Object itineraries of metal artifacts from the Stark Farm Site Complex (22OK778)

Madeleine Marie Hale
Mississippi State University, mmh754@msstate.edu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation
Hale, Madeleine Marie, "Object itineraries of metal artifacts from the Stark Farm Site Complex (22OK778)" (2023). Theses and Dissertations. 5885.
https://scholarsjunction.msstate.edu/td/5885

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.
Object itineraries of metal artifacts from the Stark Farm Site Complex (22OK778)

By

Madeleine Marie Hale

Approved by:

Shawn Lambert (Co-Major Professor)
Edmond A. Boudreaux III (Co-Major Professor)
Darcy Shane Miller (Committee Member)
Molly K. Zuckerman (Graduate Coordinator)
Rick Travis (Dean, College of Arts & Sciences)

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Arts
in Anthropology
in the Department of Anthropology and Middle Eastern Cultures

Mississippi State, Mississippi

August 2023
This thesis focuses on creating a deeper understanding of European-made metal objects uncovered at a Late Mississippian period site by using an object itinerary theoretical framework. This theory allows for objects to be understood and analyzed without bias as it acknowledges Indigenous and archaeological perspectives by considering the many different contexts an object moves through. I apply this theory to these European-made metal objects that were transformed and used by the Chicasa as a way to introduce a more collaborative and holistic approach to the other analytical methods being used at Stark Farm (22OK778). This process was completed by using a variety of methods, from statistical analysis to thorough literature review, to investigate the different interactions and stoppage points that the objects have traveled along and through.
DEDICATION

This thesis is dedicated to my wonderful family, friends, committee members, professors, and coworkers who have provided endless support and encouragement during my time at Mississippi State. I could not have completed this work without all of you.
ACKNOWLEDGEMENTS

I would like to acknowledge that my ability to attend Mississippi State University is because of the loss of life and land that was sustained by the Indigenous communities who have their Homelands in this area. These are the Chickasaw Nation, Choctaw Nation of Oklahoma, Mississippi Band of Choctaw Indians, and Jena Band of Choctaw Indians. I would also like to thank Charles Cobb, James B. Legg, Steven D. Smith, Chester B. DePratter, and Brad R. Lieb for their expertise and instruction with the SEAC poster that was created out of select portions of this thesis. The 2023 Chickasaw Explorers were also instrumental in keeping me inspired to complete this work and I am so thankful to have met every one of them. Thank you to the wonderful faculty and staff that I have interacted with at MSU for the last 2 years. I appreciate all of you more than I can say. Finally, thank you to my co-major professors, Shawn Lambert and Tony Boudreaux, and committee member Shane Miller for their guidance and support, along with the endless opportunities they have provided for me.
TABLE OF CONTENTS

DEDICATION ... ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER

I. INTRODUCTION .. 1

II. BACKGROUND ... 3

 Archaeological Investigations and Material Culture .. 4
 Soto and European Material Culture ... 5
 Spanish Expeditions ... 6
 Chickasaw Connections to Stark Farm ... 6
 Theoretical Approach: Object Movement and Agency .. 9
 Object Agency: Background ... 9
 Object Agency versus Chaîne Opératoire .. 10
 Object Itineraries as a Decolonizing Approach .. 13

III. METHODS .. 15

 Question #1 ... 15
 Question #2 ... 15
 Question #3 ... 16
 Question #4 ... 16
 Question #5 ... 17

IV. OBJECT ITINERARIES, RESULTS ... 19

 Interaction I – Place of Manufacture .. 20
 Interaction II - Trading/Exchange Locations ... 23
 Interaction III - Archaeological Context ... 26
 Interaction IV - Indigenous Meaning: Chickasaw Connection to Ancestry 30
 Interaction V - Archaeological Meaning: Form/Function 31
 Interaction VI – Curation .. 35
V. DISCUSSION...40
VI. CONCLUSION ...43
REFERENCES ...45
APPENDIX
A. TABLE ..51
B. MAPS/FLOWS...56
C. STATISTICS ...60
D. IMAGES ...66
LIST OF TABLES

Table A.1 Metal artifacts from Stark Farm used for spatial analysis ..52
Table A.2 Modified versus not modified chi-square test result. ...53
Table A.3 Artifact type chi-square test result ..54
Table A.4 Artifact material chi-square test result. ...55
LIST OF FIGURES

Figure B.1 Framework created to explore object itineraries at Stark Farm.57
Figure B.2 World map for viewing object interaction sphere spatially..58
Figure B.3 Map of Stark Farm site showing metal artifact locations with excavation units. ..59
Figure C.1 Spatial clustering results from R Studio...61
Figure C.2 Box plot results from R Studio..62
Figure C.3 Modified versus not modified difference between clusters...63
Figure C.4 Difference in artifact type category between clusters...64
Figure C.5 Difference in artifact material category between clusters ..65
Figure D.1 MD99, Cannonball ...67
Figure D.2 MD20, Horseshoe with bent edges...68
Figure D.3 MD18, Ground knife blade...69
Figure D.4 MD21, Celt modified from axe head..70
Figure D.5 MD05, Replica groundstone celt..71
CHAPTER I
INTRODUCTION

This study uses object itineraries-an agency-based theoretical framework that emphasizes the motion and interaction of objects as they move and interact with people, places, and things-to investigate the life histories of European-made metal artifacts from the Stark Farm site (22OK778), a sixteenth century Chicasa site, in Oktibbeha County, Mississippi. These objects were made and used in many cultural and spatial contexts that connect persons and things in networks from when they were used, distributed, and transformed in the past and the present. It becomes easy to view these objects as mundane tools used in domestic contexts. Yet, these artifacts have complex itineraries, as they were manufactured in Europe, utilized by the Hernando de Soto expedition, transported across the ocean to be traded with and used and transformed by Indigenous communities and reinterpreted by present-day archaeologists and Indigenous groups (Cobb et al. 2021:579). The Chicasa, the Indigenous group who interacted with the Soto expedition, modified some of these metal artifacts to better suit their needs. As the artifacts move through different contexts, they continue to contribute to a greater understanding about Indigenous-colonizer relationships and interactions in the sixteenth century and beyond.

I use object itineraries to understand how the modified metal artifacts at Stark Farm moved from Spanish to Indigenous contexts through the social flows of different agential experiences and meanings in the past and focus on how meanings are transformed during contemporary engagements with the same objects. “An objects’ itinerary is not divided into past
and present engagements but continues into the future, allows us to address both how heritage is talked about among different communities of actors, as well as what heritage does to produce effects in the world” (Bauer 2021:6). This thesis thus examines moments of reactivated meaning in the past and the present as important historical trajectories of Spanish-made metal objects, that speak to the movement and interaction of these objects among a network of different groups to better understand why those meanings are being assigned and what that means for our interpretation of them.
CHAPTER II
BACKGROUND

The Mississippian period (A.D. 1000-1600) in northeast Mississippi and adjacent parts of Alabama is characterized by the existence of mound centers or chiefdoms (Blitz 1993: Fig. 1). These chiefdoms included small settlements surrounding a civic-ceremonial center, that sometimes had a platform mound. The transition from the Late Mississippian period to the Early Contact period is characterized by concentrated archaeological sites in Lowndes, Clay, and Oktibbeha counties. Specifically in Starkville, the widespread, dense concentration of Late Mississippian-to-Early Contact sites has been referred to as the Starkville Archaeological Complex (SAC). Investigations of the SAC note that artifacts found in the area included both ceramics, tempered with live shell, and European items, such as glass beads and metal tools (Johnson et al. 1991). By the mid to late seventeenth century, it appears that most settlements in Lowndes, Oktibbeha and Clay counties had largely been abandoned. The same timeframe of abandonment for the southern Black Prairie correlates (ca. A.D. 1650) with a dense concentration of settlements that appear further to the north, near Tupelo. This is what has led to the theory that Chickasaw ancestors migrated from the southern Black Prairie to the north during the sixteenth and seventeenth centuries (Boudreaux et al. 2019).

The SAC is a dense cluster of sites in and around Starkville, Mississippi (Johnson et al. 1991). Potentially the largest of three polities in the area, Chicasa sat somewhere near modern Starkville (Clark 2017). The site referred to as Stark Farm is thought to represent a small
settlement associated with the larger polity of Chicasa (Clark 2017). Work at Stark Farm began in 2015 when the Chickasaw Nation conceived a long-term project to identify ancestral sites in their traditional territory in northern Mississippi (Cobb et al. 2021). The Stark Farm cluster was documented during a cultural resources management survey that yielded ceramic types dating broadly from the Late Mississippian through Early Contact period (ea. AD 1400s-1600s) (Cobb et al. 2021). It was determined through further archaeological investigation that Stark Farm is a part of a dispersed town spread across the substantial upland prairie ridge system.

Archaeological Investigations and Material Culture

Archaeologists have recovered metal objects made from copper, lead, copper/lead alloy, iron/wrought iron, and brass from Stark Farm that are probably of sixteenth century origin (Cobb et al. 2021; Legg and Smith 2020). There are a few attributes from this assemblage that stand out among other sites in the Southeast from the same period. The sheer abundance of metal artifacts at this site is the first of these differences. The only places that are expected to have this amount of metal artifacts are those communities or outposts that were established by Europeans in the 1500s (Cobb et al. 2021: 579). Secondly, the abundance of artifacts is limited to Stark Farm, which is confirmed by extensive metal detecting at several surrounding SAC sites without success (Cobb et al. 2021; Legg and Smith 2020). Thus far, no contemporaneous burials or cemeteries have been found, so there have been no objects found associated with burial contexts.

