Theses and Dissertations

Author

Taosha Jiang

Issuing Body

Mississippi State University

Advisor

Grzybowski, Stanislaw

Committee Member

Masoud, Karimi

Committee Member

Younan, Nicolas H.

Committee Member

Fu Yong

Committee Member

Fowler, James E.

Date of Degree

5-17-2014

Document Type

Dissertation - Open Access

Major

Electrical and Computer Engineering

Degree Name

Doctor of Philosophy (Ph.D)

College

James Worth Bagley College of Engineering

Department

Department of Electrical and Computer Engineering

Abstract

Lightning is one of the main factors that cause Photovoltaic (PV) systems to fail. The PV modules inside PV systems, like any other electric equipment, will be degraded under electrical stress. The effect of electrical degradation of the PV modules caused by lightning induced voltage has been rarely reported. In the dissertation, the electrical properties degradation of a polycrystalline silicon module was studied. Firstly, lightning impulse voltages of positive polarity ranging from low to high are applied on different groups of the testing modules. All these lightning impulse voltage tests are conducted in the same experimental condition except for their stress voltage magnitudes. The maximum power output, I-V characteristics, and dark forward I-V curve are measured and reported periodically during the lightning impulse voltage tests. By comparing the maximum output power and changes in the internal electrical properties, it could be concluded that lightning impulse voltages, even medium voltage levels, will cause degradation to the sample. The relationship of the maximum output power and the number of applied impulses for different testing voltage levels are compared. An analysis of the electrical property changes caused by the lightning impulse voltages is presented. Secondly, a group of samples are tested with lightning impulse voltage of negative polarity. A comparison of the impulse voltage aging effects at the same voltage level with positive polarity is made. The maximum power output drop caused by positive and negative lightning impulses are compared. Laboratory results revealed that positive and negative lightning impulses will not only influence the degree of degradation, but also lead to different electrical property changes. Finally, a comparison of the effect of lightning impulses combined with other stress factors are discussed. The study simulates a field-aged sample’s behavior at lightning impulse voltage testing conditions. The result suggests that the degradation caused by lightning impulse voltage is greatly accelerated when the sample has bubbles and delamination. Electrical breakdown of the module is caused by the failure of the insulation.

URI

https://hdl.handle.net/11668/17769

Share

COinS