not 

stress test their models and algorithms the same way that one of the encounter sets made 

available by MIT LL does. Therefore, it would be important for regulators to consider that any 

two million generated trajectories do fall within a limited mean and distribution but are not 

identical to other sets. One way of determining the robustness of any single encounter set is to 

identify important metadata that can provide insight into the volatility of the encounters that must 
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be simulated against. This section discusses some possible metadata that could be used to aid 

regulators in determining important qualities of an encounter set as well as to inform those 

intending to use encounter set generators for DAA simulation. 

3.1.5.1 Risk Ratios 

The intent of simulating any DAA system and algorithm pair is to generate an evaluation 

of the risk associated with a UAS flying in the NAS. Regulators have worked to establish 

acceptable percentage risk in the form of RRs as discussed previously. More specifically, the 

encounter set inherently has a percentage of encounters that result in a loss of adequate self-

separation. The RR for LoWC can be calculated for each encounter, and an overall encounter 

set-wide RR for LoWC and NMAC can be established as the baseline performance metric for the 

DAA simulation. If the overall RR of an encounter set is very small, then the encounter set can 

be considered not viable for suitably testing the DAA system by simulation. However, near 

losses of self-separation could be of particular interest when evaluating probabilities of detection 

and false tracks.  

For this research, the MIT LL’s first publicly available one million encounters trained by 

a Terminal Airspace data set were used. The RRs were assessed for the entirety of the set using 

the lowest value for absolute range between the intruder and ownship over the entire encounter. 

To violate Well Clear, both the vertical offset and horizontal offset needed to less than the self-

separation threshold. If the intruder simply passed directly over the ownship but at a difference in 

altitude exceeding the vertical threshold, then the encounter was said to not violate the self-

separation threshold. There are drawbacks to this approach that will not be within the scope of 

this research. Generally, a DAA algorithm will make a forecasted trajectory for the intruder after 

a track has been established. In many instances, that trajectory may predict a loss of self-
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separation in the future, but the intruder may turn prematurely due to the preestablished Bayes 

trajectory thus avoiding the ownship’s airspace. For this research, this type of scenario was 

neglected for establishing the baseline RRs. Therefore, the RRs for the encounter set were as 

shown in Table 3.3. 

Table 3.3 Risk Ratios for Loss of Well Clear and Near Mid-Air Collision for Terminal 

Airspace Encounter Set without Mitigation. 

Risk Ratio Type Value 

Loss of Well Clear 0.106 

Near Mid-Air 

Collision 

0.04 

 

3.1.5.2 Closest Point of Approach 

The Closest Point of Approach (CPA) is simply the minimum distance between two 

aircraft within any encounter for the whole length of the encounter. This distance can be 

calculated as the absolute range between the two aircraft, taking their x-y-z positions and 

calculating range as simply as below. Generally, the CPA has a horizontal and vertical 

component, but the below equation represents the closest absolute distance between aircraft 

during an encounter. 

 

𝑐𝑝𝑎 = √((𝑥𝑜𝑤𝑛 − 𝑥𝑖𝑛𝑡)2 + (𝑦𝑜𝑤𝑛 − 𝑦𝑖𝑛𝑡)2 + (𝑧𝑜𝑤𝑛 − 𝑧𝑖𝑛𝑡)2) 

 (3.4) 

 

For this terminal data set, the following histogram in Figure 3.7 represents the CPA for 

all one million encounters between a UAS and manned aircraft in a simulated terminal airspace 

unmitigated by any DAA sensor or avoidance maneuver. 
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Figure 3.7 Closest Point of Approach for One Million Unmitigated Encounters between an 

Unmanned Aircraft and a Manned Aircraft near Class D Terminal Airspace. 

 

3.1.5.3 Horizontal and Vertical Miss Distances 

Given the CPA is known from the previous section, then two important metrics may be 

calculated. The Horizontal Miss Distance (HMD) and Vertical Miss Distance (VMD) are 

representations of how close two aircraft get within the length of an encounter. Although a HMD 

may reach less than the horizontal self-separation threshold, the intruder aircraft could still have 

an adequate vertical offset resulting in a non-violation. Similarly, the difference in altitude 

between aircraft may even reach zero, but not at a point within the encounter that is meaningful 

for safety assessment. To accurately capture the closeness of aircraft within an encounter, both 

the HMD and VMD must be calculated. These calculated distances are simply the horizontal 
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distance and vertical distances at the point of closest approach. The HMD and VMD are plotted 

in Figure 3.8 for the given MIT LL Terminal Class D encounter set. 

