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A more difficult forecasting challenge arose for the tornado outbreak on 3 May 1999, as 

documented by Thompson and Edwards (2000) and Edwards et al. (2002). With this event, the 

buoyancy and shear were favorable and synoptic conditions seemed ideal for an outbreak, but the 

lack of convergence in the dryline regions and a thick cirrus cloud deck that lowered the 

potential for heating and mixing in the boundary layer near these drylines caused models to 

underrepresent the outbreak threat until a few hours prior to its initiation. At that time, the initial 

supercell developed during a break in the thick cirrus deck. Surface temperatures were also 

sufficiently high enough to minimize convective inhibition and so the convective outlook 

forecasts were updated to reflect the more favorable storm environment. This tornado outbreak 

event is considered more of an initial “miss” scenario, since there was a consensus that severe 

weather would happen with some supercell thunderstorms, but the exact location was unclear 

(Figures 2.4 a-e). 

 

Figure 2.4 Maps of SPC Day One categorical convective outlook risk areas with ending valid 

times at 1200 UTC 4 May 1999. The beginning valid times are on 3 May 1999 at 

(a) 0600 UTC, (b) 1300 UTC, (c) 1630 UTC, (d) 2000 UTC, and (e) 4 May 1999 

at 0100 UTC. 
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Opposite of a COF or a miss, FAs are forecasted outbreaks that do not occur. While there 

are many studies that focus on FAs in the context of individual tornadoes (Barnes et al. 2007, 

Brotzge et al. 2011, and Walters et al. 2020), there are not many that concentrate on FAs in the 

context of tornado outbreaks. Mercer and Bates (2014) touches on FAs within SPC’s outbreak 

forecasts (as estimated by convective outlooks). They assessed differences in FA and COF 

forecast environments at the synoptic scale through the generation of outbreak composites. The 

study found that FAs had weak synoptic scale setups, and while there were not many differences 

between high- and low-accuracy forecasts, there was evidence that some meteorological 

variables were good indicators of FAs. These variables included limited vertical shear, thermal 

advection, differential vorticity advection, and jet streak magnitudes, which resulted in 

significant forecast uncertainty that ultimately resulted in a FA forecast (Mercer and Bates 2014). 

Higher accuracy forecasts were characterized by high amounts of warm air advection (WAA), 

while low accuracy forecasts had weaker WAA. This implies inadequate amounts of energy and 

therefore uplift to create tornado outbreaks, leading to a FA case. Their FA composites also 

exhibited less organized differential vorticity advection distant from a surface low as well as 

weaker jet streaks and limited vertical wind shear. These fields are feature candidates in the 

current study. Pressure, wind speeds, moisture aloft and at the surface, lapse rates, and surface 

temperature were nearly identical amongst the composites, indicating these factors did not 

strongly differ among the high and low accuracy forecasts. 

The Mercer and Bates (2014) study also noted patterns of seasonality for FAs, where 

most occurred in the summer and fall months. Most tornadoes and tornado outbreaks occur 

during the spring, and these seasonal observations show that tornado outbreaks that do not occur 

during the “regular season” have higher forecast uncertainty, suggesting research needs to be 
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done to establish the synoptic scale parameters connected with off-season outbreaks. This 

suggests seasonality could be useful in predicting FA outbreak forecasts as well. Specifically, 

seasonal differences in convective availability potential energy (CAPE) may play a role in FAs. 

CAPE is usually higher during the warm season and lower during the cool season. As such, fall 

events may require enhanced synoptic-scale vertical forcing for convective initiation to occur. 

Additionally, wind shear supportive of supercell development and tornadoes are more frequent 

during the spring and fall seasons than during the summer. It is understandable why most 

tornadoes and tornado outbreaks occur during the ”regular season”, as it is more common for 

favorable instability and wind shear to be collocated. In the summer, wind profiles are normally 

less favorable for mid-level cyclone development. The lifted condensation level (LCL) is also 

particularly affected by season. Higher LCLs are common with many primarily nontornadic 

outbreaks during the warm season, due to the existence of hot, dry, well-mixed boundary layers 

(Shafer et al. 2010).  

