Advisor

Fowler, James E.

Committee Member

Du, Qian (Jenny)

Committee Member

Moorhead, Robert J.

Committee Member

Younan, Nicolas H.

Date of Degree

1-1-2013

Document Type

Dissertation - Open Access

Abstract

In this dissertation, the general problem of the dimensionality reduction of hyperspectral imagery is considered. Data dimension can be reduced through compression, in which an original image is encoded into bitstream of greatly reduced size; through application of a transformation, in which a high-dimensional space is mapped into a low-dimensional space; and through a simple process of subsampling, wherein the number of pixels is reduced spatially during image acquisition. All three techniques are investigated in the course of the dissertation. For data compression, an approach to calculate an operational bitrate for JPEG2000 in conjunction with principal component analysis is proposed. It is shown that an optimal bitrate for such a lossy compression method can be estimated while maintaining both class separability as well as anomalous pixels in the original data. On the other hand, the transformation paradigm is studied for spectral dimensionality reduction; specifically, dataindependent random spectral projections are considered, while the compressive projection principal component analysis algorithm is adopted for data reconstruction. It is shown that, by incorporating both spectral and spatial partitioning of the original data, reconstruction accuracy can be improved. Additionally, a new supervised spectral dimensionality reduction approach using a sparsity-preserving graph is developed. The resulting sparse graph-based discriminant analysis is seen to yield superior classification performance at low dimensionality. Finally, for spatial dimensionality reduction, a simple spatial subsampling scheme is considered for a multitemporal hyperspectral image sequence, such that the original image is reconstructed using a sparse dictionary learned from a prior image in the sequence.

URI

https://hdl.handle.net/11668/19121

Share

COinS