 

Figure 3.8 Scatter plot of Horizontal Miss Distance in feet on the horizontal axis and Vertical 

Miss Distance in feet on the vertical axis. 

 

3.2 Simulation Framework 

The following section details the process flow of the rudimentary kinematic simulation 

for the terminal data set. MATLAB source code may be found in Appendix A at the end of this 

document. Key to note is this simulation is not representative of a robust simulation solution for 

validating DAA systems integrated with UAS as such a simulation would require models for 

noise, ground clutter, false tracks, empirical data models, etc. This simulation simply serves to 

demonstrate to future DAA integrators tools like the Terminal Class D airspace data set. Future 
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integrators must consider variables like system timing, airspace clutter, classification of tracks 

and other important concepts to develop their own simulation framework worthy of validating an 

aircraft operating BVLOS in the NAS. 

In this section, the sensor model is introduced. This model represents a perfect detect and 

track radar array spanning 270 degrees and a range of 4,000 feet. Next, the detection, prediction, 

and avoidance methodologies are presented. Each of these methodologies have inherent 

functions that calculate important parameters to be passed along to the next function within the 

simulation. In Figure 3.9, the simulation flow diagram is visualized with a start oval in green and 

an end oval in red. The processes that occur within the simulation are represented by light blue 

rectangles with the function name inside. Any decisions or conditionals are represented by 

yellow diamonds with the output yes or no pointing to the respective next step. This simulation 

pipeline may be a building block for future simulations that may include more realistic sensor 

models and aircraft dynamics. The topic of future improvement is discussed in the future 

research section in the last chapter of this thesis. 
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Figure 3.9 Detect-and-Avoid Simulation Flow Diagram. 
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3.2.2 Sensor Model 

This simulation involves a simulated three panel radar array treated as a homogeneous 

system, scanning every one second for a FOV of 270 degrees total. The radar array is centered 

with respect to down the nose of the UAS, offering 135 degrees FOV on either side of the 

aircraft. The remaining 90 degrees is not accounted for by any sensor or method meaning any 

perfect overtake scenario would result in a loss of well clear every time it is simulated. The value 

chosen for maximum range of detection and tracking is 4,000 feet. This value comes from being 

twice the range of the WCV, giving the ownship 2,000 feet to determine and execute an evasive 

maneuver to avoid losing self-separation and is also influenced by the available specifications 

from both radar manufacturers described in Chapter 2. The sensor array’s accuracy and 

probability of detection are based on simple statistical distributions. The probability of detection 

is based on a function of range that yields a 10 percent probability of detecting an intruder once 

that intruder is within the FOV and 4,000 feet of the ownship. The below equation was used as it 

increases exponentially as the range between the two aircraft decrease. 

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡) = 𝑒−0.0005756∗𝑟𝑎𝑛𝑔𝑒  (3.4) 

 

This exponential function for probability of detecting an intruder within the ownship’s 

FOV is not based on any empirical data or conclusions from real data. An integrator would need 

to conduct bench testing of their DAA sensors and then determine an appropriate model for 

detection and accuracy. The below plot in Figure 3.10 shows the probability of detection curve. 
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Figure 3.10 Plot of radar detection based on range. Range values are on the horizontal axis in 

feet and detection probability between 0 and 100 percent are on the vertical axis.  

Figure 3.10 visualizes the curve for probability of detection. At the well clear horizontal 

boundary at 2,000 feet, the radar array has a 32 percent chance of detecting an intruder. A 

uniform random distribution function, rand() within MATLAB, gets called and if the value 

returned is less than or equal to the probability yielded by the above equation, then the detection 

function returns a track with accuracy determined by the next step. 

Radar performance should be captured as probable error in azimuth, elevation, and range 

based on environmental conditions and radar cross sections of the target. In this rudimentary 

simulation, radar performance was not considered to this level of detail, rather a function was 

created to take two concepts into account. First, the accuracy of the detected track increases as 

the range between the ownship and intruder decreases. Second, a counter variable is made to 

capture how many times the sensor has detected that same track. In a robust simulation, state-

space estimation filters like Kalman Filters can be used to generate probable next states of an 
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aircraft based on sensor data in real-time. To represent this crudely, as that counter variable goes 

up, the accuracy of the obtained track increases. This means encounters where the intruder is 

well within the FOV of the ownship and is considered detectable by the previous probability of 

detection methodology, then as the encounter progresses, the accuracy of the detected track will 

increase so long as the intruder does not leave the FOV. 