Past work has been focused on synoptic-scale discrimination of tornadic and nontornadic 

outbreaks as well as ranking and identifying outbreak types. Many studies (Mercer et al. 2009 

and Shafer et al. 2010) used a ranking scheme (Doswell et al. 2006) to select the top 50 tornadic 

and nontornadic outbreaks to evaluate the synoptic-scale variables best used to differentiate 

between the outbreaks. These studies found that kinematic parameters (i.e., bulk shear) were the 

most effective at differentiating between the tornadic and nontornadic outbreaks while 

thermodynamic variables were the least useful. Mercer et al. (2012) also agreed with these 

results and stated the Weather Research and Forecasting (WRF) model has great skill at 

discriminating between the two outbreak types. This may be the case as the WRF model is a 

mesoscale model that uses a “compressible, nonhydrostatic dynamical core” (Shafer et al. 2009). 
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Studies have expressed the need for more research into the false alarm outbreaks and 

operational classification techniques (Mercer et al. 2009, Mercer et al. 2012, Mercer and Bates 

2014). The present study takes a step toward accomplishing those goals, as it seeks to determine 

whether a statistical classifier, specifically logistic regression and support vector machines 

(SVM), can correctly identify COFs and forecasts of events that resulted in a FA. This will be 

done by first identifying variables that show the largest differences among FA and COF 

environments, working under a null hypothesis that these environments are indistinguishable. It 

is expected that by identifying these environmental differences, an improved ability to identify 

FA outbreak environments will be possible, which will help to improve outbreak forecasts in the 

future.
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CHAPTER III 

DATA & METHODS 

Datasets 

This study evaluated a 10-year period (2010-2019) using data supplied by the SPC’s U.S. 

Tornadoes (1950-2021) dataset (https://www.spc.noaa.gov/wcm/). Data from the year 2020 were 

also included for model verification such that the study spans 11 years. This database includes 

information regarding tornado intensity, path length, timing, etc., as well as information about 

severe hail and wind reports. Outbreaks were limited to a single day (defined as 6 AM to 6 AM 

CST the next day), such that individual days within a multi-day event were treated as 

independent events. The valid time for an outbreak was set as a three-hour window during which 

the outbreak reached its peak tornado production. If multiple three-hour windows produced the 

same peak outbreak tornado rate, the first of these windows was used. 

As the ultimate goal of this work was to create a probabilistic classifier that will identify 

upcoming outbreaks as “likely” or “unlikely” to yield a FA, a defined an outcome of 1 represents 

a 100% chance of a FA and an outcome of 0 represents a 100% chance of a COF. To classify 

outbreaks into these two categories, a list of verified tornadic and nontornadic outbreaks were 

needed. This project followed Doswell et al. (2006) by examining severe weather reports in 24-

hour periods as stated above. 

To formulate these lists, the SPC tornado database was used to isolate tornado outbreaks 

with above-average and below-average tornado counts. Importantly, past research (Shafer and 

https://www.spc.noaa.gov/wcm/
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Doswell 2010) showed that the annual mean tornado counts within outbreaks had an upward 

trend prior to 2010. However, recent updated storm report information post-2010 showed this 

upward trend largely flattened. To verify this shift, the yearly means were calculated and plotted 

for this study's 11-year period (Figure 3.1). The slope of the resulting trend line (m = -0.530, p = 

0.245) showed a non-significant negative slope, which is counter to the results from Shafer and 

Doswell (2010)’s study period. As a result, the global mean over the 11-year study period was 

used to categorize outbreaks as above-average and below-average. With a global mean of 5.630 

tornadoes per outbreak, an overall mean of six (a value also used in Doswell et al. 2006) was the 

value chosen to establish COF and FA cases. 

 

Figure 3.1 The yearly means calculated for the study period, and it’s fitted trend line. 
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The SPC’s Day One tornado probability forecasts include 2%, 5%, 10%, 15%, 30%, 

45%, and 60% neighborhood probability contours in addition to probabilistic graphics that depict 

severe and general thunderstorm threats across the continental United States (CONUS). For each 

event, the SPC’s Convective Outlook Archive (https://www.spc.noaa.gov/archive/) at 1200 UTC 

was explored to identify events that occurred on days with at least a 10% tornado probability 

percentage present (Figure 3.2). 

 

Figure 3.2 Example event from 31 March 2016, with a 10% tornado probability. 

 

 

 

https://www.spc.noaa.gov/archive/
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This approach assumes that a SPC tornado probability forecast of 10% or higher suggests 

the SPC is expecting an outbreak of tornadoes over the specified 10% region. With this in mind, 

10% was chosen to formulate the final list of cases. Thus, six or more tornadoes within the 

forecasted 10% outbreak region was defined as a COF, while a 10% region that had fewer than 

six tornadoes (and thus was below-average) within it was counted as a FA. While the number of 

10% cases has slightly declined over the period of this study (Figure 3.3), the 10% tornado 

probability region yielded a reasonable sample size for both FAs and COFs, with 93 FA cases 

and 109 COF cases being found over the total 11-year period (Figure 3.4 and 3.5). 

 

Figure 3.3 The number of cases with a 10% tornado probability over the study period, with a 

fitted trend line. 
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Figure 3.4 COF Case Dates (YYYYMMDD). 