The artifacts are distributed widely throughout the portion of the site (22OK778) that has been metal detected (see Figure B.3). Finally, it is widely assumed that most European metal artifacts found at sixteenth-century Indigenous sites are deposited intact and only slightly modified, if at all (Berman and Gnivecki 2019; Mathers 2019). This is not the case at Stark Farm though, as many metal artifacts in the assemblage have some evidence of reworking. I also argue, and will
discuss later, that even if these objects were not physically altered, their agency was completely transformed as they entered Indigenous contexts.

Soto and European Material Culture

Hernando de Soto already was a famous for his exploits in Nicaragua and the Yucatan peninsula by the time he led an entrada into what would become the American Southeast. He entered through Tampa, Florida with over 600 individuals and tons of equipment. De Soto and his men never set up any permanent camps and their stays with Indigenous communities were brief, lasting anywhere from overnight to a few months during the winter (Cobb et al. 2021: 573). This has made it difficult to pinpoint his journey through archaeological evidence. This makes Stark Farm even more important as it holds clues about Indigenous-Spanish interactions. The dwindling force arrived near Starkville in December of 1540 and planned to stay until the spring of 1541. After striking an agreement with the Chicaca leader, De Soto was allowed to keep his troops there until the winter was over (Hudson 1997; Knight et al. 1995). The Spanish entrada quickly alienated their hosts and there was a revolt in March 1541 (Knight et al. 1995). The Spanish had demanded hundreds of burden bearers just before the expedition was supposed to leave in the spring, and the Chicaca were fed up with the continued Spanish abuse and dependency on them. Unprepared for the surprise attack, the Spanish suffered great losses to their men, livestock, and equipment (Knight et al. 1995). Most of the Spanish men escaped but due to the brief yet violent nature of the skirmish, a significant number of supplies were captured or destroyed (Cobb et al. 2021). It is still unknown whether Stark Farm was the site where the armed conflict took place or if it represents another upland settlement where European goods were distributed afterward.
Spanish Expeditions

Information about the material culture associated with the later part of the sixteenth century, and specifically with De Soto, comes from the documentary record of sixteenth century Spanish expeditions into the North American interior and artifacts from archaeological sites that have been attributed to that era (Waselkov 2009: 94). The documentary sources often pay closer attention to recounting weaponry and armor instead of more mundane objects, such as clothing or tools. Body armor, especially helmets and chain mail, appear alongside other pieces of equipment for battle, such as shields, swords, lances, daggers, and crossbows. Spanish soldiers also carried Biscayan type axes which appear quite a few times in the assemblage at Stark Farm (Waselkov 2009: 98). The Spanish also introduced animals to the region such as horses, hogs, and mastiffs. The horses were particularly important as they were one of the keys to Spanish military success (Waselkov 2009: 95). They could also be used to pack equipment and were butchered when necessary. As a result, horse equipment, such as iron horseshoes and supplies of iron for making stirrups and saddlebows, figured prominently in the documentation. This iron could also be repurposed into other objects and eventually, after going years without a resupply, it seems that the Spanish eventually ran out (Waselkov 2009: 96). While none of the documentary evidence is comprehensive, it is a good starting point for associating sites with Spanish interaction and provides a look into the mindset of the Spanish regarding the goals of the North American expedition.

Chickasaw Connections to Stark Farm

In the Chickasaw origin story, the Chickasaw and Choctaw were unified as one large Tribe until two brothers who were leading a migration east, Chacta and Chicsa, were separated after crossing the Mississippi River and eventually selected different homelands (Paul 2003;
Warren 1904). Chicsa and his people settled in northeast Mississippi, near the Tombigbee, while Chacta settled in southern Mississippi (Paul 2003; Warren 1904). Along with the origin story, there are also numerous ethnohistorical accounts that show the Chickasaw did separate from a larger social entity at some point in their history (Paul 2003). Folklore and ethnohistorical narratives about Chickasaw origins reveal that the “Chickasaw, existing as a smaller and separate body of relationships, created specific modes of survival and adopted purposive social, cultural and political practices that affected their population and broader history overall” (Paul 2003: 50). These social, cultural, and political practices allow the Chickasaw to “adopt, absorb, and integrate” different people, practices and material culture into their identity and history with relative ease (Paul 2003: 51). This aspect of Chickasaw cultural identity can be identified at Stark Farm in the ways that European metal goods were adopted and adapted to fit with Chickasaw lifeways. At the beginning of European contact in the sixteenth century, Chicasa was a chiefdom in present-day northeast Mississippi. Archaeological and ethnohistorical resources say that the people living at Chicasa are likely ancestors of the present-day political and social group known as the Chickasaw Nation (Ethridge 2010).

In 1682, a French expedition party encountered the Chickasaw and in 1685 the British had established a permanent post in the area and trade commenced between the two (Gibson 1971; Paul 2003; Sultzman 1999). The Chickasaw continued to live in northeastern Mississippi and were involved in military operations with the British until the end of the Revolutionary era and they were left enemies to both the United States and the Spanish (Paul 2003). A Chickasaw-Spanish treaty signed in 1784 pledged fidelity to the king of Spain and in 1786, the Treaty of Hopewell marked the beginning of relations between the Chickasaw Nation and the United States (Paul 2003). After war with the Creek Nation from 1793-1798, that was supported by the
United States, the Chickasaw had ended Creek raids against American traders and the Spanish lost their position of strength in the east (Paul 2003; Gibson 1971). For years, the Chickasaw accommodated American treaties of cession in the hopes that it would temper American ambition and stay off their radar but in 1830, President Andrew Jackson pushed the Indian Removal Act through Congress (Paul 2003). The Chickasaw thwarted removal efforts in 1830, 1833, and 1834 but agreed to a “proposal” from the United States government in 1837 that began removal to holdings in Indian territory in south-central Oklahoma (Paul 2003). Upon their arrival, the Chickasaw were separated across five relocation camps and little consideration was made by relocation officials to maintain clan and family networks. This had a detrimental effect on Chickasaw unity, combined with financial woes and hostilities from other Indigenous groups in the area (Paul 2003; Gibson 1971). The forced removal and migration from their homeland marks the end of one chapter of Chickasaw history and the next begins with the struggle to preserve and adapt cultural practices in the reservation setting.

The period of early European contact between 1540 and 1715 is easily distinguishable in the archaeological and documentary record because of the large-scale disturbances in the Mississippian world that are related to European colonialism (Ethridge 2010). The reorganization and restructuring that occurred in Indigenous communities during this time is a result of these disturbances, and more broadly the collapse of the Mississippian world, is part of the transformative history of the Chickasaw Nation (Ethridge 2010). The Chickasaw have continually adopted and adapted to fit the constraints of their situation. Viewing the Mississippian world collapse as a “piecemeal disintegration and reorganization” (Ethridge 2010) allows for a more nuanced understanding of how the Chickasadapted European material culture
into their own and this background may help understand the significance these modified objects may hold for the Chickasaw Nation today.

Theoretical Approach: Object Movement and Agency

Instead of viewing an object as static and attempting to discern its past use in a singular context, this thesis employs an object itinerary theoretical framework that allows for closer interaction and interpretation between the many different meanings that can be ascribed to an object from its creation all the way through its presence in modern research objectives or contemporary Indigenous contexts (Joyce 2015; Joy 2009). In the case of these objects from Stark Farm, their exchange of meaning and movement is not dictated by a linear development and manufacture of technology, but by social and cultural processes that are constantly renegotiating how an object is used and perceived. The inclusion of contemporary Indigenous contexts allows the renegotiation of object meaning and use to be understood past the traditional “end” of the life-history by considering the research, curation, and modern perception to be included in the post-depositional processes.

Object Agency: Background

Object agency is an important component to understand when analyzing material culture. The definition of agency is usually understood as “the socioculturally mediated capacity to act” (Ahearn 2001: 110). This definition is not restricted to just as humans it could include nonhuman things, such as pottery spirits, machines, signs, collective entities (ancestors, corporations, social groups), or your childhood pet rock (Haskins 2006: 74). This definition is important because it remains deliberately relative in order to account for varying notions of social action (Haskins 2006). Arjun Appadurai (b. 1949) specifically framed this as a process of commodification and
decommodification, although ‘commodity’ is a catch-all for numerous identities (i.e., gift, talisman, artwork, heirloom, ancestral legacy, memento). Appadurai’s edited volume from 1986, *The Social Life of Things*, lays the framework for objects to be understood as agents with their own life history, but it still relies on the assumption that objects exist as commodities in a capitalist system. This framework inspired new studies that focused on determining how objects have agency by understanding the many transformations they undergo during their ‘life’.