This sensor model is not representative of real hardware modelling and is not meant to be 

followed for DAA integrators. Variations in system timing is not accounted for in this sensor 

model but should be for those simulating DAA integration. The intent of including a very 

rudimentary and ideal sensor model is to demonstrate the use case of encounter simulation for 

validating a DAA system and should not be followed step-by-step. The sensor model and 

associated detection and prediction methodologies are only to provide a more introspective look 

into how the encounter sets can be simulated rather than simply flying the UAS blind to its 

airspace and unresponsive to well clear violations. 

3.2.3 Detection Methodology 

The methodology for detection within this particular rudimentary encounter simulation is 

as follows. After the state space of the ownship and intruder are updated every iteration, a 

function is called to determine if the ownship is in the correct orientation to be able to see the 

intruder based on the sensor model’s parameters of FOV and detectable range. Once that 

function is called, if it returns a detect intruder track, then the prediction methodology is 

followed. If no track is returned from the detection function, then the simulation advances an 

iteration without further function calls. 
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3.2.4 Prediction Methodology 

Once the detection function is called and returns a track, then a few functions are called 

upon to provide a kinematic prediction of the intruder track based on the current detected 

component velocities, heading, and turn rates of the intruder track. The amount of look ahead 

time for the prediction can be changed in the user inputs object. Higher look ahead times will 

provide a constant curvature trajectory that may form a circle if the intruder track’s turn rate is 

significant at time of detection. The future state of the ownship is similarly calculated to help 

inform the avoidance function. 

3.2.5 Avoidance Methodology 

The avoidance function is only called upon if the prediction function determines a future 

loss of well clear given a predicted ownship and intruder trajectory. There is no optimization 

present in this rudimentary simulation as the chosen avoidance maneuver is taken from a list of 

bands that are predicted to not lose self-separation, and if none of these exist, then a random 

maneuver is chosen from the list. Future research may include incorporating the actual C++ code 

for NASA’s DAIDALUS with this simulation to provide a better look at how that algorithm 

chooses an optimal avoidance maneuver. Once an avoidance maneuver is passed along to the 

next step in the simulation, the ownship will follow that maneuver and then that single encounter 

simulation will end. 

3.3 Simulation Results 

The following section visualizes some of the results of the one million encounter set 

simulation. The simulation ran three separate times on an AMD Ryzen Threadripper 3960x CPU 

with Asus Prime TRX40-PRO AMD 3rd Gen Ryzen Threadripper Strx4 ATX Motherboard and 
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Corsair Vengeance 256 GB (8x32) of physical RAM over the course of approximately one hour 

for each run.  

Based on the kinematic simulation described, there was an average of 84,351 losses of 

well clear and 3,660 near mid-air collisions. Compared to the previously described unmitigated 

or base RR values, this is a 2.16% reduction in losses of well clear and a 0.0034% decrease in 

near mid-air collisions. Relative to the base values, that corresponds to a 20.4% decrease in 

losses of well clear by mitigation and a 8.5% decrease in near mid-air collisions by mitigation. 

These simulations assumed perfect sensor knowledge and only one maneuver after detecting a 

future self-separation violation. These numbers would be further mitigated with a more robust 

DAA algorithm and sensor, as well as multiple updates to the avoidance calculations. Table 3.4 

shows the respective RRs for the one million encounters simulated. 

Table 3.4 Mitigated Risk Ratios over one million encounters in Terminal Class D airspace. 

Risk Ratio Type Value 

Loss of Well Clear 0.0844 

Near Mid-Air 

Collision 

0.0366 

 

Although RR values have been put in draft standards for DAA sensors and systems, there 

has not been a set of universally recognized values. Each airspace authority tends to operate 

differently, and the level of risk may be different across countries or even states. UAS integrators 

of DAA technologies must look to standardizing bodies like American Society of Testing and 

Materials (ASTM) and Radio Technical Commission for Aeronautics (RTCA) for the release of 

official standards that may be accepted by the FAA. These organizations work alongside industry 

experts and regulators to compromise what will be the status quo for UAS integrators. 
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3.3.2 Terminal Airspace Encounter Examples 

The following section provides some example figures of pairs of ownship and intruder 

trajectories that were used as inputs to the overall fast-time encounter simulation. Intruder tracks 

are marked in red and ownship tracks are marked in yellow for this section only. The starting 

point of both the ownship and intruder are marked with boxes and arrows pointing to the tracks’ 

first position. All four examples of two aircraft encountering one another are from MIT LL’s 

Terminal Class D airspace data set available on their encounter model overview at 

(Massachusetts Institute of Technology). 