 

Figure 3.5 FA Case Dates (YYYYMMDD). 
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Methodology 

 To emulate an operational forecasting environment, a nonhydrostatic mesoscale 

numerical weather prediction model was needed to predict meteorological conditions underlying 

each outbreak. Given the desire for a true forecast mode, initial conditions for atmospheric and 

soil fields were obtained from the NCEP GFS 0.5° analysis valid at 0000 UTC for each outbreak 

date, and lateral boundary conditions were updated every three hours using the corresponding 

GFS forecast fields. COF and FA cases from April 2011 were excluded as this period had date 

and time discrepancies in the data. These GFS model data were used to initialize a Weather 

Research and Forecasting (WRF) model simulation of each outbreak to characterize the 

underlying outbreak environment on the synoptic scale and mesoscale. WRF output was used to 

build a predictor matrix of severe weather parameters that have been shown useful in past 

research in characterizing tornado outbreak environments. The WRF simulations employed the 

same physics parameterizations as the National Severe Storms Laboratory version of the WRF 

Model (WRF-NSSL; Kain et al. 2008, Skamarock et al. 2008). However, this study used 12-km 

grid-spacing with a model initialization at 0000 UTC, a model period of 36 hours, and a cumulus 

scheme, which contrasts with the WRF-NSSL. The use of a 12-km grid rather than the WRF-

NSSL 4-km was done to reduce simulation run time, and a cumulus scheme was included to 

determine when to generate a convective column and how fast to make the convection act 

(Dudhia 2014). WRF version 4.0 was used with a domain encompassing most of the United 

States except for portions of the west (Figure 3.6). Other model specifications during the 11-year 

analysis period were unchanged and are listed in Table 3.2.  Initially, 132 predictors were chosen 

for the analysis and were based on spatial and temporal statistics among 22 unique 

meteorological predictors (Table 3.3). 
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Figure 3.6 Domain of the GFS ensemble simulations generated with WRF version 4.0. 

 

Table 3.1 Model configuration and physic parameterizations used in the GFS ensemble 

simulations generated with WRF version 4.0. (**deviates from WRF-NSSL) 

Grid Configuration 

Initial Conditions 0.5° GFS analysis from 0000 

UTC 

Lateral Boundary Conditions 3-h 0.5° GFS analyses 

Horizontal Grid Spacing 12 km** 

Number of Grid Points 343 x 240 

Number of Vertical Levels 35 

Model Top 50 mb 

Time Step 24 s 

Physics Parameterizations 

Cumulus Kain-Fritsch scheme** 

PBL Mellor-Yamada-Janjic scheme 

(Mellor and Yamada 1982; 

Janjić 2002) 

Surface Layer Eta similarity 

Land Surface Model Noah Land Surface Model 

(Chen and Dudhia 2001) 

Microphysics WRF Single-Moment 6-class 

scheme (Hong and Lim 2006) 

Shortwave Radiation Dudhia scheme (Dudhia 1989) 

Longwave Radiation RRTM scheme (Mlawer et al. 

1997) 
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Table 3.2 22 overall predictors based on spatial and temporal statistics. 

Overall Predictors Reference 

Surface CAPE (J/kg) Stensrud et al. (1997) 

Surface CIN (J/kg) Markowski (2002) 

Surface LCL (m) Rasmussen and Blanchard (1998) 

Most Unstable CAPE (J/kg)  

Ukkonen and Mäkelä (2019) 

 
Most Unstable CIN (J/kg) 

Most Unstable LCL (m) 

LI (K) 

SRH (0-1 km) (m2/s2)  

Colquhoun and Riley (1996) SRH (0-3 km) (m2/s2) 

Effective SRH (m2/s2) 

Bulk Wind Difference (0-1 

km) (m/s) 

 

 

Weisman and Klemp (1984) Bulk Wind Difference (0-6 

km) (m/s) 

Effective Bulk Wind 

Difference (m/s) 

SCP Grams et al. (2012) 

 STP 

Specific Humidity (g/kg)  

 

 

 

 

Mercer and Bates (2014) 

Temperature (K) 

Temperature Advection (850 

mb) (K/s) 

Wind Magnitude (300 mb) 

(m/s) 

Wind Magnitude (850 mb) 

(m/s) 

Vorticity Advection (500 mb) 

Lapse Rate (700-500 mb) 

(K/m) 

 

 As each of the 22 predictors had both spatial variability within the outbreak region and 

temporal variability at each gridpoint, dimension reduction was completed to represent the 

spatial outbreak environment as individual predictors. This was done in two ways. First, the 

outbreak’s spatial maximum and mean within the 10% outbreak region for each of the 22 

predictors was computed for each date for each WRF timestep (yielding a 24-hour time series of 

spatial maximum/mean for each outbreak) (Figure 3.7). Next, the temporal minimum, maximum, 
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and mean were computed from these spatial time series’. Using these dimension reduction 

methods, each of the 22 predictors had 6 possible subsets, yielding 132 total WRF-derived 

predictors for the machine learning models. 

