Theses and Dissertations


Saranee Dutta

Issuing Body

Mississippi State University


Rush, Scott

Date of Degree


Document Type

Dissertation - Open Access


Wildlife, Fisheries and Aquaculture

Degree Name

Doctor of Philosophy (Ph.D)


College of Forest Resources


Department of Wildlife, Fisheries and Aquaculture


Living shorelines are designed to address coastal erosion and their use is encouraged over that of hard structures such as sea walls and bulkheads because they provide habitat, improve water quality and stabilize shorelines. Objectives of this study were to: (i) Compare soil Nitrogen [N], Phosphorus [P], Organic Carbon [OC], organic matter (SOM) and soil bulk density between living, hardened and natural shoreline to determine if soil present within living shorelines is comprised of higher SOM and lower bulk density, that encourage marsh growth, as compared to hardened shorelines. (ii) Use an experimental mesocosm to test the effect of shoreline substrate types (living vs hardened vs natural) and nitrogen loading (at four concentration 0, 12, 24, 36 ml) on the growth of Spartina alterniflora. No previous study has documented the growth of Spartina in response to inorganic N loading at various shoreline substrate types. My results show living shoreline has significantly lower soil bulk density [F 2, 138 = 10.79, p <0.01] and higher SOM content than hardened shoreline [F 2, 138 = 10.26, p <0.01]. Combinations of N addition decreased plant’s root-shoot ratio and resulted in increased dry shoot weight. These results indicate that living shoreline is capable of trapping sediments within the nearshore environment, contributing to vertical marsh accretion by accumulation of organic matter, in the face of sea level rise. Findings from this research provide insights to local government, planners, developers and consultants on the benefits of living shoreline structures for the purpose of best shoreline management practice.