 

Figure 3.11 Two aircraft trajectories over Terminal Class D airspace. Ownship trajectory 

marked in yellow and intruder trajectory marked in red. 
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Figure 3.12 Two aircraft trajectories over Terminal Class D airspace. Ownship trajectory 

marked in yellow and intruder trajectory marked in red. 

 

 

Figure 3.13 Two aircraft trajectories over Terminal Class D airspace. 
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Figure 3.14 Two aircraft trajectories over Terminal Class D airspace. 

 

3.3.3 Detect, Predict, and Avoid Examples 

The following figures show a few examples of the sensor detecting an intruder and 

calculating ownship and intruder projected trajectories. For the length of this section, the blue 

lines are ownship trajectories, the red lines are intruder trajectories, the cyan dashed lines are 

predicted arcs of future intruder tracks, and the light-yellow dashed lines are predicted ownship 

trajectories. Red scattered circles along the intruder’s trajectory are visualizations of the DAA 

sensor detecting an aircraft in its FOV and range limits. 
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Figure 3.15 Two aircraft trajectories over Terminal Class D airspace. Ownship trajectory 

marked in blue and intruder trajectory marked in red. In this case, the intruder 

came within the FOV of the sensor and predictions for both intruder, cyan dashes, 

and ownship, yellow dashes, were generated. 

An example of an encounter with the sensor at perfect performance can be seen in Figure 

3.15. The unmanned aircraft’s trajectory is marked in blue, and the manned aircraft is in red. The 

red circles along the intruder’s path represent when the intruder was detected by the DAA sensor 

without error, and the subsequent circles are the location of the intruder that is input into the 

kinematic prediction that is called every iteration and is in the cyan hyphenated curved lines. In 

contrast, Figure 3.16 below shows an encounter with the sensor error in detection being added to 

the simulation. The variation in distance between the red circles is due to the lower probability of 

detection and higher probability of error in the intruder’s true location as the intruder enters the 

detectable range of the ownship’s sensors. As the encounter moves forward, the detections 

become more consistent as the two aircraft get closer. The ownship’s predicted paths are marked 
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by magenta hyphenated curves, and the intruder’s in cyan hyphenated curves. The consistent 

cluster of red circles toward the end of the encounter are due to the range between aircraft 

decreasing and the number of previous detections of the intruder aircraft increasing. 

 

Figure 3.16 Two aircraft trajectories in an intercepting encounter within terminal airspace. 

Intruder path in red, and ownship path in blue. After each detection of the intruder, 

the predicted path of the ownship, in magenta hyphenated curves, and the 

predicted path of the intruder, in cyan hyphenated lines is shown.
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CHAPTER IV 

DAA SYSTEM INTEGRATION 

The following section describes the research done to integrate a three-panel radar array 

with a Group 3 UAS. The overall system of systems is described along with each subsystem’s 

role in the DAA function. The hardware integration including the radar panel array, mission 

computer, and autopilot are described next. Last, the software integration encompasses the radar 

control code in C++ including the additional masking function based upon altitude, the 

functional inputs and outputs of the DAIDALUS DAA algorithm, and finally an overview of the 

previously described functions visualized by a communications flow diagram.  

4.1 System of Systems 

An unmanned aircraft consists of multiple subsystems that contribute to the overall 

operation of the vehicle. The pilot may be on-the-loop, meaning responsible for maintaining the 

mission, in-the-loop, meaning an active contributor to the controls, or out-of-the-loop. The pilot 

is still a subsystem included in the overall system of systems no matter their role, active or 

passive. The autopilot is a key system onboard the aircraft. Outside of the pilot’s inputs, the 

autopilot actively reads and writes to the necessary controls to operate the aircraft. Global 

Positioning System (GPS) signal, Attitude Heading and Reference System (AHRS) outputs, and 

other navigation devices all communicate with the autopilot. Each subsystem, redundant or not, 

contributes to the overall success of the flight.  
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Any DAA sensor integrated with the existing UAS framework must work with the other 

subsystems to enable BVLOS capabilities. The DAA integrator must understand the downstream 

effects the DAA sensor has on the other functions. The physical hardware that scans the airspace 

for targets serves the detect function as described in subsection 3.1. In the following section, the 

mission computer must provide both the autopilot and pilot with an alert to acknowledge the 

presence of a target output by the detect function. Last, the mission computer and autopilot 

coordinate to conduct a maneuver if required to maintain self-separation from an intruder in the 

ownship’s airspace. The systems responsible for each of these subroutines are detailed in the 

following subsections. 