 

Figure 3.7 Example of a spatial calculation for one (SRH 0-1 km) of the 22 meteorological 

predictors. Every predictor’s (x) spatial mean and maximum are computed within 

the 10% outbreak region for each date for each WRF timestep (i = 0-23 hours), 

yielding a 24-hour time series of spatial mean/maximum for each outbreak. 

 As the machine learning methods are sensitive to predictor magnitude, normalization of 

the predictors was done to ensure each predictor had equal predictive weight in the models. The 

normalization was done as follows: 

𝑋′𝑖 =
(𝑋𝑖 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
 (3.1) 

where X′i is the normalized data for parameter i; Xi is the original data for i; Xmax is the maximum 

of i; and Xmin is the minimum of i (Zhang et al. 2018). This results in scaling all predictors from 0 

to 1. 
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As this number of predictors is near the size of the number of outbreaks spanning 2010 – 

2019 (187), it was necessary to reduce the predictor set to a more manageable size to reduce the 

likelihood of overfitting or an ill-posed statistical model. Three feature selection methodologies 

were utilized to reduce the predictor set and determine which yielded the best predictor set and, 

therefore, the best performing model. The first method employed was a forward selection 

stepwise methodology where the goal was to maximize the model skill in detecting FAs via a 

logistic regression. Stepwise was selected due to its ability to handle numerous amounts of 

potential predictors and quickly choose the most beneficial predictors from the available options. 

The forward stepwise procedure works by adding predictors cumulatively based on the amount 

of skill they provide. The resulting analysis yields a list of predictors sorted in order of 

increasing skill offered to the model. Skill was measured by the Heidke Skill Score (HSS) which 

is explained shortly. 

 The next method that was utilized was permutation testing. This was completed to assess 

which predictors have the best overall separation (that is statistically significant), between FA 

and COF environments, which logically would prove useful in distinguishing FAs and COFs. A 

permutation test is a data resampling method that determines if the means of two distributions 

are different (Efron and Tibshirani 1993, Mercer and Richman 2007, Mercer et al. 2009, Potvin 

et al. 2010). Permutation tests with 2000 replications were conducted on each of the 132 

predictors and the 2010-2019 outbreaks, where the FA and COF cases are treated as the separate 

testing entities. The resulting p values from those tests were compared against rejection criteria 

of 0.05, 0.025, 0.01, and 0.001 (corresponding to the 95%, 97.5%, 99%, and 99.9% confidence 

limits). While these criteria led to an increasingly high probability of committing a type II error, 
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the distinctness of the predictors was greatest when this p-value threshold was smallest (which 

should suggest the best classification performance). 

The final method employed to better assist with the feature selection process was 

principal component analysis (PCA). PCA is a linear analysis procedure which decreases the 

dimensionality of a dataset by transforming the dataset into a new dataset. This new dataset is 

comprised of linear combinations of the original data which are known as principal components 

(PCs). PCA begins with the primary equation: 

𝒁 = 𝑭𝑨𝑇 (3.2) 

where Z is the original matrix in standard anomaly form, F is the PC score matrix, and A is the 

matrix of PC loadings used to transform Z into F (Wilks 2019, Mercer et al. 2012, Mercer and 

Bates 2014). The first step to solving this equation for F and A is to obtain a correlation matrix 

for Z. Once R is computed (the correlation matrix), the eigenanalysis is performed: 

𝑹 = 𝑽𝑫𝑽𝑇 (3.3) 

where R is diagonalized into an eigenvalue matrix D with an associated eigenvector matrix V. 

Once we have the eigenvalues and eigenvectors, we can compute the loading matrix A as: 

𝑨 = 𝑽𝑫1/2 (3.4) 

After this is completed, the score matrix F can be solved: 

𝑭 = 𝒁(𝑨𝑇)−1 (3.5) 

and the variance explained by each PC can be computed: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =
𝜆𝑛

∑𝜆𝑛

(100%) (3.6) 
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where λn represents the eigenvalues derived from the PCA. The PC scores were used as 

predictors in both models. They were thought to be beneficial as they provide unique, 

uncorrelated variability within the predictor space that can summarize covariability within the 

predictors as a small subset. This makes the model more concise at the expense of losing some 

variance explained. 

The resulting predictors from each of the feature selection methods were then used in a 

logistic regression and a support vector machine (SVM; Haykin 1999, Cristianini and Shawe-

Taylor 2000) to assess the classification skill. Both methods are statistical analysis techniques 

that are used to predict a binary outcome (i.e., the probability of a FA versus a COF in this 

present study). This probability can be utilized as a forecast application. A threshold cutoff 

probability (typically based on climatology) can then be used to categorize each probabilistic 

forecast as FA or COF. 

