Theses and Dissertations

Issuing Body

Mississippi State University


Shores, Andrew

Committee Member

Priddy, Lauren

Committee Member

Prabhu, Raj

Committee Member

Liu, Yucheng

Date of Degree


Original embargo terms


Document Type

Graduate Thesis - Open Access


Biomedical Engineering

Degree Name

Master of Science


James Worth Bagley College of Engineering


Department of Agricultural and Biological Engineering


A biofidelic finite element model was developed from an acquired set of CT scans for a range of human head and UAS impacts to provide simulations of multiple velocity scenarios of impact severity at four impact orientations on the human head. The hypothesis was that a correlation existed between the total amounts of kinetic energy of the impact from the UAS and human head collision, as well as that location of impact plays a role in the injury risk sustained. Linear acceleration, angular velocity, and pressure data values were calculated for each individual simulated case and then further correlated to injury risks that represent the severity of damage that would be sustained from the collision. Resulting data proved to show that impact kinetic energy, impact orientation, and impact response of the head and UAS all play vital roles in the amount of damage that is sustained from the impact collisions.