Theses and Dissertations

Issuing Body

Mississippi State University


King, Roger L.

Committee Member

Younan, Nicholas H.

Committee Member

Luke, Edward A.

Date of Degree


Original embargo terms

MSU Only Indefinitely

Document Type

Graduate Thesis - Campus Access Only


Computer Engineering

Degree Name

Master of Science


James Worth Bagley College of Engineering


Department of Electrical and Computer Engineering


To understand remotely sensed data, one must understand the relationship between radiative transfer models and their predictions of the interaction of solar radiation on geophysical media. If it can be established that these models are indeed accurate, some form of evaluation has to be performed on these models, for users to choose the model that suits their requirements. This thesis focuses on the implementation of a variable linear kernel model, its validation, and to study its application in the prediction of BRDF effects using two different neural networks-- the backpropogation and the radial basis function neural network and finally to draw conclusions on which neural network is best suited for this model. Based on these results the optimum number of kernels for this model is derived.