While logistic regression is well known (Wilks 2019), SVM is a more novel machine 

learning technique. A SVM defines a multidimensional hyperplane for classification between 

binary classes (here FAs and COFs). This technique has been used in previous meteorological 

studies (Richman et al. 2005, Trafalis et al. 2005, Mercer et al. 2008, Mercer et al. 2009), but its 

presence in literature pertaining to tornado outbreaks is limited. However, the SVM model was 

selected for this study due to its ability to model nonlinearly separable data. SVMs attempt to 

solve for the hyperplane surface, which, according to Haykin (1999), is mathematically given as: 

𝒘𝑇𝒙 + 𝑏 = 0 (3.7) 
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where w is a vector of weights, x represents the covariates, and b is an intercept. Since SVMs are 

classification machines designed to distinguish between classes, modifications to the hyperplane 

equation for our two classes can be represented as: 

𝒘𝑇𝒙 + 𝑏 ≥ 0    𝑓𝑜𝑟  𝑑𝑖  = 1  (3.8) 

 

𝒘𝑇𝒙 + 𝑏 ≤ 0    𝑓𝑜𝑟   𝑑𝑖 = 0  (3.9) 

 

The goal of SVM is to distinguish best between the two classes (here 1 for FA and 0 for 

COF). To ensure the best result, the distance between the points closest to the separating 

hyperplane must be maximized. Figure 3.8 shows an example of binary data that are optimally 

separated into two separate classes, represented by 1 and -1 (Mercer et al. 2008). 

 

Figure 3.8 A representation of an SVM model where the dashed line is the best solution. 
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Many datasets that utilize SVMs are not linearly separable. In cases such as these (i.e., 

this present study), the data are input into a kernel function so a separating hyperplane can be 

found (Cristianini and Shawe-Taylor 2000, Schölkopf and Smola 2002). The kernel function 

projects the data into a nonlinear hyperspace where they may retain this nonlinear separability. 

For this study, the SVM was tuned using the following kernel functions: 

1. Gaussian radial basis kernel 

𝐾(𝒙, 𝑥𝑖) = 𝑒
(− 

1
2𝜎2‖𝒙−𝑥𝑖‖

2)
  (3.10) 

 

2. Polynomial kernel 

𝐾(𝒙, 𝑥𝑖) = (𝒙𝑇𝑥𝑖)
𝑝 (3.11) 

 

In addition to kernel functions, the SVM also requires the cost coefficient C and the 

associated parameters of the kernel functions, which are tuned through cross validation. This 

cross validation was conducted by withholding 80% of the dataset for training and using the 

remaining 20% for subsequent validation. This was repeated 1000 times using a bootstrapping 

method (i.e., random sampling of training/testing) to obtain confidence intervals on the 

performance statistics. Numerous kernel functions, configurations, and cost coefficients were 

tested using this cross-validation dataset to determine the optimal values of these SVM 

parameters for our dataset to improve the classification skill. The greater values of cost heighten 

the influence of non-separable points and decrease the complexity of the problem. Higher degree 

polynomial kernels allow a more flexible decision boundary. Gamma regulates the impact of 

new features. The lower the gamma value, the less influence the new features will have on the 
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decision boundary. The tuning parameters for the Gaussian radial basis kernel and polynomial 

kernel included (Adriano et al. 2009): 

• Cost: 100 - 103 (by factors of 10) 

• Gamma: 0.01, 0.05, 0.1, 0.2, 0.5 

• Degrees: 1 - 5 (for polynomial kernel) 

To evaluate the performance of the classification, contingency statistics were calculated 

(Wilks 2019) on the results of both the logistic regression and the SVM. The contingency 

statistics require the creation of a contingency table (Table 3.4). 

Table 3.3 Contingency table, where a represents the number of correctly classified yes’s (1s, 

FAs), b represents predicting yes (FA) but observing no (COF), c represents 

predicting no (COF) but observing yes (FA), and d represents the number of 

correctly classified no’s (0s, COFs). 

 

Forecast 

Obs 

Yes (1, FA) No (0, COF) 

Yes (1, FA) 

No (0, COF) 

a b 

c d 

 

Four contingency statistics are then computed from the contingency table. Hit rate (HR), 

also known as the probability of detection (POD), is given as: 

𝑃𝑂𝐷 =
𝑎

𝑎 + 𝑐
 (3.12) 

This statistic is the ratio of correct yes (FA) forecasts to the total number of yes (FA) 

observations. Higher values indicate better classification. The false alarm ratio (FAR) is given 

as: 

𝐹𝐴𝑅 =
𝑏

𝑎 + 𝑏
 (3.13) 



 

27 

This statistic is the number of misclassified COFs versus the total number of times a yes (FA) is 

predicted. A lower value is indicative of lower false alarms, which is desirable. Heidke skill 

score (HSS) is given as: 

