Theses and Dissertations


Ranjit Amgai

Issuing Body

Mississippi State University


Abdelwahed, Sherif

Committee Member

Mazzola, Michael

Committee Member

Follett, Randolph F.

Committee Member

Fu, Yong

Date of Degree


Document Type

Dissertation - Open Access


Electrical Engineering

Degree Name

Doctor of Philosophy


James Worth Bagley College of Engineering


Department of Electrical and Computer Engineering


The recent development of Integrated Power Systems (IPS) for shipboard application has opened the horizon to introduce new technologies that address the increasing power demand along with the associated performance specifications. Similarly, the Shipboard Power System (SPS) features system components with multiple dynamic characteristics and require stringent regulations, leveraging a challenge for an efficient system level management. The shipboard power management needs to support the survivability, reliability, autonomy, and economy as the key features for design consideration. To address these multiple issues for an increasing system load and to embrace future technologies, an autonomic power management framework is required to maintain the system level objectives. To address the lack of the efficient management scheme, a generic model-based holistic power management framework is developed for naval SPS applications. The relationship between the system parameters are introduced in the form of models to be used by the model-based predictive controller for achieving the various power management goals. An intelligent diagnostic support system is developed to support the decision making capabilities of the main framework. Naïve Bayes’ theorem is used to classify the status of SPS to help dispatch the appropriate controls. A voltage control module is developed and implemented on a real-time test bed to verify the computation time. Variants of the limited look-ahead controls (LLC) are used throughout the dissertation to support the management framework design. Additionally, the ARIMA prediction is embedded in the approach to forecast the environmental variables in the system design. The developed generic framework binds the multiple functionalities in the form of overall system modules. Finally, the dissertation develops the distributed controller using the Interaction Balance Principle to solve the interconnected subsystem optimization problem. The LLC approach is used at the local level, and the conjugate gradient method coordinates all the lower level controllers to achieve the overall optimal solution. This novel approach provides better computing performance, more flexibility in design, and improved fault handling. The case-study demonstrates the applicability of the method and compares with the centralized approach. In addition, several measures to characterize the performance of the distributed controls approach are studied.