Object Agency versus Chaîne Opératoire

Some who skim this object agency approach may confuse its utility with a more linear processes; for example, *chaîne opératoire*, which emphasizes object change through time and space by focusing on the effect of moments of meaningful change beyond just the mechanisms by which the change happens. *Chaîne opératoire*, in this application, refers to the sequence of actions involved in the production of an artifact that form a raw material into a usable artifact (Martinon-Torres 2002). Unlike approaches that present tool production as a byproduct of human adaptation to the environment and only address the description and superficial examination of the end product, *chaîne opératoire* does put an emphasis on every stage of tool production, including the addition of the human being as an agent of production (Martinon-Torres 2002). This takes the form of an “ordered train of actions, gestures, instruments or even agents leading the transformation of a given material towards the manufacture of a product” (Martinon-Torres 2002: 33). This approach does consider the effect that depositional and post-depositional processes have on the life-history of an object, acknowledging that the conceptual chain does not end with the finished, manufactured product. What distinguishes object itineraries from *chaîne opératoire* is not just the lack of emphasis on a linear structure of object movement, but also its ability to consider contemporary Indigenous ways of knowing and agential potential within
archaeological interpretations. This being said, the chaîne opératoire approach did allow archaeologists to historize objects and help lay the foundation for studies of social flows of movement.

In response to the rising popularity of object agency-based theory, there arose a new understanding of the malleability of objects and the different ways that they might be perceived. In *Art and Agency* (1998), Alfred Gell (1945-1997) describes this as an object’s ‘instrumentality,’ or, in his new use of the term, their ‘agency’ (Haskins 2006: 75; Gell 1998). This definition of agency is “the ways in which they stimulate an emotional response and are invested with some of the intentionality of their creators” (Haskins 2006: 75; Gell 1998). While Gell’s theory relates specifically to art, it can be applied to all forms of material culture. Gell states that things are made “as a form of instrumental action;” a thing is produced to influence the thoughts and actions of someone else (Haskins 2006; Gell 1998). This theory relates specifically to objects that do not have an identifiable function and were created for purely aesthetic purposes, even they can act upon the world and the people that interact with them. Regarding an object made with a specific purpose, like a tool, this theoretical framework would still apply as it seeks to show how material objects “embody complex intentionality’s and mediate social agency” (Haskins 2006: 75; Gell 1998).

An object itinerary framework rejects a linear view of object history and “emphasizes the movement and interaction, the fragmentation and accretion, of objects moving through time and space” (Lambert 2021: 222). Itineraries follow the movement of objects through time and space as they interact with different social contexts and have meaning given and taken away. Each of these movements creates new “meshworks” or social flows of meanings as they encounter new people, places, and things. Itineraries are thus the routes by which objects circulate in and out of
places where they come to rest or are active and “extend backward to incorporate the sources from which materials came and forward to incorporate the conversion of wholes into fragments or assemblages” (Joyce 2015: 29). To illustrate the application of object itinerary framework in the archaeological record, I present two case studies that exemplify how this can be applied.

Southeastern archaeologists are beginning to utilize an object itinerary framework to better understand the agential power of objects’ movements. Lambert (2021) used object itineraries of Spiro Engraved vessels to show how the changes seen in vessels and imagery affect the circular relationship between iconographic meaning and knowledge as they move through different networks. Lambert combined chemical, stylistic, and iconographic investigations to better understand important aspects such as their history, production, how they were used, and their movement across the pre-Columbian Caddo world. Together, these aspects offer a basis for understanding how the meaning of Spiro Engraved vessels is reshaped by how they were used in the past and present (Lambert 2021). These meshworks are what form the object itineraries, which are used to investigate “the circulation, transformation, and consequentiality of Spiro Engraved images as they cross into various contexts between two diverse Caddo areas” (Lambert 2021: 220). To make these determinations about origin, mobility, and acquisition, Lambert discusses the results of stylistic and geochemical sourcing analyses which show how imagery moves through time and space.

In another example from the Southeast, Randall and Gilmore (2018) use object itineraries to discuss the archaeology of Archaic period hunter-gatherers—a period of material culture that has typically been regarded as “mundane” or “everyday” (Randall and Gilmore 2018). Specifically, they focus on containers made from clay or marine shell “whose use is often presumed to reflect the processing of consumables for everyday fare” (Randall and Gilmore
The authors argue that any account or assumption of material culture as “mundane” or “everyday” must consider the ways that object is imbued by socially poignant moments that occur throughout its life. For example, while a vessel may be used for storage and thus considered utilitarian, archaeologists must consider their importance as a family heirloom or otherwise—in this way the “mundane” object is imbued with meaning that cannot be interpreted by exclusively examining its function. These vessels are used to highlight the idea that neither broadly construed social context (e.g., every day and extraordinary) can be understood without the other and that it is extremely difficult to divorce the meaning imbued by the person from the object.

Object Itineraries as a Decolonizing Approach

The use of object itineraries to understand the movement of material culture is a uniquely decolonizing approach because it acknowledges the agency of the object to act and be acted upon while incorporating voices from all stakeholders (Snickare 2022). Archaeology, being based in Western knowledge systems and methodologies, has a strongly colonial history that privileges the material, scientific, and observable over the spiritual, experiential, and unquantifiable aspects (Atalay 2006: 280). Traditional studies of material culture tend to leave out important voices and experiences of the people connected to the objects in trying to focus on the quantifiable aspects. An object itinerary, however, takes all these aspects into account to understand how context is a driving force in how an object is used and viewed by the people in the past, present, and future.

A decolonizing approach to archaeology also seeks to move toward stewardship responsibilities that do not solely benefit archaeologists but allow Indigenous communities to maintain rights and responsibilities over “human and material remains and to the knowledge, memories, and spiritual power that are intimately tied with the places and materials studied by archaeologists”
(Atalay 2006: 280). This is another place where object itineraries are important to the understanding of material culture, as they consider what happens to an object after it is uncovered by an archaeologist, like being placed in curation boxes, on display in museums, viewed as a knick knack in a China cabinet, or empowering current Indigenous knowledge. This thesis thus seeks to better understand the contemporary context of Stark Farm metal objects by determining how the Indigenous and archaeological contexts they have existed in are affecting their curation and meanings.
CHAPTER III

METHODS

While the final results of this thesis are presented as an object itinerary of metal artifacts, a few research questions were first isolated in order to build a basis of knowledge with which to create the itinerary. This section states each research question and how they were answered according to the methodology that was determined for completing a successful object itinerary.

Question #1

Where are these Spanish-made objects being manufactured and what are their functions in these local contexts?

Research Question 1 is answered with a historicization of Spanish-made metal artifacts, spanning from the metallurgical process to the lists of objects typically packed by sixteenth century Spanish expeditions. This involved researching different chronicles of Spanish expeditions, especially De Soto’s, to better understand what was being packed and why.

Question #2

Once these European-made metal objects reached Stark Farm, are Indigenous people altering the objects and/or patterns in the ways in which they were distributed?

- Does understanding the movement and distribution of these objects within different cultural and spatial contexts give a more nuanced understanding of Indigenous life during the Early Contact Period?
To answer Research Question 2, I reviewed ethnographic/ethnohistorical records to understand the history of trade and exchange of sixteenth century Spanish-made materials with the Chicasa. I also used previously completed artifact analysis and archaeological research, included in site reports, journal articles, and book chapters, to understand how often modification of European materials is present and whether it results in artifacts that are more similar in form and function to traditional Chicasa material culture. To understand how the movement and distribution of these objects within different and spatial contexts provides a more nuanced understanding of Indigenous life, I conducted spatial analysis and k-means clustering with data from the metal detector survey to show how objects are clustered at the site. These clusters are then associated with features identified through magnetometer survey or excavation to determine connections between clusters, specific artifacts in those clusters, and those features.

Question #3

Now that these objects have been taken out of their Indigenous depositional contexts, how have curation practices and scientific research altered the meaning of these objects?

To answer Research Question 3, understanding the meanings of these objects in archaeological contexts, I reviewed where these collections are being curated, by whom, and what research questions they are being used to answer. These factors all influence how these objects are being reinterpreted by the archaeological community.

Question #4

Today, these objects are culturally and historically significant to the present-day Chickasaw. What meanings do they currently attribute to these objects and have those meanings changed within a contemporary Indigenous worldview?
To answer the Research Question 4, understanding the meaning of these objects in a contemporary Indigenous context, I started the IRB approval process through MSU to ensure that I did not need approval. The set of questions I created to conduct interviews with Chickasaw individuals are meant to help understand the present-day Chickasaw perceptions of modified European-made material culture. The goal of the interview will eventually be to discuss their personal view of what these objects mean currently and how their meanings may have changed over time. The schedules of individuals are Chickasaw Nation who were selected to be interviewed did not align with the timeline for thesis so answers will not be included in this iteration. The list of questions created for the interview are as follows:

1. How much previous knowledge do you have about European-made material culture in the archaeological record of the Chickasaw?

2. What does it mean for you, personally, to see modified European-made material culture in the archaeological record of the Chickasaw?

3. Do you know of any oral-historical accounts of European-made objects being modified and used by Chickasaw ancestors?

4. Are European-made objects in Chickasaw material history viewed differently because of their origins?

5. Do you have any recommendations for how European-made objects should be curated or displayed in associated with other pieces of Chickasaw material culture?