𝐻𝑆𝑆 =
2(𝑎𝑑 − 𝑏𝑐)

(𝑎 + 𝑐)(𝑐 + 𝑑) + (𝑎 + 𝑏)(𝑏 + 𝑑)
 (3.14) 

HSS is the measure of success of the forecast relative to what it would be by chance without the 

underlying assumption of the distributions being the same. Values close to 1 are better. The best 

SVM configuration was found using the median bootstrap replicate HSS values of each 

configuration, as HSS is an objective measure of discrimination and increases with increasing 

POD concurrent with decreasing FAR. Doswell et al. (1990) demonstrated that the HSS was 

superior to the critical success index (CSI) for evaluating forecasts of rare events because it gave 

credit for a correct forecast of a nonevent. The final contingency statistic considered herein is 

bias (BIAS): 

𝐵𝐼𝐴𝑆 =
𝑎 + 𝑏

𝑎 + 𝑐
 (3.15) 

which is the ratio of the number of yes (FA) predictions to the number of no (COF) predictions. 

An unbiased forecast has a bias value of 1, while values less than 1 predict too many 0s (COFs) 

and values greater than 1 predict too many 1s (FAs).  

Finally, these contingency statistics were used to assess the performance of the feature 

selection methodologies and ultimately the logistic regression and SVM models, determine the 

optimal configuration of the SVM, and evaluate the performance of the optimal model 

configurations on the 2020 case data. 
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Feature Selection Methodologies 

Of the three feature selection methodologies employed (i.e., stepwise, permutation 

testing, and PCA), stepwise proved to yield the best predictor set and therefore the better logistic 

and SVM model results. Continency statistics were computed for both the SVM and logistic 

models after each feature selection method was utilized (Tables 3.5, 3.6, and 3.7). These results 

show that the HSS values for the logistic and SVM models utilizing the stepwise predictors had 

the highest values when compared to the best performing versions using predictors from PCA 

and permutation testing. However, the SVM HSS value of the best performing permutation test 

was close to that of the SVM which utilized predictors reduced via stepwise. 

Table 3.4 Model results utilizing the 10 optimal predictors that were computed using 

stepwise. 

Logistic Regression 

HSS 0.353 

BIAS 1.063 

POD 0.684 

FAR 0.357 

SVM 

HSS 0.323 

BIAS 1.133 

POD 0.667 

FAR 0.389 
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Table 3.5 Model results utilizing PCA with different numbers of kept PCs. Variance 

explained is also included. 

Logistic Regression 

 3 PCs 

Kept 

4 PCs 

Kept 

5 PCs 

Kept 

6 PCs 

Kept 

7 PCs 

Kept 

8 PCs 

Kept 

HSS 0.250 0.240 0.248 0.239 0.255 0.248 

BIAS 1.061 1.071 1.177 1.154 1.156 1.133 

POD 0.619 0.625 0.667 0.667 0.667 0.667 

FAR 0.412 0.421 0.429 0.429 0.417 0.421 

SVM 

 3 PCs 

Kept 

4 PCs 

Kept 

5 PCs 

Kept 

6 PCs 

Kept 

7 PCs 

Kept 

8 PCs 

Kept 

HSS 0.197 0.197 0.234 0.180 0.202 0.202 

BIAS 1.143, 

1.154 

1.056 1.118 1.231 1.222 1.235 

POD 0.632 0.600 0.625 0.667 0.647 0.667 

FAR 0.000, 

0.000 

0.000 0.421 0.000 0.444 0.447 

Variance Explained 

 3 PCs 

Kept 

4 PCs 

Kept 

5 PCs 

Kept 

6 PCs 

Kept 

7 PCs 

Kept 

8 PCs 

Kept 

0.522 0.580 0.629 0.671 0.701 0.731 

 

Table 3.6 Model results utilizing permutation testing of the 10 optimal predictors. 

Logistic Regression 

 p < 0.001 p < 0.01 p < 0.025 p < 0.05 

HSS 0.205 0.198 0.138 0.138 

BIAS 1.000 1.053 1.053 1.000 

POD 0.583 0.583 0.546 0.539 

FAR 0.429 0.436 0.471 0.469 

SVM 

 p < 0.001 p < 0.01 p < 0.025 p < 0.05 

HSS 0.308 0.281 0.271 0.264 

BIAS 1.053 1.063 1.077 1.077 

POD 0.611 0.611 0.625 0.625 

FAR 0.375 0.389 0.400 0.409 

 

It is not a surprise that models utilizing predictors chosen by stepwise regression 

performed well as stepwise regression can handle significant amounts of potential predictors and 
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select the top predictor variables from the available options. As for PCA, it should be used 

mainly for variables that are correlated and in linear modeling contexts. In other words, it forces 

a linear relationship, so a nonlinear modeling approach won't work well with linearly separable 

data. If there is weak correlation between variables, PCA does not work well to reduce data. 

