Advisor

Chen, Lei

Committee Member

Li, Like

Committee Member

Cho, Heejin

Date of Degree

1-1-2018

Document Type

Graduate Thesis - Open Access

Major

Mechanical Engineering

Degree Name

Master of Science

College

College of Engineering

Department

Department of Mechanical Engineering

Abstract

The spatiotemporal evolution of temperature of leaves-on-branchlet carbon based electric double layer capacitors (EDLCs) under imposed constant current was studied using a continuum thermal model. The hot spot aggregated at the tips of graphene petals (GPs), particularly at the high concave surface, at the beginning of the charging step. As the charging proceeded, the overall temperature rose continuously, and the temperature distribution was likely uniform throughout the graphene petals due to an increasingly uniform distribution of ions on GPs surfaces. To elucidate the effects of electrode geometry on the change of temperature, several simple two-dimensional structures were also simulated in the charging step. Concave and planar structures contributed to high temperature change, while a convex structure tended to alleviate the hot spot. An insight into geometric effects on the thermal behavior may lead engineers to develop a new class of nanomaterials for supercapacitors.

URI

https://hdl.handle.net/11668/19721

Comments

thermal modeling||Electric double layer capacitors

Share

COinS