Question #5

How does an object itinerary approach promote a more nuanced understanding of the meaning and influence of Stark Farm objects from Early Contact to Contemporary periods?
Research Question #5 is answered with the results of the first three research questions, as they will combine perspectives from archaeologists and the Chickasaw Nation to understand the complex movement and the objects’ malleability of meaning as they move into different itineraries. These perspectives are not typically combined and doing so creates a more pragmatic approach that allows objects not to be perceived as static but as a part of all flows of life through their production, use, transport, deposition, archaeological curation and research, and past and present-day Indigenous ways of knowing and being. I will show how these objects have helped shape new practices, understandings, and social relations and how these itineraries have profoundly shaped and reshaped their meanings in the recent past.
CHAPTER IV

OBJECT ITINERARIES, RESULTS

The results of this thesis are encapsulated in an object itinerary that showcases how movement and interaction affect the perception, both culturally and archaeologically, of an object. At Stark Farm, the modified metal objects play an important role in understanding the relationship between the sixteenth century Chicasa and Spaniards through material culture and how their agency still influences people today. When analyzed in sequence, the itineraries of these objects provide a more nuanced, holistic understanding of Early Contact Period interaction in the Black Prairie region. See Figure B.2 in Appendix B for a depiction of the spatial interaction spheres that these objects exist in.

The literature review conducted of the movement of Spanish metal artifacts allows for fuller contextualization of the meanings that were attributed to these metal objects. With this context in mind, the cluster analysis was able to not only determine spatial patterning but also theorize about why certain objects ended up in those locations. The two separate clusters, focused on two separate ridgetops, contain similar types, materials, and number of objects which asserts that materials were allotted or used in similar ways between households. This analysis aligns with previously theorized patterns of living and European object distribution (Brain 1975; Moore 1993; Hally and Smith 2011). Based on this analysis, questions were created for interviews with contemporary Chickasaw sources to understand how Tribal members today relate to these objects and what changes in perception they have gone through. These questions
represent an important part of the object itinerary which is involving current Tribal perspectives as a part of the ever-changing trajectory of an object. The questions were not used in this iteration of the thesis as the timeline for completion did not align with the schedules of those who were chosen to be interviewed. The final review of curation practices and archaeological research methods provides focus on an oft forgotten post-depositional process. The way that these objects contribute to research efforts and educate the public affect their itinerary in the same way that taphonomic processes do, although they may be less easily noticeable. As far as future contributions, I hope to add to this research by including the results of pXRF analysis, which are not yet available, and complete interviews with Chickasaw Nation members using the list of questions created.

My thesis presents a case study where objects have shifted their meanings as they moved into different spatial and cultural contexts, and in doing so highlight the importance of recognizing the ongoing movements of Spanish-made things at Stark Farm as central to understanding their complex and often overlapping histories (see Figure B.1). These movements, social flows (e.g., Wallis 2015) or “interactions”, from manufacturing locales and use in Indigenous contexts to how they are transformed in contemporary contexts are helpful to identify because they lie at the heart of how small metal objects can be imbued with significant overlapping meanings and histories.

Interaction I – Place of Manufacture

There are specific objects associated with the Spanish that have been key indicators of Spanish trade or presence at Indigenous sites. At Stark Farm wrought iron objects are present in many forms, from axe fragments to horseshoes to the especially numerous “wrought iron fragment” (Cobb et al. 2021). Due to the adaptability of wrought iron and its widespread use,
“Hand-wrought iron objects are notoriously difficult to identify chronologically; it can also be difficult to identify their function” (Waselkov 2009: 99). There are two solutions to this problem though, archaeological context and chemical makeup. Comparative metallurgical analysis of Spanish colonial, French colonial, and early American iron does show a difference in chemical composition between the three, meaning that the earlier De Soto-period artifacts can be distinguished from the iron tools of other periods (Waselkov 2009). The metal objects from Stark Farm have undergone pXRF analysis at the South Carolina Institute of Anthropology and Archaeology to establish a distinct chemical signature that will be used for comparative metallurgical analysis in the future. While these results will not be available in time for the submission of this thesis, this work represents an important step in the process of correlating the archaeological context of these objects with a chemical signature that supports a sixteenth-century Spanish origin.

Following successful exploits in Cuba, De Soto returned to Spain and proposed a Floridian entrada to the Spanish crown in 1537 under the conditions that he would “fund it himself, turn over a fifth of any extracted wealth, and complete the exploration within four years” (Blanton 2020: 2). Soto used his personal fortune to purchase ships, supplies, and pay a large force of men before setting off from Seville in 1536. As the expedition was supplied out of Seville, it can be inferred that when pXRF results are available, the metal objects found at Stark Farm will have a similar chemical composition to metal objects created in sixteenth-century Seville. This will be an important piece of information for further connecting the Stark Farm objects to the Soto expedition.

Many of the documentary sources (and arguably archaeological attention) of objects from this expedition include recounting weaponry and armor instead of more “mundane” objects, such
as clothing or metal tools. Body armor, especially helmets and chain mail, appears alongside other pieces of equipment for battle, such as shields, swords, lances, daggers, and crossbows. Spanish soldiers also carried Biscayan type axes which appear frequently in both Spanish residential and Indigenous contexts (Waselkov 2009: 98). By sheer volume, it is agreed by most chronicles that the most abundant artifacts carried by the expedition were clothes, blankets, and other varieties of cloth (Waselkov 2009: 98). As Spaniards moved through the Southeast, their European clothing wore out or was lost, and it was replaced with clothes obtained from Indigenous groups made from skins, furs, and mulberry bark cloth (Waselkov 2009: 98).

While none of the documentary evidence is comprehensive, it is a good starting point for associating sites with Spanish interaction and provides a look into the mindset of the Spanish regarding the goals of the North American expedition. Throughout the journey, the De Soto entrada interacted with a multitude of Indigenous communities, such as the Chicasa in northeast Mississippi and the Coosa in northwest Georgia (Hudson 1997). During some interactions, European goods were traded for food, supplies, or safe passage, while in other cases European goods were obtained by Indigenous communities after battles between the two groups (Hudson 1997).

Lastly, the metal objects on which I focus at Stark Farm are usually labeled as European-made artifacts. However, the use of an object itinerary framework highlights that these “mundane” artifacts were not simply artifacts to be understood in one context, but they were active, engaged things that lived many-faceted lives as they flowed and interacted with different people, places, and things through time and space. As we uncover more information about the origins and subsequent movements of Stark Farm objects in the past, present, and future, the more empowered these objects become and more influential they become in archaeology.
Interaction II - Trading/Exchange Locations

The presence of European-made artifacts at Indigenous archaeological sites across the Southeast has been explained by archaeologists through multiple scenarios that highlight the different ways in which this interaction was occurring. In the case of Stark Farm, it is documented that De Soto brought supplies on the expedition to use as trading goods or gifts but there is also evidence of battlefield mining which complicates the question of how these objects transitioned from European to Indigenous possession (Cobb et al. 2021: 579). This overview will provide an explanation of a few of the most likely modes of transferal (e.g., gift-giving, trade, and battlefield mining) for the European-made metal objects at Stark Farm. This is useful for better understanding how the archaeological and Indigenous contexts of these objects are affected by their dispersal or acquisition.

Gift-giving is one of the more archaeologically discernible modes of transferal between Europeans and Indigenous people. Jeffery Brain (1975) was one of the first archaeologists to look specifically at materials from the Hernando de Soto entrada and believed that a standard “gift kit” could be identified archaeologically. This kit included glass beads and Clarksdale bells, which can be found at many sites throughout the Southeast. While not all gift-giving was accomplished through this mechanism, historical accounts frequently mention that these were some of the items included for this specific purpose. As for Stark Farm, the large number of Spanish-made objects suggests that many of these were given as gifts or through trade and exchange activities.

The most common items mentioned in the De Soto narratives are beads, mirrors, and “iron implements” (Hally and Smith 2011; Moore 1993). Wrought iron is frequently encountered at Stark Farm, both modified and unmodified, which may be a result of the mixed nature of the
modes of transferal. Along with these items, other items that appear in historical accounts that have not been found at Stark Farm are clothing items, usually preserved in the form of aglets or buttons (Beck et al. 2006). Bringing these items was an attempt by the Spanish to maximize their ability to persuade and exert political impact by presenting gifts to those who they identified as politically or socially important. For example, the De Soto expedition gave clothing, glass beads, and an iron knife to the chief of Casqui in Arkansas (Hally and Smith 2011; Swanton 1985: 55).

These formal gifts are most recognizable by their presence in elite burials (Hally and Smith 2011). At the King Site (9Fl5) in Georgia, six burials were interred with iron implements that are, along with their burial placement in the plaza, indicative of their high status as warriors and community leaders. The placement of European-made materials in high-status graves is a relatively easy way to understand the transferal from European to Indigenous ownership. There is documentation from the Spanish expedition that these gifts were given to high-status individuals who were then buried with these objects, creating a logical pathway for their transferal. At Stark Farm specifically, there have been no European-made metal objects found associated with any burials; this strengthens the hypothesis that these metal objects are being deposited in domestic contexts. While it is possible that some European gifts were redistributed among community members, the lack of prestige items being uncovered in high-status contexts supports the presence of other modes of transferal that are happening simultaneously with Spanish gift-giving practices.