Correlation values always range from -1 for a negative relationship to 1 for a positive correlation. 

Values at, or close to, zero indicate no linear relationship or a very weak correlation. The 

correlation matrix values in this case determined that most of the correlation coefficients are 

smaller than 0.5 (Figure 3.7). This shows why PCA may not have been the most helpful in 

reducing the number of predictors and producing a successful SVM and logistic model. 

 

Figure 3.9 Histogram of the best performing PCA correlation matrix values. 
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Lastly, for permutation testing, the null hypothesis is more specific. You must assume 

that the samples used for testing have identical distributions (i.e., shape, center, and spread). 

Permutation testing presumes that the only difference between the samples is the random 

assignment. A reason why the best performing SVM utilizing predictors from permutation 

testing is so close to that of the SVM utilizing predictors from stepwise may be due to the small 

sample size. The best performing model with permutation testing predictors was the model 

utilizing p-values less than 0.001. Only 34 predictors had p values less than 0.001. Permutation 

tests are also effective when parametric assumptions are not met. As permutations only require 

exchangeability, they are a very robust test. 

Optimal SVM Configuration 

As stated previously, the stepwise feature selection method proved to yield the best 

predictor set and therefore the better logistic and SVM model results. Because of this, confidence 

intervals were completed for each contingency statistic on the versions of both the logistic 

regression and the SVM (Figures 3.10a-d) that utilize the predictors chosen by the stepwise 

selection. Regarding the comparison of models that has been done in this study, it has been found 

that the SVM and the logistic regression have close overall performance measures. The 

contingency statistics show that the two models are statistically indistinguishable. While the 

overall numbers for logistic were slightly better, the uncertainty in both models suggests that 

either method yields similar predictability, meaning linear separability works decently for this 

problem. The SVM parameters for the top ten configurations are given in Table 3.8. 
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Figure 3.10 Confidence intervals on the contingency statistics of the best performing versions 

of the logistic regression and SVM models (α = 0.05), including: (a) HSS, (b) 

BIAS, (c) FAR, and (d) POD. 

 

Table 3.7 Top ten performing SVM configurations in order of decreasing HSS. 

HSS 0.323 0.320 0.317 0.316 0.316 0.316 0.316 0.316 0.316 0.315 

Kernel Poly Poly Poly Poly Poly Poly Poly Poly Poly Poly 

Degree 1 1 1 1 1 1 1 1 1 1 

Gamma 0.5 0.05 0.5 0.2 0.01 0.01 0.1 0.2 0.5 0.5 

Cost 1 10 10 1 100 1000 1000 1000 1000 100 

 

As stated above, a kernel function is regularly applied in SVMs if the data are not linearly 

separable (which was hypothesized here), as the kernel can occasionally find a decision 

hyperplane that separates the classes better than a linear classifier. The SVM performance must 

also be optimized based on the tuning parameter listed above. The optimal configuration for this 

study revealed a linear polynomial kernel, which yields a solution very similar to a logistic 
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regression (a linear separability within the data). Further, the lower cost suggests points far from 

the decision boundary should be used in its weighting, which ultimately suggests the SVM, 

despite being linear, is a complex classifier for this problem. The gamma value also increases the 

influence of additional features on the hyperplane boundary, which is likely the reason for the 

small subset of features performing best (as seen in the feature selection discussion above).   
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CHAPTER IV 

RESULTS & DISCUSSION 

Interpretation of Predictors 

The predictors chosen by the stepwise model (Table 4.1) showed that relatively greater 

discrimination between outbreak types occurs with thermodynamic variables rather than 

kinematic. This is consistent with the findings from studies like Shafer et al. (2010) and Grams et 

al. (2012). Shafer et al. (2010) found that storm-relative helicity parameters supplied better 

discrimination power between WRF model composites of tornado outbreaks and primarily 

nontornadic outbreaks, compared to CAPE. Grams et al. (2012) found that convective mode, 

composite parameters, and kinematic variables (i.e., 0-1 km and 0-6km bulk wind difference) 

provided greater discrimination between tornadic events than thermodynamic variables (i.e., 

mixed layer CAPE, mixed layer CIN, mixed layer LCL). 
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Table 4.1 The 10 optimal predictors utilized in the log regression and SVM models in order 

of increasing HSS values. The results are cumulative, such that HSS on the last 

row represents HSS when retaining all 10 predictors listed here. 