4.1.1 Detect Function 

The time that a DAA sensor spends scanning its FOV directly contributes to the efficacy 

of the detect function. If a sensor has a large FOV and low scanning rate, then the DAA system 

integrator must account for the lack of frequent updates to the downstream alert and avoid 

functions. For example, suppose a DAA system has a wide FOV with only a 1 Hz update rate. 

For every scan, a head-on intruder may close the distance between itself and the ownship by 

hundreds of feet. Therefore, downstream functions like the alert and avoid functions should be 

wary of the uncertainty of the track information. On the contrary, if a DAA system has a high 

update rate, then the DAA system integrator should be careful not to inundate the subsequent 

functions with large amounts of track data that may slow the overall DAA function. In the 

following sections, simple procedural techniques are briefly described to account for these 

challenges. 
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4.1.2 Alert Function 

The alert function encompasses the necessary distribution of intruder track information, 

predicted intruder flight path, and overall safety risk to the avoid function. The alert function is 

solely responsible for quantifying or qualifying the potential risk an intruder poses to the 

ownship by providing the enabling switches to the avoid function. Many DAA algorithms use a 

scale of integers to describe the potential risk of an intruder’s predicted flight path. The NASA 

DAIDALUS algorithm provides a scale of numbers that reflect this risk. For a UAS operator to 

understand the DAA function’s outputs, an alert level may be transmitted to the autopilot and/or 

GCS as part of the alert function. 

The second output of the alert function must be some form of relative airspace awareness 

to the operator. This may be in the form of an updated airspace picture in the form of a GUI that 

gives the operator an easily understandable relative location of the intruder. By both providing 

the subsequent avoid function with the necessary alert level, as well as visualizing the potential 

threat, the alert function is key to the success of any BVLOS operation. 

4.1.3 Avoid Function 

Finally, once the airspace has been scanned for intruders by the detect function, and the 

intruder’s potential risk has been communicated by the alert function, then the avoid function 

may be called upon to deescalate any encounter. The avoid function may be broken down to 

three simple tasks. First, the avoid function encapsulates the calculation of trajectories that can 

avoid losing self-separation with an intruder. Second, the necessary inputs to the autopilot are 

made via the avoid function to begin the avoidance maneuver. 
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4.2 Hardware Integration 

Integrators of DAA technology with existing UAS platforms face many challenges. For 

UAS already struggling with meeting flight time requirements, the addition of power consuming 

and heavy DAA sensor suites may make the use case futile. Generally, this setback would 

eliminate airborne DAA sensors for those UAS not capable of bearing the extra burden. 

However, for large UAS greater than 55 pounds maximum Gross Takeoff Weight (MGTOW), 

there is generally room for multiple payloads including DAA technologies. In this research, the 

large UAS worked on had a sufficient power budget and the total DAA sensor array installation 

did not weigh enough in comparison to the MGTOW of the UAS to see these negative effects.  

The following section describes the hardware and software integration of a three-panel 

radar array onto the nose of a Group 3 UAS. A simple method was created to help clear noise 

from ground clutter in the form of altitude masking. The DAA algorithm DAIDALUS was 

integrated with the system of systems to provide the avoidance maneuver functionality to be 

included in future research. 

4.2.1 Radar Array 

The hardware integration predominantly consisted of mounting a three-panel radar array 

to the nose of the large UAS. The orientation of the radar array can be seen in Figure 4.1. The 

left and right radars have a 75-degree angular offset from the middle one. It can be assumed that 

each radar has 120-degree azimuth coverage, given that both models of flat panel radars 

described in the DAA technology section of this document share this common specification. A 

reasonable range of 4,000 feet was determined given the specifications supplied by both of these 

radar manufacturers.  
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Figure 4.1 Radar array total coverage with two regions, marked 2 and 4 respectively, covered 

redundantly on either side of the nose. 

 

Doing some simple angle calculations, the total azimuth coverage comes out to 

approximately 270 degrees. This totals to 75% of the total possible azimuth coverage of 360 

degrees. Since the radars are faced forward, the 90-degree blind spot behind the large UAS must 

be covered by procedural mitigations or the addition of rearward facing DAA technologies, even 

though overtake encounters are unlikely. For the intent of this research, the blind spot is not 

accounted for as future integration will involve covering this area. 

4.3 Software Integration 

A three-radar array was installed and integrated with in-house software and proprietary 

APIs. The software presented was flown in a flight test and produced promising results in the 

areas of communication and overall information flow. The following section overviews the work 

done to integrate a radar array with an existing Group 3 UAS platform’s autopilot and a DAA 

algorithm.  