Another mode of transferal was less formal trade between expedition members and Indigenous people. Although these transactions are rare in the historical documentation, the presence of lower quality European-made goods in domestic contexts asserts that this type of trade may have occurred. The reliance of Spanish expeditions on Indigenous communities for
food, shelter, and information provides an opportunity for European-made objects to be used as a form of currency. During the winter of 1540-1541, the Spanish encampment was close enough to Chicasa village sites that there were multiple instances of foodstuffs being stolen by both parties. This proximity assumes that there were other interactions happening that resulted in the transferal of European-made material to Indigenous ownership. Smaller trinkets, such as candlesticks or knives, often were traded for necessary goods. This type of transferal is easily discernible from gift-giving, as the items were likely part of the Spanish material outfit and not assessed as high-quality resulting in their widespread ownership by Indigenous community members.

The De Soto expedition engaged in multiple armed conflicts with Indigenous communities across the Southeast, with two of the most notable battles being at Mabila and Chicasa. This engagement would have provided an opportunity for warriors to take trophies from fallen Spaniards while allowing others to scavenge equipment and weapons from the encampment or battlefield (Hally and Smith 2011). Examples of this practice from other sites associated with De Soto are a complete sword looted from a burial at the King Site, a crossbow bolt from the Poarch Farm Site (9Go1) in Georgia, and complete horseshoes from the Hightower Village Site (1Ta150) (Hally and Smith 2011). These implements would have a much higher military value than what the Spaniards were willing to trade or give as gifts. It is likely that the metal objects may have come from mining the battlefield and Spanish encampment after the skirmish. This category of objects would not have been readily traded between Spaniards and Indigenous communities, as they were important for the expedition’s survival, and the proximity of Stark Farm to a known location of armed conflict supports the conclusion that this is a mode of exchange. The attack lasted only a night and the Chicasa did not face extended combative
response from the Spanish, as the ambush worked well (Knight et al. 1995). The encampment was set on fire and the men fled with their weapons (Knight et al. 1995). This presumably left a large amount of non-military-related metal objects that could be scavenged, distributed, and reworked.

While there is no definitive answer on the mode of transferal that brought these metal objects to Stark Farm, it can be assumed that a combination of these three modes, gift giving, informal trade, and battlefield mining, provided for a large quantity. Based on the distribution pattern, which will be discussed in more detail in the next section, the metal objects that have been located are not related to a “special” context and, therefore, were likely obtained through trade or battlefield mining to be distributed and used in a domestic context. These moments of trade and exchange developed new social flows that involved the active engagement between local and non-local objects and Stark Farm and Spanish people. This new entanglement thus created new meshworks that empowered Spanish-made objects used and altered by Indigenous people in new ways. From there, their agency changed and influenced people, places, and things in new ways. Future uncovering of prestige items associated with sixteenth-century Spanish expeditions may shine a light on the differences between high-status or domestic contexts at Stark Farm.

Interaction III - Archaeological Context

The four seasons of fieldwork indicate that the site has Late Mississippian and Contact period components (Boudreaux et al. 2017, Boudreaux et al. 2019). Fieldwork in 2016 investigated the northern end of the site where the presence of postholes suggest a structure was located (Boudreaux et al. 2017). Excavations were focused on four large basins, with only one of the basins being completely excavated, and continued investigating the postholes at the north end
of the site to determine whether a structure may have been located there (Boudreaux et al. 2017; Smith 2017). Fieldwork in 2018 found more architectural features that did not have a clear structural pattern identified but did uncover a cross-shaped hearth that suggests it was in an area with public and communal access (Boudreaux et al. 2019). In 2019, fieldwork focused exclusively on the northern end of the site because the presence of postholes, hearths, and other features suggest that there were one or more structures there (Boudreaux et al. 2020). Another goal in 2019 was to recover architectural and artifactual information that would be beneficial to understanding the types of activities taking place at the northern end of the site (Boudreaux et al. 2020). Prior to the 2019 field season, it was shown that “archaeological deposits at the site consist of a 20-cm thick plowzone of homogenized soil with small, broken artifacts; a 10-20cm thick bioturbated zone with larger artifacts in which the tops of features are partially visible; and the subsoil at ca. 30 cmbs in which archaeological features are clearly visible if present” (Boudreaux and Harris 2020: 8).

At the base of the plowzone, the number of artifacts increases, and features start to become more visible. The cultural deposits continue for another 10cm before subsoil was encountered at a depth of 30 cmbs. (Boudreaux et al. 2020). A source of confusion and debate during fieldwork at Stark Farm is the increase in artifact size and visibility of features that begins at 20 cmbs. One explanation is that “0 to 20 cmbs represents a more modern plowzone that was created by plowing that more thoroughly homogenized soil and broke up artifacts, while 20 to 30 cmbs is an earlier plow zone from deeper plowing that did not mix soil and break up artifacts to the same extent” (Boudreaux and Harris 2020: 8). Another explanation is that the soil between 20 to 30 cmbs has been substantially bioturbated by animals and insects and the result is the partial mixing of soils that would not break up the artifacts (Boudreaux and Harris 2020).
Along with the excavations taking place at Stark Farm, there has also been extensive metal detector survey (see Figure B.3) completed at the Stark Farm Site Complex (22OK778/779/780), other nearby sites (22OK850/22OK1170/22OK777), and multiple other locations around the Stark Farm property and adjacent properties (Legg and Smith 2020). The purpose of these surveys was to find “archaeological evidence of sixteenth century Spanish cultural contact, specifically the Hernando de Soto Entrada winter camps of 1540-1541, at the villages of Chicasa and Chicacilla” (Legg and Smith 2020: 3). The multiple field seasons have uncovered over a hundred different metal artifacts, many with modification and likely contemporaneous with the de Soto entrada.

Nearly all the metal found at Stark Farm has been recovered by systematic metal detecting, and much of it shows evidence for reworking, presumably by Native people. This research integrates the metal-detecting data with the other excavations for the first time, and it presents a spatial analysis that identifies several spatial clusters in the metal data. These clusters can be used to understand how these metal objects were interacting with the landscape and the people using them. They can also be used to see a physical manifestation of how meaning and use of these objects transformed when their context changed from Spanish to Indigenous use. Figure B.3 in Appendix B demonstrates how these two separate data sets were combined to create better understanding of how the two projects are related. Table 1.1 also shows the various materials that were analyzed for this thesis.

Maps were created in ArcMap to combine data from the excavation and metal detector surveys. These maps relate the findings from the metal detector survey to the excavation units for the first time. The artifacts were detected across an area that measures approximately 150x500 meters. The first research objective is determining whether this is a single cluster of artifacts or is
there patterning that suggests clusters. Nearest Neighbor Analysis was used to test whether the 2D array of points was clustered, dispersed, or random (Charrad et al. 2014). The 2D point array is based on the X and Y location of the artifact points on the map. The results of this test determine that the points report as clustered.

\[\text{NNI} = 0.87; \text{Z-Score: } -2.23; \text{ } p = 0.026 \]

To determine whether the 3D array of points was clustered, Moran’s I Analysis was used (Charrad et al. 2014). This test is used to determine whether the 3D array of points is clustered, dispersed, or random. The third dimension included in this test is the artifact weight. This test also reported that the 3D array is clustered.

\[I = 0.396; p = 0.0001 \]

Using the NBClust function in R (Charrad et al. 2014), ten procedures identified two clusters as the optimal solution by using X, Y, and weight. After identifying the optimal number of clusters, K-means was used to determine where these clusters were located in the 3D array (see Figure C.1). This test identified two clusters, in the northern and southern areas of the site, that correspond with areas of interest documented during the various excavation seasons (Boudreaux et al. 2017; Boudreaux et al. 2019; Boudreaux and Harris 2020). A boxplot and Wilcoxon test were used to compare weights by cluster to determine if there was a difference between the two. These tests report that there is no difference between the weights of artifacts between the two groups (see Figure C.2).

\[W = 796.5; p = 0.9034 \]

To showcase the similarities between categories of artifacts between the two clusters, broad variables were chosen to account for variation in artifact type, modification, and material. Chi-squared tests were used to determine difference in percentage of these variables between
clusters. The results of these tests for Modified versus Not Modified (see Figure C.3), Type (see Figure C.4), and Material (see Figure C.5) are listed in order in Appendix A (Table A.2, Table A.3, Table A.4).

These results lead us to infer that there are two distinct clusters on the landscape that do not appear to have differences between them. These clusters may correspond to two different household groups that were spaced out along the ridge, a pattern that is consistent with expectations of dispersed settlements in the area based on archaeological and ethnohistoric information (Cobb et al. 2021: 575; Ethridge 2010). Similarities between these two clusters regarding the amount and type of materials present suggests that both households at Stark Farm had equal access to the source of the Spanish metal.

Interaction IV - Indigenous Meaning: Chickasaw Connection to Ancestry

Chickasaw connections to Stark Farm and European-made objects are a central focus of understanding their itineraries in a contemporary world. The connection has been present in almost every step of the process, from Chickasaw individuals participating in the excavation, curation, and cultural and historical connections, so it is fitting that this aspect of the object itinerary is amplified with current calls to decolonize anthropological practice. This will include research to find ethnohistorical accounts of the objects, interviews with Tribal members to discuss what kind of significance these objects have, and an emphasis on how the Chickasaw meaning and perception of these objects can support or transform archaeological interpretations.