Variable Spatial 

Component 

POD FAR BIAS HSS 

Min Daily Temperature 

Advection (850 mb) (K s-1) 

Max 0.612 0.402 1.024 0.268 

Mean Daily Surface CIN (J 

kg-1) 

Mean 0.659 0.341 1.000 0.375 

Min Daily Vorticity 

Advection (500 mb) (s-2) 

Mean 0.647 0.267 0.882 0.455 

Max Daily Vorticity 

Advection (500 mb) (s-2) 

Max 0.671 0.250 0.894 0.487 

Min Daily Surface MUCAPE 

(J kg-1) 

Mean 0.682 0.247 0.906 0.500 

Mean Daily Vorticity 

Advection (500 mb) (s-2) 

Max 0.694 0.244 0.918 0.511 

Mean Daily SCP Mean 0.706 0.241 0.929 0.523 

Min Daily Surface CIN  

(J kg-1) 

Max 0.694 0.213 0.882 0.543 

Mean Daily Surface 

MUCAPE (J kg-1) 

Mean 0.706 0.211 0.894 

 

0.554 

Min Daily Surface MUCIN 

(J kg-1) 

Max 0.706 0.189 

 

0.871 

 

0.575 

 

Nevertheless, Grams et al. (2012) does stress that certain thermodynamic parameters may 

provide relatively high levels of discrimination when comparing a significant tornado outbreak 

and a FA environment where significant severe storms did not occur. Mercer and Bates (2014) 

supported this result as well, showing warm air advection (WAA) was weaker with cold air 

advection comparatively stronger and more widespread in FA outbreak cases. This suggests that 

forecasters may have overlooked the lack of strong WAA in FA outbreak cases when 

considering other factors (e.g., kinematic variables) favorable for tornado outbreaks, leading to 

an incorrect outbreak expectation. Bootstrap confidence intervals on the mean temperature 

advection for both FAs and hits show that there is a significant difference between the two 
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outbreak types (Figure 4.1). The mean for COFs is statistically greater than that for FAs, 

signifying that past research such as Mercer and Bates (2014) was correct in its findings. 

 

Figure 4.1 Confidence intervals on the means of the minimum daily temperature advection of 

FAs and COFs (α = 0.05). 

 

Most unstable CAPE (MUCAPE) is a measure of instability that indicates the amount of 

potential energy available to the most unstable parcel of air found within the lowest 300mb of the 

atmosphere while being lifted to the level of free convection (LFC). According to Dean and 

Schneider (2008), the probability of severe thunderstorms and tornadoes increased when 

MUCAPE and 0­6 km bulk shear values were greater. The relationship of these environments to 

the performance of watches issued by the SPC were then analyzed to find that, the good area 
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percentage (the percentage of tornadoes in the issued watch versus outside of the watch) for 

tornadoes in tornado watches had a propensity to decrease as MUCAPE values fell below 1000 J 

kg­1 (Dean and Schneider 2008). This suggests forecasters do a better job of forecasting when 

MUCAPE values are high and larger uncertainty exists for tornado development in low CAPE 

environments, which are more common in the cool season. This implies that FA forecasts may 

have commonly occurred due to the interpretation of levels of MUCAPE during cooler seasons. 

Weaker tornadoes are common in low-CAPE environments during these cooler seasons across 

the Southeast United States (Childs et al. 2018). During meteorological fall and winter, 22 FAs 

occurred during this study period, with the FA outbreaks having lower average MUCAPE values 

than the COFs. Bootstrap confidence intervals on the mean MUCAPE for both FAs and COFs 

show there is not a statistical difference between cases (Figures 4.2 and 4.3). 
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Figure 4.2 Confidence intervals on the means of the minimum daily surface MUCAPE of FAs 

and COFs (α = 0.05). 
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Figure 4.3 Confidence intervals on the means of the mean daily surface MUCAPE of FAs and 

COFs (α = 0.05). 

 

In addition to the apparent importance of CAPE from the feature selection methodology, 

CIN also was revealed as an important distinguishing characteristic of FA environments. While 

CIN, in general, is thought to inhibit convective activity and thus reduce the probability of severe 

storms, in some cases, enhanced moisture and/or diurnal heating overcome the CIN, and result in 

a greater than baseline probability of a storm reaching severe strength (Davies 2004). Thus, in a 

FA context, elevated CIN coupled with marginal synoptic-scale vertical forcing may have led a 

forecaster to anticipate convection that never materialized (hence a FA). According to the 

confidence intervals completed on the means of the FAs and COFs for each of the CIN 
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predictors, those intervals overlap, which concludes that the difference in means between groups 

is not statistically significant (Figures 4.4 – 4.6). Since there is no significant difference in the 

average values between outbreak types, this confirms that CIN values may have led a forecaster 

to predict convective storms that never occurred. 

 

Figure 4.4 Confidence intervals on the means of the minimum daily CIN of FAs and COFs (α 

= 0.05). 
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Figure 4.5 Confidence intervals on the means of the mean daily CIN of FAs and COFs (α = 

0.05). 