 



 

44 

4.3.1 Software Overview 

To help with explaining the integration work done, several diagrams are presented to 

visualize the flow of communications between the existing and added systems on the Group 3 

UAS. The radar control software will not be detailed in this document due to the potential 

leaking of proprietary information.In Figure 4.2, the flow between onboard autopilot, radar array 

communications, the DAA algorithm, and finally the Graphical User Interface (GUI) is 

visualized. In this architecture the autopilot provides telemetry and timing information to the 

radar array communications and DAA algorithm C++ software. This information includes GPS 

latitude, longitude and altitude as this information is used by both pieces of software. Down the 

line, the radar array provides a look at the airspace to the GUI and the DAA algorithm provides 

suggested alert levels and avoidance maneuvers in a visual manner to the pilot. Pilot-in-the-loop 

software testing of this GUI has not been performed to evaluate effects like clutter and loading of 

extra work on the pilot, but these tests should be considered by future integrators. 

 

Figure 4.2 Overview of DAA software integration with an autopilot. 
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Figure 4.3 Software architecture overview for DAA sensor array. 

4.3.2 Radar Control 

A C++ Application Programming Interface (API) was provided by the radar 

manufacturer in order to facilitate the integration of the radar array with the existing systems on 

the UAS. This API was integrated with the DAIDALUS algorithm and some autopilot 

communications and control algorithms to create a control software. The details of this software 
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and how it functions are not within the scope of this thesis, however a high-level process flow is 

provided in Figure 4.3. 

4.3.2.1 Altitude Masking 

Even ground-based radar arrays can be bogged down by false tracks due to ground 

clutter. Airborne radar arrays experience this misinformation on a generally larger scale due to 

the vibration and movement of the platform that the sensors are mounted to. To help combat the 

effect of trees, low flying birds, large vehicles passing, and other sources of ground clutter, an 

altitude masking algorithm was added to the software integration. This algorithm simply took a 

feedback loop approach to modifying where the radars needed to gather track data. The above 

ground level altitude of the ownship was an input to the altitude mask command, and an 

additional buffer of 50 feet was added to it. This masking technique helped to eliminate some of 

the ground clutter, but still sources of clutter due to weather and higher-flying aviaries needs to 

be added to the software integration. These methods are a possible source of future work for this 

DAA integration onto a Group 3 UAS for BVLOS. 
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CHAPTER V 

RECOMMENDATIONS FOR FUTURE RESEARCH AND CONCLUSION 

5.1 Future DAA Technology 

As the current landscape of commercially available DAA sensor technologies advances, 

the survey of DAA sensors within this document will become less encompassing. Future updates 

to the list and specifications of the technologies explored will need to be made to capture the 

growing pool of industry stakeholders that may be developing DAA sensors currently. This 

research may be used as a starting point for future surveys into this sector of unmanned aviation 

technology and may never be truly representative of every commercially available and private 

product. 

5.2 Simulation Gaps 

The simulation presented here is predominantly focused on being a tool for exposing the 

availability of various public databases of aircraft trajectories. This thesis does not contain 

empirical DAA sensor performance data even though the radar array spoken of was physically 

integrated, flight tested, and performance data were acquired. UAS integrators must collect 

empirical sensor and platform performance data to model and put into their fast-time simulation 

environments. One possible method would be to flight test several encounter geometries and 

collect radar performance data based on Radar Cross Section (RCS) range, azimuth, and 

elevation for radar-type sensors. Once the integrator collected adequate data, that performance 

model could be an input to the fast-time simulations to provide a more robust understanding of 
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the impact DAA sensor performance has on the unmanned system’s ability to maintain well clear 

through variances based on a model including mean performance and standard deviation values. 

5.3 Conclusion 

The research done as part of this thesis covers the simulation, integration, and field 

testing of a three-radar array installation onboard a Group 3 UAS platform1. The technology 

survey presented will only increase with the positive forward momentum from regulating bodies, 

allowing more industry players to soundly invest in this market. A kinematic simulation based on 

very simplified kinematics has been presented as a reference for future integrators. The 

simulation determined that the addition of a 270-degree sensor with a probability of detection set 

to 10 percent at 4,000 feet and increasing exponentially with the decrease in range to have a 

positive effect on the ability of a UAS to detect and promptly avoid intruding aircraft in the 

described terminal airspace dataset . An overview of the hardware and software installation is 

also detailed. As this research moves forward, additional technical and procedural mitigations 

will be emplaced both in practice and in simulation to further the comprehensive safety case for 

flying an unmanned Group 3 platform beyond the visual capabilities of the operator. This thesis 

research serves as one of many steppingstones toward that fruitful goal for the unmanned sector 

of aviation, and given the future research suggested here, there will be plenty of work to be done. 