Object itineraries allow for indigenizing material culture in a way that goes beyond typical methods of correspondence or collaboration. Instead of understanding the object as something with a past connection to an Indigenous community, itineraries acknowledge that the connection is dynamic and present, even when the object is not in Indigenous care. The use of
oral histories, ethnohistoric accounts, and archaeological data combine to not only create more meaningful itineraries, but also to bring Indigenous perspective and connection to the forefront. Western approaches to archaeology have typically disconnected contemporary Indigenous people from the past, yet the inclusion of Indigenous interpretation has the ability to bolster archaeological data and strengthen the presence of Indigenous culture and narratives (Newsom et al. 2021).

The excavations conducted thus far at Stark Farm are a prime example of the use of contemporary Indigenous connections to the archaeological record as the Chickasaw Nation has been a driving force behind and a sponsor of the work since 2015. While Chickasaw Nation funding has allowed for many parts of the site to be surveyed, the Chickasaw Explorers Program has allowed for college-age Tribal members to be actively involved in excavations. This program is a two-week archaeological fieldwork opportunity that takes place at ancestral Chickasaw sites in northeast Mississippi. The focus of the program is to educate and train young Chickasaw students to identify and record artifacts, participate in archaeological survey and excavations, and interact closely with ancestral sites in Mississippi (Boudreaux and Harris 2020). This program has proved to be beneficial for exposing Tribal members to archaeology as a career with several students returning for multiple seasons and completing archaeological internships. The emphasis placed on incorporating contemporary Indigenous perspectives as a form of archaeological practice not only allows for more complete itineraries, but also makes the field of archaeology more accessible and equitable.

Interaction V - Archaeological Meaning: Form/Function

This section will show how the analysis of the metal objects affects the archaeological understanding of the early-Contact period in Mississippi. What can these modified objects tell us
about how Indigenous groups were reacting to the simultaneous encroachment of European presence and restructuring of the Mississippian world? This section considers both the archaeological context and Indigenous meaning to understand how these objects were being modified and used in daily life at Stark Farm.

There are 83 metal objects, made from iron, copper/copper alloy, and lead, that have been uncovered at Stark Farm and determined to be likely candidates for a sixteenth-century Spanish origin (Cobb et al. 2021: 580). Many of these objects were modified to suit Indigenous uses, but the unmodified objects found in plow-zone contexts have been posited to have been somehow incorporated into households as well (Cobb et al. 2021: 580). Their presence in the same context as modified objects along with their similar distribution pattern to modified objects supports this type of use (see Figure D.1). Military items (e.g., cannon shot and ramrod tip) are among the unmodified objects that support the presence of De Soto in the area, along with battlefield mining of the winter encampment, as it is unlikely these would have been used as trade items by the Spanish.

While there is a plethora of modified metal objects, the main categories discussed here will be iron celts, or adzes, and general cutting/scraping tools. These objects specifically demonstrate the duality of object use at Stark Farm as unusual materials were re-worked by Indigenous people without access to metal-working tools and eventually used in a broad, domestic pattern across the site. The designation of utilitarian is given to these objects based on their similarity to other objects with known uses and ethnographic information but this thesis and other research (Cobb et al. 2021) acknowledges that this is not the only meaning that was attributed to them. It is likely that their itineraries contributed to the decision to rework and distribute them.

32
The general cutting and scraping tools are all reworked from pieces of iron (see Figure D.2). To make up for the lack of metal-working tools, these objects demonstrate techniques like grinding, bending, and perforating (see Figure D.3). The modification of these objects would have been a labor-intensive process and indicates they should be viewed as possessing enough importance to those making the modifications. Iron celts, or possibly adzes, are another common type of modified, utilitarian object found at Stark Farm. Stark Farm inhabitants commonly modified these objects from Biscayan-style axes which have been identified at other sixteenth-century Spanish sites in the Southeast (Blanton 2013: 21-22; Linden 2013: 33, 35; Cobb et al. 2021: 580). The shape of an axe blade, minus the hafting eye, is a shape that encourages celt manufacture which is why they are a common choice for modification (Cobb et al. 2021). This modification is often present in the form of grinding broken edges, battering, and flattening of thick blade portions to create new edges, and removal of hafting eyes. While these axes are being formed into celt-like shapes, they do still retain a distinct style that allows them to be identified as axes (see Figure D.4).

The variation in celt type have been categorized as examples of skeuomorphs and Iberian Hybridity (Cobb et al. 2021: 581). These two concepts, representing Indigenous and European responses to hybridity from two different viewpoints, are interesting lenses to understand the multiple contexts in which these objects simultaneously exist. Skeuomorphs are described as intentional hybrids that are created from important, unusual materials which are used to replicate Indigenous forms (Card 2013; Cobb et al. 2021; Howey 2011). Two of these objects have been identified at Stark Farm; both near-perfect replicas of a traditional groundstone celt (e.g., smooth, and symmetrically ground over the whole surface) (Cobb et al. 2021: 581) (see Figure D.5).
These would have required a large source-piece of iron, and they would have been extremely labor-intensive to produce. Skeuomorphs represent an important connection between traditional forms and new materials which is displayed by the extra effort put into making a celt from a non-traditional material. In this context, the shape and material are both important but for different reasons. Iberian hybridity is described as the Spanish response to Indigenous tastes by purposefully creating variation in metal forms (Cobb et al. 2021: 582; Silliman 2015; Trigg 2020). These objects were not for Spanish consumption, but for trade or gifting and, therefore, needed to represent items that were appealing to the Indigenous communities they were interacting with. Iron barrel band strips represent a flexible source of raw-stock metal for tool manufacture that would have been easily accessible to Spanish blacksmiths (Cobb et al. 2021: 582). Barrel band celts are identifiable from their bifacially ground bits and occur at other sixteenth-century Southeast sites which suggest they were made en-masse for trade and gifting with Indigenous communities (Blanton 2013; DePratter and Smith 1980; Cobb et al. 2021: 582). The presence of these examples of Spanish hybridization at Stark Farm shows the multiple movements these metal objects traveled along and bolsters the idea that hybridity is not a linear process, where techniques and ideas move from “high to low,” but one that is done out of necessity and for multiple purposes.

Together with the results of the Stoppage III and IV, the archaeological understanding of the form and function of these objects supports the hypothesis that they were most likely associated with use in a domestic context. Although utilitarian objects categorized as unmodified and modified were analyzed in depth in this study, the objects categorized as ornamental and unknown also demonstrate similar use of Spanish materials for Indigenous forms. These categories of objects are also found distributed across the site and in contexts with unmodified
and modified, utilitarian tools. These objects were imbued with important qualities because of their movement from distant origins, which were incorporated into household use regardless of the lack of metal-working techniques or the presence of similar implements.

Interaction VI – Curation

Curation is another context through which an object moves that can transform the agency of objects and how archaeologists, museum curators, and collections managers perceive them as they interact together in new social flows of life. Instead of limiting Stark Farm objects’ agential potentials or life history when they are archaeologically uncovered, it is important to consider how the movement into curation contexts affects their agency and meaning. In this view, it allows us to begin to examine objects in more nuanced ways and whether curation is being conducted fairly and benefitting all the stakeholders. The discussion of how, where, and by whom an object is curated is just as much a part of the itinerary as it continues to affect how the object is manipulated, altered, and perceived. Understanding curation as a type of post-depositional process allows us to reject notions that objects become “static” when their perceived life history is over. The curation of an object adds an entirely new layer of context that must be considered by the curator and negotiated by the researcher or viewer.

From an archaeological perspective, the main point of curation is to benefit the production of knowledge about the past. This means that objects often sit in repositories for years while waiting to be identified as a significant part of an archaeologist’s research. This process forces these objects to become stagnant and static in a way that is at odds with the reality of their itineraries. Although they are still active components of their cultural systems and are being impacted by post-depositional processes, the archaeological perspective assumes that they have reached an endpoint where their only purpose is to contribute to the production of knowledge.
Besides the physical impact of being isolated in repositories, objects also are deemed static by archaeologists when they are named according to static descriptive and typological characteristics. While the type-variety system is useful for reanalyzing old collections or for making quick and easy comparisons of materials from multiple sites simultaneously, it also has the potential to sever connections and continuity between communities based on the presence or absence of a certain characteristic (Lambert 2022; Smith 1979; Gifford 1976). Some of the type names still used today, i.e., Spiro Engraved, have produced instances where a lack of “spatial and cultural focus have produced a false sense of cultural homogeneity” (Lambert 2022; 7). Moving away from traditional type-names is also an example of a decolonizing practice as the Indigenous communities should be included in all aspects of their study. For example, “ceramic types were named by people of European descent during the mid-to-late twentieth century without any regard to Indigenous perspectives and their connections to the material culture that archaeologists were researching” (Lambert 2022: 7), which has caused a perceived severance between people and the cultural objects they are connected to. This is not to say that type-variety system naming is not useful in some instances, but archaeologists in the twenty-first century need to be cognizant of how the production of archaeological knowledge contributes to a disconnect between the objects and the people who still have cultural connections to them.

