Theses and Dissertations


Zhen Liu

Issuing Body

Mississippi State University


Bridges, Susan

Committee Member

Boggess, Julian E.

Committee Member

Vaughn, Rayford

Date of Degree


Document Type

Graduate Thesis - Open Access


Computer Science

Degree Name

Master of Science


James Worth Bagley College of Engineering


Department of Computer Science and Engineering


As clusters of Linux workstations have gained in popularity, security in this environment has become increasingly important. While prevention methods such as access control can enhance the security level of a cluster system, intrusions are still possible and therefore intrusion detection and recovery methods are necessary. In this thesis, a system architecture for an intrusion detection system in a cluster environment is presented. A prototype system called pShield based on this architecture for a Linux cluster environment is described and its capability to detect unique attacks on MPI programs is demonstrated. The pShield system was implemented as a loadable kernel module that uses a neural network classifier to model normal behavior of processes. A new method for generating artificial anomalous data is described that uses a limited amount of attack data in training the neural network. Experimental results demonstrate that using this method rather than randomly generated anomalies reduces the false positive rate without compromising the ability to detect novel attacks. A neural network with a simple activation function is used in order to facilitate fast classification of new instances after training and to ease implementation in kernel space. Our goal is to classify the entire trace of a program¡¯s execution based on neural network classification of short sequences in the trace. Therefore, the effect of anomalous sequences in a trace must be accumulated. Several trace classification methods were compared. The results demonstrate that methods that use information about locality of anomalies are more effective than those that only look at the number of anomalies. The impact of pShield on system performance was evaluated on an 8-node cluster. Although pShield adds some overhead for each API for MPI communication, the experimental results show that a real world parallel computing benchmark was slowed only slightly by the intrusion detection system. The results demonstrate the effectiveness of pShield as a light-weight intrusion detection system in a cluster environment. This work is part of the Intelligent Intrusion Detection project of the Center for Computer Security Research at Mississippi State University.