Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Mago, Pedro J.

Committee Member

Steele, W. Glenn.

Committee Member

Hodge, B. Keith

Committee Member

Chamra, Louay M.

Date of Degree

5-1-2008

Document Type

Dissertation - Open Access

Abstract

Many industrial processes have low-temperature waste heat sources that cannot be efficiently recovered. Low grade waste heat has generally been discarded by industry and has become an environmental concern because of thermal pollution. This has led to the lookout for technologies which not only reduce the burden on the non-renewable sources of energy but also take steps toward a cleaner environment. One approach which is found to be highly effective in addressing the above mentioned issues is the Organic Rankine Cycle (ORC), which can make use of low- temperature waste heat to generate electric power. Similar in principle to the conventional cycle, ORC is found to be superior performance-wise because of the organic working fluids used in the cycle. The focus of this study is to examine the ORC using different types of organic fluids and cycle configurations. These organic working fluids were selected to evaluate the effect of the fluid boiling point temperature and the fluid classification on the performance of ORCs. The results are compared with those of water under similar conditions. In order to improve the cycle performance, modified ORCs are also investigated. Regenerative ORCs are analyzed and compared with the basic ORC in order to determine the configuration that presents the best thermal efficiency with minimum irreversibility. The evaluation for both configurations is performed using a combined first and second law analysis by varying certain system operating parameters at various reference temperatures and pressures. A unique approach known as topological method is also used to analyze the system from the exergy point of view. Effects of various components are studied using the exergy-wheel diagram. The results show that ORCs using R113 as working fluid have the best thermal efficiency, while those using Propane demonstrate the worse efficiency. In addition, results from these analyses demonstrate that regenerative ORCs produce higher efficiencies compared to the basic ORC. Furthermore, the regenerative ORC requires less waste heat to produce the same electric power with a lower irreversibility.

URI

https://hdl.handle.net/11668/16179

Share

COinS