Museums, as we know them today, are typically associated with western collecting and conservation practices that emphasize the accumulation of cultural materials for comparison, exploration, or entertainment. The idea that these values, of collecting and preserving, are a distinctly western cultural invention is untrue as “nearly all cultures keep objects of special value and meaning, and many have developed elaborate structures for storing and displaying them as well as methods for their care and preservation” (Kreps 2003: 1). Non-western models of
museums and curatorial practices have managed to escape our attention as a repercussion of the emphasis on the superiority of western, scientifically based museology and systems of cultural heritage preservation (Kreps 2003). The way this issue has presented itself in curation practices is a lack of understanding or acknowledgment of Indigenous ways of knowing surrounding the care of cultural heritage or other museological behaviors. An emphasis on western museological practices does a disservice to cultural materials as they can contort or change the context in a way that does not reflect reality. Imagine walking through a museum exhibition about Indigenous communities in North America where every article of beadwork, basketry, or stone tool has an explanation describing its creation and use, but all are referred to as “Native American.” Although technically correct, the lack of cultural knowledge of the curator has led to broad generalizations being made about objects with vastly different origins. For a viewer with little or no background, this generalization has the potential to create an entirely new itinerary for these objects where they are divorced from their cultural patrimony and viewed in a racially defined, non-western paradigm that emphasizes, even subconsciously, a unilinear evolutionary model and the categorization of modes of material culture (Gorman 2009). Therefore, the inclusion of Indigenous perspectives and practices in curation and exhibition decisions enables cultural material to maintain an identity that is significant to its community even when it is presented, curated, or researched in a different context.

The last three decades of scholarly critique of museums has contributed to the growing awareness that these non-western models still exist, have the power to decolonize the management and study of cultural heritage, and can return the power to represent their own culture to traditionally underrepresented communities (Kreps 2003). Specific to the field of anthropology, the main struggle has been the assertion that Indigenous peoples are the custodians
of their own culture and are therefore entitled to ownership of their cultural property. The most dramatic shift in power relations between Indigenous communities and collections managers was the implementation of the Native American Graves Protection and Repatriation Act (NAGPRA) in 1990. This legislation required federally funded institutions to create inventories of human remains along with funerary, sacred, and ceremonial objects which are then provided to federally recognized Tribes so these materials can be legally requested and returned. As we approach the 35-year anniversary of the implementation of NAGPRA, it has not solved the problems of ownership surrounding cultural materials but has allowed room for “…challenging the hegemony of western, scientifically based museological paradigms as Native perspectives and methods of “traditional care” have begun to be integrated into mainstream museums” (Kreps 2003: 3).

The Chickasaw Nation has been an active force in creating and rewriting their own history and national sovereignty by using museums and heritage sites to convey meaning and identity that have historically been ignored or misrepresented. The broad federal policy changes pertaining to Native Americans in the 1970s sought to increase the self-sufficiency and self-governance of Tribal communities by providing funds for widespread construction and infrastructure on Tribal lands to raise employment and standards of living (Gorman 2009; Abrams 2007: 4). This push for economic development led to the creation of museums which built collections of contemporary art and craftwork by practitioners who received funding for their work and inspired activists and scholars to use the creation of Tribal museums to critique the role of western museums in the marginalization and objectification of Indigenous materials and bodies (Gorman 2009: 58). The initial goal of these museums was
to participate more fully in the social processes which make knowledge about them to make their own knowledge valid to both an external and internal audience. Establishing their ways of knowing as valid has for Native peoples become an important part of an emancipatory or self-determining process (Erikson 2005: 31).

Through the creation of these spaces, usually referred to as “Cultural Centers” as a direct criticism of traditional museum spaces, the Chickasaw Nation has created places for community engagement, the production of cultural knowledge, and interpretation of history that embrace traditional museological tools “in the service of disrupting western narratives defining them as an indistinct, extinct cultural community” (Gorman 2003: 72). The inclusion of Indigenous voices is an important aspect for ensuring that material culture does not become disjointed from its identity and meaning while allowing for the inevitable yet simultaneous creation of a new itinerary when the object is considered by a viewer from a different context and background.
CHAPTER V
DISCUSSION

The research completed for this thesis combines multiple methods in order to create a comprehensive object itinerary of metal objects uncovered at Stark Farm. By combining multiple methods, I was able to create an itinerary that spans the different contexts that these objects have existed in and explore how this has affected their contemporary meaning. More broadly, the themes and issues discussed here have influenced the way that I will continue to conduct archaeological research in the future. This thesis not only adds to recent southeastern archaeological research, but it also emphasizes nonlinear and decolonizing approaches that are important aspects of current archaeological research.

The major contribution that this thesis makes to the Early Contact period dialogue in the southeastern United States is the use of object itineraries. So far, the only major work being completed with this theoretical framework has been produced by Asa Randall (2018), Neill Wallis (2015), and Shawn Lambert (2021). These itineraries span the Archaic, Woodland, and Mississippian periods, and they are focused mainly on ceramic imagery. The use of object itineraries of metal objects from the Early Contact period in this thesis is a representation of the way that southeastern archaeologists are beginning to utilize an object itinerary framework to better understand the agential power of objects’ movements.

Along with being an example of the use of a relatively new theoretical approach in archaeology, this research also contributes positively to the production of archaeological
knowledge. The entire process of survey, excavation, metal detecting, and analysis at Stark Farm has been an inclusive and cooperative endeavor with the Chickasaw Nation which is the basis on which this thesis is modeled. As a byproduct of an object itinerary, the production of archaeological knowledge should be beneficial for not only the academic community but also the Chickasaw community. The results discussed previously can contribute to how researchers understand the clustering of metal objects at Stark Farm and positively impact curation decisions that are made for these objects.

This work emphasizes a nonlinear approach, which is what differentiates it from more traditional archaeological methods. It is nonlinear in the sense that these objects do not have an anthropomorphic “birth” or “death” but instead move freely throughout contexts and time periods. The objects are capable of existing in multiple contexts because it is dependent upon the perception and experiences of those using, viewing, or researching them. Therefore, viewing them as linear, moving from one point to another until they are discarded, does not consider the different meanings that they pick up along the way which ultimately imbue how others perceive and negotiate them. Object itineraries are capable of considering this collection of meanings, past and present, in order to better represent the connection between people and their things.

Objects itineraries are an inherently decolonizing approach as they require at least some level of collaboration between archaeologists and Indigenous communities. Since the itinerary recognizes that an object is constantly being interpreted through new contexts, an important part of the process can be determining the modern perception of an object. This allows the archaeologist to acknowledge that an object has not “died” when it does not adhere to its past use but instead continues to be an active participant in the renegotiation of meaning happening in contemporary Indigenous communities. This approach also forces archaeologists to consider
how we are biased in our interpretation and curation of artifacts. As previously stated, everything from the way artifacts are named to the practices for curation are based in Western thought that were developed before the emphasis on collaboration and consultation with Tribes. In using object itineraries, we are able to give power back to Indigenous communities by incorporating their perspective and input as having contemporary significance. The perceived stagnancy of Indigenous communities that traditional archaeological methods have created is corrected with the use of itineraries as they enable us to look past our own biases and preconceptions and let the object speak for itself.
CHAPTER VI
CONCLUSION

In this thesis, I demonstrated how object itineraries work to show how objects move through a broad, nonlinear interaction network that continually ebbs and flows between continents and centuries where every new interaction assigns new meaning. The ongoing itineraries of Spanish-made objects are now viewed as central, not peripheral to the histories of people who used them. This approach considers how the agency of artifacts continue to influence people, not just within past networks, but how meanings are renewed, transformed, and move within a contemporary world. Until now, archaeologists usually regarded these objects as signifiers of European contact, but what object itineraries teach us is that to isolate the past from the present and future creates a static, overly Eurocentric narrative that often suppresses past and present Indigenous narratives. I also hope to contribute additional research to the Stark Farm site with the inclusion of spatial analysis. Object itineraries in the Southeast have focused mainly on ceramics (Lambert 2021; Randall 2018) so this thesis represents an expansion of their use to a different subset of material culture.

The completion of object itineraries at Stark Farm will not only be the first of its kind at this site, but also represents a decolonizing approach to archaeological research. The object itinerary allows the object room to speak for itself and remain largely free of influence from the author’s perspective. Opening the dialogue between all stakeholders is an important part of the
decolonization process so the inclusion of Chickasaw Nation perspective and research are highlighted throughout.
REFERENCES

Hogue, Homes S., and Evan Peacock 1995 Environmental and Osteological Analysis at the South Farm Site (22OK534), a Mississippian Farmstead in Oktibbeha County, Mississippi. *Southeastern Archaeology* 14: 31-45.

Legg, James B and Steven D. Smith. 2020 Metal Detecting Surveys at Stark Farms and Environ: Seasons 2018 and 2019. Report to Chickasaw Nation Department of Culture and Humanities. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia SC.

Morgan, David 1996 The Mississippi De Soto Trail Mapping Project. Mississippi Department of Archives and History, Jackson.

Snickare, Mårten 2022 Colonial Objects in Early Modern Sweden and Beyond: From the Kunstкамmer to the Current Museum Crisis. Part II, Chapter 5: Objects and their Agency and Itineraries. Amsterdam University Press, Amsterdam.

