Theses and Dissertations

Author

Lifang Yan

Issuing Body

Mississippi State University

Advisor

Wang, Chinling

Committee Member

Pace, Lanny W.

Committee Member

Banda, Alejandro

Committee Member

Perkins, Andy D.

Committee Member

Zhang, Zhenyu Michael

Other Advisors or Committee Members

Wan, Xiu-Feng

Date of Degree

5-12-2012

Document Type

Dissertation - Open Access

Major

Veterinary Medical Science

Degree Name

Doctor of Philosophy (Ph.D)

College

College of Veterinary Medicine

Department

Veterinary Medical Science Program

Abstract

Bovine viral diarrhea virus (BVDV) is an important viral pathogen affecting all ages of cattle, resulting in significant economic losses worldwide. BVDV infection is associated with a diverse array of symptoms including gastrointestinal disorder, respiratory distress, fetal malformation, stillbirth, abortions, and mucosal disease (MD). Transplacental infections of fetuses between 42 and 125 days of gestation can result in immune-tolerance and the surviving fetuses become persistently infected (PI). PI animals are major reservoir of BVDV and it becomes problematic to control the disease. The objectives of this dissertation were to: 1) develop a cost-effective testing scheme to detect BVDV PI animals from exposed herds, 2) characterize two virulent BVDV-2 Mississippi isolates associated with severe hemorrhagic diseases, and 3) perform phylogenetic analysis based on sequences of 5'UTR, E2, and NS5B regions. First, we developed a BVDV testing scheme by combining pooled real-time RT-PCR with antigen capture enzyme-linked immunosorbent assay (ACE) to screen cattle herds. From positive pools individual positives were identified using ACE. Data from a three year period indicated that 92.94% PI animals were infected with BVDV-1, 3.53% with BVDV-2, and 3.53% with both BVDV-1 and BVDV-2. Analysis of the 5'UTR of 22 isolates revealed the predominance of BVDV-1b followed by BVDV-2a. Second, two virulent BVDV isolates, M10-3432 and M10-5347, were successfully recovered from an adult beef breeding cow and feedlot calf respectively. When compared to the reference strain BVDV-2 125c, five and three unique amino acids in E2 regions were different from M10-5347 and M10-3432 respectively. Phylogenetic analysis of E2 region grouped both Mississippi isolates in BVDV-2a, a subtype containing high virulent strains. M10-3432 was clustered with high virulent strain 890 while M10-5347 was clustered with high virulent strain CD87. Third, we compared the phylogenetic analyses of BVDV based on the sequences of 5'UTR, E2, and NS5B at either nucleotides or amino acids level. Although slight differences were observed, the virulent BVDV isolates were consistently classified into BVDV-2a cluster regardless of region of sequences used. Furthermore, phylogenetic tree constructed using combined two or more regions had higher posterior probability and bootstrap value than phylogenetic trees constructed using a single region

URI

https://hdl.handle.net/11668/18312

Share

COinS