  

 
1 The three-radar array DAA sensor suite was flight tested and promising results for the future of this research were 

acquired as part of the research that surrounds this thesis. 
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APPENDIX A 

MATLAB SIMULATION SOURCE CODE 
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DAA_Simulation_v02.m 

Author: Kyle Ryker  

Last Updated Date: 9 June 2021  

Overview: The following is a very simple kinematic simulation script that works with several 

function and class files. The user can input several simulation parameters that may change the 

output of the simulation. The overall purpose of the simulation script is to provide a very simple 

way to evaluate a DAA Sensor against the Terminal Airspace data set provided by 

Massachusetts’s Institute of Technology's Lincoln Laboratory here: 

https://github.com/Airspace-Encounter-Models/em-overview#terminal-encounter-model 

Simulation Inputs 

 

Initialization of an object of class UserInputs() for ease of use later 

 

Simulation Outputs 

 

https://github.com/Airspace-Encounter-Models/em-overview#terminal-encounter-model
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A.1 Main 

A for-loop is used here because there are 1,000 '.mat' files named 'EncounterFilexxx.mat' where 

xxx is a number from 1 to 1,000. Each encounter file contains 1,000 sets of two trajectories for 

simulation, therefore a total of 1,000,000 overall. This outer for-loop is to go through each '.mat' 

file and the inner for-loop is to iterate through each of the 1,000 encounters within it. 
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Published with MATLAB® R2020a 

https://www.mathworks.com/products/matlab
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A.2 User Inputs Class 

 

Published with MATLAB® R2020a 

  

https://www.mathworks.com/products/matlab
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A.3 predictKinTrack function 

 

Published with MATLAB® R2020a 

  

https://www.mathworks.com/products/matlab
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A.4 loadEncounterFile Function 

 

Published with MATLAB® R2020a 

  

https://www.mathworks.com/products/matlab
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A.5 dtmLoWC Function 

 

Published with MATLAB® R2020a 

  

https://www.mathworks.com/products/matlab
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A.6 checkProbDetection Function 

 

Published with MATLAB® R2020a 

A.7 checkSensor_v02 Function 

 

https://www.mathworks.com/products/matlab
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Published with MATLAB® R2020a 

A.8 addSensorError Function 

Published with MATLAB® R2020a 

  

https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab
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A.9 checkBands Function 

Published with MATLAB® R2020a  

https://www.mathworks.com/products/matlab
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A.10 calcRelHdg Function 

Published with MATLAB® R2020a 

  

https://www.mathworks.com/products/matlab
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A.11 calcKinBands Function 

Published with MATLAB® R2020a 

 

 

 

https://www.mathworks.com/products/matlab
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APPENDIX B 

OPEN-SOURCE TOOLS FOR UAS INTEGRATORS 
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B.1 MIT Lincoln Laboratory Datasets 

Massachusetts Institute of Technology’s Lincoln Laboratory has been developing several 

datasets over the past decade. A few of these datasets capture air traffic over the continental 

United States (CONUS). The first set is the Traffic Density Database (Edwards). The air traffic 

data captured covers hundreds of thousands of flight hours at all altitudes able to be seen by a 

long-range radar network across the CONUS. Work done to filter and extract aircraft models 

from the CONUS radar data can be read in (M.J. Kochenderfer). In Figure B.1, the total 

coverage by the radar network is displayed.  

 

Figure B.1 Total radar coverage of the Continental United States included within the Traffic 

Density Database. 

The database can be accessed via the MIT Lincoln Laboratory’s MATLAB software 

available on their GitHub. The data can be filtered by altitude to give UAS integrators relevant 

encounter probability information for their potential operations. 
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The other available database by MIT Lincoln Laboratory is the ADS-B OpenSky 

Network (Massachusetts Institute of Technology). Since the radar-based network previously 

discussed could not capture low altitudes away from terminal airspace, MIT Lincoln Laboratory 

reached out to the community to crowdsource an ADS-B receiver network. Example ADS-B 

tracks for a fixed-wing manned aircraft is shown below. 

 

Figure B.2 Track segments for a fixed-wing multi-engine FAA (USA) registered aircraft in 

the NAS taken from MIT Lincoln Laboratory’s OpenSky Network GitHub. 

UAS Integrators may use these available databases to create comprehensive safety cases 

specific to the airspace they wish to fly in. Encounter probability can be estimated for various 

altitudes and with the OpenSky Network, these estimates can be applicable to lower altitudes not 

covered by the radar network. 