APPENDIX A

TABLE
Table A.1 Metal artifacts from Stark Farm used for spatial analysis

<table>
<thead>
<tr>
<th>MD Number</th>
<th>Material</th>
<th>Category</th>
<th>Cluster XYZ</th>
<th>Type</th>
<th>Modified or Not</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>axe</td>
<td>Modified</td>
</tr>
<tr>
<td>2</td>
<td>iron</td>
<td>unclassified</td>
<td>2</td>
<td>unclassified</td>
<td>Not modified</td>
</tr>
<tr>
<td>5</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>celt</td>
<td>Not modified</td>
</tr>
<tr>
<td>6</td>
<td>copper</td>
<td>scrap</td>
<td>2</td>
<td>scrap</td>
<td>Not modified</td>
</tr>
<tr>
<td>7</td>
<td>lead</td>
<td>scrap</td>
<td>2</td>
<td>scrap</td>
<td>Not modified</td>
</tr>
<tr>
<td>8</td>
<td>copper</td>
<td>scrap</td>
<td>2</td>
<td>scrap</td>
<td>Not modified</td>
</tr>
<tr>
<td>10</td>
<td>lead</td>
<td>ornament</td>
<td>2</td>
<td>pendant</td>
<td>Not modified</td>
</tr>
<tr>
<td>11</td>
<td>copper</td>
<td>scrap</td>
<td>2</td>
<td>scrap</td>
<td>Not modified</td>
</tr>
<tr>
<td>12</td>
<td>copper</td>
<td>ornament</td>
<td>2</td>
<td>bead</td>
<td>Not modified</td>
</tr>
<tr>
<td>14</td>
<td>copper</td>
<td>ornament</td>
<td>2</td>
<td>pendant</td>
<td>Not modified</td>
</tr>
<tr>
<td>15</td>
<td>iron</td>
<td>unclassified</td>
<td>2</td>
<td>unclassified</td>
<td>Modified</td>
</tr>
<tr>
<td>16</td>
<td>iron</td>
<td>unclassified</td>
<td>2</td>
<td>unclassified</td>
<td>Modified</td>
</tr>
<tr>
<td>17</td>
<td>copper</td>
<td>ornament</td>
<td>2</td>
<td>pendant</td>
<td>Not modified</td>
</tr>
<tr>
<td>18</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>unclassified</td>
<td>Modified</td>
</tr>
<tr>
<td>19</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>celt</td>
<td>Modified</td>
</tr>
<tr>
<td>20</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>celt</td>
<td>Modified</td>
</tr>
<tr>
<td>21</td>
<td>iron</td>
<td>fragment</td>
<td>2</td>
<td>horseshoe</td>
<td>Modified</td>
</tr>
<tr>
<td>22</td>
<td>iron</td>
<td>fragment</td>
<td>2</td>
<td>tool</td>
<td>Not modified</td>
</tr>
<tr>
<td>24</td>
<td>iron</td>
<td>fragment</td>
<td>2</td>
<td>tool</td>
<td>Modified</td>
</tr>
<tr>
<td>25</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>nail</td>
<td>Not modified</td>
</tr>
<tr>
<td>26</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>celt</td>
<td>Modified</td>
</tr>
<tr>
<td>27</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>celt</td>
<td>Modified</td>
</tr>
<tr>
<td>28</td>
<td>copper</td>
<td>scrap</td>
<td>1</td>
<td>scrap</td>
<td>Modified</td>
</tr>
<tr>
<td>30</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>celt</td>
<td>Modified</td>
</tr>
<tr>
<td>31</td>
<td>copper</td>
<td>ornament</td>
<td>2</td>
<td>pendant</td>
<td>Not modified</td>
</tr>
<tr>
<td>32</td>
<td>copper</td>
<td>scrap</td>
<td>2</td>
<td>scrap</td>
<td>Modified</td>
</tr>
<tr>
<td>33</td>
<td>copper</td>
<td>ornament</td>
<td>2</td>
<td>pendant</td>
<td>Modified</td>
</tr>
<tr>
<td>34</td>
<td>iron</td>
<td>fragment</td>
<td>2</td>
<td>horseshoe</td>
<td>Modified</td>
</tr>
<tr>
<td>35</td>
<td>copper</td>
<td>ornament</td>
<td>2</td>
<td>tube bead</td>
<td>Not modified</td>
</tr>
<tr>
<td>36</td>
<td>copper</td>
<td>scrap</td>
<td>2</td>
<td>scrap</td>
<td>Modified</td>
</tr>
<tr>
<td>39</td>
<td>iron</td>
<td>historic</td>
<td>2</td>
<td>Jew’s harp</td>
<td>Not modified</td>
</tr>
<tr>
<td>40</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>tool</td>
<td>Modified</td>
</tr>
<tr>
<td>41</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>celt</td>
<td>Modified</td>
</tr>
<tr>
<td>43</td>
<td>iron</td>
<td>fragment</td>
<td>2</td>
<td>blade frag</td>
<td>Modified</td>
</tr>
<tr>
<td>44</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>biface</td>
<td>Modified</td>
</tr>
<tr>
<td>45</td>
<td>iron</td>
<td>tool</td>
<td>2</td>
<td>biface</td>
<td>Modified</td>
</tr>
<tr>
<td>46</td>
<td>brass</td>
<td>ornament</td>
<td>2</td>
<td>tube bead</td>
<td>Not modified</td>
</tr>
<tr>
<td>49</td>
<td>lead</td>
<td>fragment</td>
<td>2</td>
<td>fragment</td>
<td>Not modified</td>
</tr>
<tr>
<td>50</td>
<td>copper</td>
<td>ornament</td>
<td>2</td>
<td>pendant</td>
<td>Not modified</td>
</tr>
<tr>
<td>51</td>
<td>unknown</td>
<td>tool</td>
<td>2</td>
<td>knife blade</td>
<td>Modified</td>
</tr>
<tr>
<td>52</td>
<td>copper</td>
<td>ornament</td>
<td>2</td>
<td>tinkler cone</td>
<td>Not modified</td>
</tr>
</tbody>
</table>
Table A.2 Modified versus not modified chi-square test result.

<table>
<thead>
<tr>
<th></th>
<th>Modified</th>
<th>Not Modified</th>
<th>Marginal Row Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 2</td>
<td>29 (29.57) [0.01]</td>
<td>25 (24.43) [0.01]</td>
<td>54</td>
</tr>
<tr>
<td>Cluster 1</td>
<td>17 (16.43) [0.02]</td>
<td>13 (13.57) [0.02]</td>
<td>30</td>
</tr>
<tr>
<td>Marginal Column Totals</td>
<td>46</td>
<td>38</td>
<td>84 (Grand Total)</td>
</tr>
</tbody>
</table>

The chi-square statistic is 0.0683. The p-value is .793762. Not significant at p < .05.

The chi-square statistic with Yates correction is 0.0011. The p-value is .973931. Not significant at p < .05.
Table A.3 Artifact type chi-square test result.

<table>
<thead>
<tr>
<th></th>
<th>Tool</th>
<th>Ornament</th>
<th>Scrap</th>
<th>Fragment</th>
<th>Row Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 2</td>
<td>20 (19.20) [0.03]</td>
<td>13 (13.91) [0.06]</td>
<td>8 (8.61) [0.04]</td>
<td>8 (7.28) [0.07]</td>
<td>49</td>
</tr>
<tr>
<td>Cluster 1</td>
<td>9 (9.80) [0.06]</td>
<td>8 (7.09) [0.12]</td>
<td>5 (4.39) [0.08]</td>
<td>3 (3.72) [0.14]</td>
<td>25</td>
</tr>
<tr>
<td>Column Totals</td>
<td>29</td>
<td>21</td>
<td>13</td>
<td>11</td>
<td>74 (Grand Total)</td>
</tr>
</tbody>
</table>

The chi-square statistic is 0.6081. The p-value is .894574. The result is not significant at $p < .05$.
Table A.4 Artifact material chi-square test result.

<table>
<thead>
<tr>
<th></th>
<th>Copper</th>
<th>Iron</th>
<th>Marginal Row Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 2</td>
<td>18 (20.38) [0.28]</td>
<td>30 (27.62) [0.21]</td>
<td>48</td>
</tr>
<tr>
<td>Cluster 1</td>
<td>13 (10.62) [0.54]</td>
<td>12 (14.38) [0.39]</td>
<td>25</td>
</tr>
<tr>
<td>Marginal Column Totals</td>
<td>31</td>
<td>42</td>
<td>73 (Grand Total)</td>
</tr>
</tbody>
</table>

The chi-square statistic is 1.4146. The p-value is .234297. *Not significant at p < .05.*

The chi-square statistic with Yates correction is 0.8834. The p-value is .347284. *Not significant at p < .05.*
APPENDIX B

MAPS/FLOWS
Figure B.1 Framework created to explore object itineraries at Stark Farm.
Figure B.2 World map for viewing object interaction sphere spatially.
Figure B.3 Map of Stark Farm site showing metal artifact locations with excavation units.
APPENDIX C

STATISTICS
Figure C.1 Spatial clustering results from R Studio.
Figure C.2 Box plot results from R Studio.
Figure C.3 Modified versus not modified difference between clusters.
Figure C.4 Difference in artifact type category between clusters.
Figure C.5 Difference in artifact material category between clusters
APPENDIX D

IMAGES
Figure D.1 MD99, Cannonball
Figure D.2 MD20, Horseshoe with bent edges
Figure D.3 MD18, Ground knife blade
Figure D.4 MD21, Celt modified from axe head.
Figure D.5 MD05, Replica groundstone celt.