B.2 MIT Lincoln Laboratory Bayesian Network Models 

Part of the work done by MIT Lincoln Laboratory was to create models of how pilots and 

aircraft behave based on variables such as airspace, altitude, and aircraft type. To do so, MIT 

Lincoln Laboratory used a Bayesian network approach to determining a sufficient and 
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statistically representative model for their behavior. These statistical networks can generate 

millions of trajectories that are based on real world flight data. A table of the various types of 

models of aircraft and unconventional air vehicles available for track generation is listed below. 

More information on the models can be found on their GitHub post titled em-model-manned-

bayes. 

Table B.1 Types of aircraft models, both conventional and unconventional, provided by MIT 

Lincoln Laboratory’s GitHub. 

Model Description (Version) Altitude Scope 

correlated Aircraft squawking a Mode 3A/C discrete code over the 

CONUS (v1.1) 

[1000, Inf] 

correlated Aircraft squawking a Mode 3A/C discrete code (v2.1) [1000, Inf] 

uncorrelated Aircraft squawking Mode 3A/C of 1200 over the CONUS 

(v1.0) 

Surrogate for conventional aircraft without transponders 

[500, 18000] 

uncorrelated Aircraft squawking Mode 3A/C of 1200 (v2.x) 

Surrogate for conventional aircraft without transponders 

[500, 18000] 

correlated Aircraft squawking Mode 3A/C of 1200 over littoral 

regions (v1.0) 

[500, 18000] 

uncorrelated Aircraft squawking a Mode 3A/C discrete code over 

littoral regions (v1.0) 

[1000, 45000] 

uncorrelated Fixed wing multi-engine with ADS-B Out not squawking 

Mode 3A/C of 1200 (v1.2) 

[50, 5000] 

uncorrelated Fixed wing multi-engine with ADS-B Out squawking 

Mode 3A/C of 1200 (v1.2) 

Surrogate for conventional aircraft without transponders 

[50, 5000] 

uncorrelated Fixed wing single-engine with ADS-B Out not squawking 

Mode 3A/C of 1200 (v1.2) 

[50, 5000] 

uncorrelated Fixed wing multi-single with ADS-B Out squawking 

Mode 3A/C of 1200 (v1.2) 

Surrogate for conventional aircraft without transponders 

[50, 5000] 
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Table B.1 (continued) 

Model Description (Version) Altitude Scope 

uncorrelated Fixed wing multi-engine with ADS-B Out not squawking 

Mode 3A/C of 1200 (v1.2) 

[50, 5000] 

uncorrelated Rotorcraft with ADS-B Out squawking Mode 3A/C of 

1200 (v1.2) 

Surrogate for conventional aircraft without transponders 

[50, 5000] 

uncorrelated Rotorcraft with ADS-B Out (v1.0) [50, 5000] 

uncorrelated Fixed wing single-engine with ADS-B Out (v1.0) [50, 5000] 

uncorrelated Rotorcraft with ADS-B Out (v1.0) [50, 5000] 

uncorrelated Hot air balloons (v1.0) [0, 10000] 

uncorrelated Airships (v1.0) [0, 10000] 

uncorrelated Flexible wing hang gliders (v1.0) [0, 10000] 

uncorrelated Rigid wing hang gliders (v1.0) [0, 10000] 

uncorrelated Gliders (v1.0) [0, 10000] 

uncorrelated Paragliders (v1.0) [0, 10000] 

uncorrelated Paramotors (v1.0) [0, 10000] 

uncorrelated Skydivers (v1.0) [0, 15000] 

uncorrelated Weather balloons (v1.0) [0, 120000] 
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Table B.1 (continued) 

Model Description (Version) Altitude Scope 

due regard Aircraft participating in the ETMS (v1.0) (0, Inf] 

HAA Rotorcraft of a Massachusetts-based HAA operator (0, 5000] 

 

B.3 MIT Lincoln Laboratory Simulation Tools 

Last, MIT Lincoln Laboratory has developed several tools for simulating DAA systems. 

One of which is the DAA Evaluation of Guidance, Alerting, and Surveillance (DEGAS) 

simulator. This simulation framework uses MATLAB and Simulink to iterate through a Monte 

Carlo simulation of any DAA system. DEGAS is currently interfaceable with NASA’s 

DAIDALUS algorithm. More information about the simulation and the downloadable source 

code can be found on their GitHub page at https://github.com/mit-ll/degas-core. UAS integrators 

may use this simulation as a reference for designing DAA sensor simulations. 

 

https://github.com/mit-ll/degas-core
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